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Abstract. Recovery in agent systems is an important and complex
problem. This paper describes an approach to improving the robustness
of an agent system by augmenting its failure-handling capabilities. The
approach is based on the concept of semantic compensation: “cleaning
up” failed or canceled tasks can help agents behave more robustly and
predictably at both an individual and system level. However, in complex
and dynamic domains it is difficult to define useful specific compensa-
tions ahead of time. This paper presents an approach to defining seman-
tic compensations abstractly, then implementing them in a situation-
specific manner at time of failure. The paper describes a methodology
for decoupling failure-handling from normative agent logic so that the
semantic compensation knowledge can be applied in a predictable and
consistent way— with respect to both individual agent reaction to fail-
ure, and handling failure-related interactions between agents— without
requiring the agent application designer to implement the details of the
failure-handling model. In particular, in a multi-agent system, robust
handling of compensations for delegated tasks requires flexible protocols
to support management of compensation-related activities. The ability
to decouple the failure-handling conversations allows these protocols to
be developed independently of the agent application logic.

1 Introduction

The design of reliable agent systems is a complex and important problem. One
aspect of that problem is making a system more robust to failure. The work de-
scribed in this paper is part of a Department of CSSE, University of Melbourne
project to develop methodologies for building more robust multi-agent systems,
in which we investigate ways to apply transactional semantics to improve the
robustness of agent problem-solving and interaction. Traditional transaction pro-
cessing systems prevent inconsistency and integrity problems by satisfying the
so-called ACID properties of transactions: Atomicity, Consistency, Isolation, and
Durability [1]. These properties define an abstract computational model in which
each transaction runs as if it were alone and there were no failure. The program-
mer can focus on developing correct, consistent transactions, while the handling
of concurrency and failure is delegated to the underlying engine.



Our research is motivated by this principle: we would like to make a system of
interacting agents more robust, by improving its failure-handling behavior. We
would also like agent designers to be able to define failure-handling information
in a way that is easy to understand and which does not require them to make
tweaks to a given agent’s existing domain logic; and by providing an underlying
support mechanism which takes care of the details of the failure-handling.

However, in most multi-agent domains, principles of transaction management
can not be directly applied. The effects of many actions may not be delayed: such
actions “always commit”, and thus correction of problems must be implemented
by “forward recovery”, or failure compensation [1]- that is, by performing ad-
ditional actions to correct the problem, instead of a transaction rollback. In
addition, actions may not be “undoable” nor repeatable. Further, it is often
not possible to enumerate how the tasks in a dynamic agent system might un-
fold ahead of time: it is not computationally feasible, nor do we have enough
information about the possible “states of the world” to do so.

In this paper, we focus on one aspect of behavior motivated by transac-
tional semantics, that of approximating failure atomicity by semantic compen-
sation: improving the ability of an agent system to recover from task problems
by “cleaning up after” or “undoing” its problematic actions. The use of semantic
compensation in an agent context has several benefits:

— It helps leave an agent in a state from which future actions— such as retries,
or alternate methods of task achievement— are more likely to be successful;

it helps maintain an agent system in a more predictable state: agent inter-
actions are more robust; and unneeded resources are not tied up;

it can often be applied more generally than methods which attempt to
“patch” a failed activity;

and (in the context of our longer-term project goals) it allows a long “trans-
action” to be split up into shorter ones, with less chance of deadlocks, and
higher concurrency.

We introduce the concept of semantic compensation by presenting an ex-
ample in a “dinner party” domain. (We use this domain because it has a rich
semantics and is easily understandable; its issues can be mapped to analogous
problems in more conventional domains). Consider two related scenarios, where
a group of agents must carry out the activities necessary to prepare for holding
a party. First, consider an example where the party will be held at a rented hall,
e.g. for a business-related event. Fig. 1A shows one task decomposition for such
an activity. The figure uses an informal notation, where subtasks that may be ex-
ecuted concurrently are connected by a double bar; otherwise they are executed
sequentially. The subtasks include planning the menu, scheduling the party and
arranging to reserve a hall, inviting the guests and arranging for catering. The
figure indicates that some of the subtasks (such as inviting the guests) may be
delegated to other agents in the system.

Next, consider a scenario which differs in that the party will be held at the
host’s house. In this case, while the party must be scheduled, a hall does not
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Fig. 1: Planning a dinner party.

need to be reserved. In addition, the hosts will not have the party catered and
will shop themselves. Fig. 1B shows a task decomposition for this scenario.

If the party planning fails or the event must be canceled, then a number of
things might need to be done to properly take care of the cancellation— that
is, to “compensate for” the party planning. However, the specifics of these ac-
tivities will be different depending upon what has been accomplished prior to
cancellation. In the first case (Fig. 1A) we may have to cancel some reservations,
but if we have used caterers, then we will not have to deal with any extra food;
in the second case (Fig. 1B), we have no reservations to cancel, but we will
likely have unused food. In either event, the party cancellation activities can be
viewed as accomplishing a semantic compensation; clearly, compensation activi-
ties must address agent task semantics. An exact ‘undo’ is not always desirable—
even if possible. Further, compensations are both context-dependent and usually
infeasible to enumerate ahead of time, and employing a composition of subtask
compensations is almost always too simplistic.

In this paper, we describe two primary aspects of our approach to semantic
compensation. First, we present a method for operationalizing the concept of



semantic compensation for an agent system. This is accomplished via goal-based
specification of failure-handling knowledge. A primary basis of our approach is
that within a problem domain, it is often possible to usefully define what to do to
address a failure independently of the details of how to implement the correction;
and to define failure-handling knowledge for a given (sub)task without requiring
knowledge of the larger context in which the task may be invoked.

Second, for semantic compensation to be effective, it must be employed con-
sistently and predictably across an agent system, with respect to how individual
agents react when a task fails or is canceled, and how the agents in the system
interact when problems develop with a delegated task. We claim that a fixed
method of assigning responsibility for task compensations is not sufficiently ro-
bust, and that inter-agent protocols are required to determine responsibility.

We implement predictable semantic compensation by factoring an agent’s
failure-handling from its normative behavior. We define a decoupled, platform-
independent agent component that uses goal-based compensation knowledge to
support failure management. We refer to this component as the agent’s FHC
(Failure-Handling Component). The FHC performs high-level monitoring of the
agent’s problem-solving, and affects its behavior in failure situations without
requiring modification of the agent’s implementation logic'. As shown in Fig. 2,
the FHC sits conceptually below the agent’s domain logic component, which
we refer to as the “agent application”. Analogously to exception-handling in a
language like Java, the FHC reduces what needs to be done to “program” the
agent’s failure-handling behavior, while providing a model that constrains and
structures the failure-handling information that needs to be defined.

event-based agent application interface
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(FHC)

conversation management
communications
networking

1°F
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and domain resources

Fig.2: An agent’s FHC. We refer to the domain logic part of the agent, above the
failure-handling component, as the “agent application”.

In Section 2, we describe our approach to goal-based definition of failure-
handling knowledge. Section 3 outlines how the FHC uses this knowledge to
provide robust and well-specified reactions to task failures and cancellations,

1 With respect to our larger project goals, this framework will also support other as-
pects of our intended transactional semantics, such as logging, recovery from crashes,
and task concurrency management.



and to support predictable and consistent failure-handling-related interactions
between the agents in the system, independent of changes in the ‘core’ agent
application logic. In Sections 4 and 5 we finish with a discussion of related work,
and conclude.

2 Goal-Based Semantic Compensation

The example of Section 1 suggested how compensation of a high-level task can
typically be achieved in different ways depending upon context. It is often diffi-
cult to identify prior to working on a task the context-specific details of how a
task failure should be addressed or a compensation performed. It can be effec-
tively impossible to define all semantic compensations prior to runtime in terms
of specific actions that must be performed.

Instead, we claim it is more useful to define semantic compensations declar-
atively, in terms of the goals that the agent system needs to achieve in order to
accomplish the compensation, thus making these definitions more widely appli-
cable. We associate failure-handling goal definitions with some or all of the tasks
(goals) that an agent can perform. These definitions specify at a goal?— rather
than plan— level what to do in certain failure situations, and we then rely on the
agents in the system to determine how a goal is accomplished. The way in which
these goals are achieved, for a specific scenario, will depend upon context.

Figures 3A and 3B illustrate this idea. Suppose that in the party-planning
examples of Section 1, the host falls ill and the party needs to be canceled. Let
the compensation goals for the party-planning task be the following:

— all party-related reservations should be canceled;

— extra food used elsewhere if possible; and

— guests notified and ‘apologies’ made.
The figures show the resulting implementations of these compensation goals for
the activities in Figs 1A and 1B. Note that the compensation goals for the high-
level party-planning task are the same in both cases, and indicate what needs
to be made true in order for the compensation to be achieved. However, the
implementations of these goals will differ in the two cases, due to the different
contexts in which the agent works to achieve them. When the party was to be
held at home (Fig. 3B), extra food must be disposed of, and (due to the more
personal nature of the party) gifts are sent to the guests. In the case where the
party was to be held in a meeting hall (Fig. 3A), there are reservations that need
to be canceled. However, there is no need to deal with extra food (the caterers will
handle it) nor to send gifts. Some compensation goals may be already satisfied
and need no action, and some tasks may be only partly completed at time of
cancellation (e.g. not all guests may be yet invited).

Note that a semantic compensation may include goals that do not address
any of the (sub)tasks of the original task, such as the gift-giving in the first

2 In this paper, we use ’goal’ and ’task’ interchangeably; as distinguished from plans,
action steps, or task execution. In our usage, goals describe conditions to be achieved,
not actions or decompositions.
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example. Some compensation activities may “reverse” the effects of previous ac-
tions (e.g. canceling the reservation of a meeting hall), but other previous effects
may be ignored (no effort is made to “undo” the effects of the house-cleaning) or
partially compensatable (dealing with the extra food) depending upon context.
The definition of such a semantic compensation is task- and domain-specific.

A goal-based formulation of failure-handling knowledge has several benefits:

— it allows an abstraction of knowledge that can be hard to express in full
detail;

— its use is not tied to a specific agent architecture; and

— it allows the compensations to be employed in dynamic domains in which it
is not possible to pre-specify all relevant failure-handling plans.

In order to use goal-based compensation in an agent context, the agent de-
veloper must provide domain-dependent information prior to runtime. For each
(sub)task of an agent’s for which failure-handling will be enabled, a set of pa-
rameterized failure-handling goals— not plans— must be associated with the task.
Our model allows two types of failure-handling knowledge to be associated with
each task: goals whose achievement is triggered by the task’s failure (stabiliza-
tion goals, which perform immediate local “cleanup”); and compensation goals
triggered by cancellation. (Cancellation may but need not result from failure).

The goal-based definitions are then instantiated (bound) and used at runtime
by the agent’s FHC to direct the agent’s behavior in failure situations. As will be
further described in Section 3, the FHC can present new compensation goals to
its agent application, which implements the goals according to context®. Failure

3 If an agent application is given a compensation goal to achieve, this does not neces-
sarily mean that direct work on the goal will be immediately initiated: it may have
unmet preconditions.



handling is triggered in the FHC by the agent application’s problem-solving
and/or task cancellation.

Default failure-management is top-down: when a high-level task is canceled,
the agent is given that task’s (high-level) compensation goals to achieve. How-
ever, the agent’s FHC may additionally be provided with information about
when to directly employ compensations for subtasks of a canceled task; when to
retry a failed task (allowing other alternatives to be tried by the agent applica-
tion); and when not to compensate a failed task; in the form of a set of event-
driven, domain-dependent strategy rules. The strategy rules refine the FHC’s
default failure-handling behavior, and allow localized compensations and retries
to be spawned.

We view the process of constructing these definitions, and associated strategy
rules, as “assisted knowledge engineering”; we can examine and leverage the
agent’s domain knowledge to support the definition process. (We are researching
ways to provide semi-automated support for this process). Because the FHC
enforces an explicit and straightforward use of this failure-handling knowledge,
the developer need not replicate equivalent behavior in the agent application;
thus “domain logic” and failure-handling knowledge may be largely separated,
making each easier to modify.

Such failure-handling knowledge can be added to an agent system incremen-
tally, allowing a progressive refinement of its knowledge about how to react in
failure situations, which it takes advantage of when applicable— otherwise, its
behavior is as before. The failure-handling knowledge augments, not overrides,
the agent’s domain logic.

This section provided an overview of a foundation of our approach: the em-
ployment of goal-based— rather than plan- or action-based— definitions of seman-
tic compensations. More details are provided in [2]. Our methodology separates
the definition of task failure-handling knowledge from the agents’ implementa-
tion of that knowledge, allowing the compensations to leverage runtime context
in a way that makes them both more robust and more widely applicable.

3 Managing Compensations of Delegated Tasks

The previous section described a method for defining compensations in dynamic
and complex agent environments. In this section, we describe a methodology for
supporting consistent and predictable system behaviour on failure, while reduc-
ing what needs to be done by the agent developer to “program” the agent system
to handle failure. To accomplish these goals, we separate each agent’s “norma-
tive” from failure-handling knowledge by means of a decoupled component that:
— is not tied to a specific agent architecture, but leverages the agent’s problem-
solving knowledge
— determines when to invoke task compensation goals or retries based on the
agent’s activities and task status
— determines what goals to initiate, based on failure-handling knowledge; and
— provides support for multi-agent task compensation scenarios



As introduced in Fig. 2, we label this component the agent’s FHC. The FHC
maintains an abstraction of the agent’s problem-solving history to support its
failure management. In this paper we focus on one aspect of that failure han-
dling: the agent’s interactions, and how the FHC allows compensation-related
interaction protocols to be factored from normative agent conversations.

The need for failure-handling protocols as a core part of the failure-handling
methodology can be illustrated by considering compensation scenarios. A task
delegation generates an implicit compensation scope for a task; potentially, ei-
ther the delegator or the ‘delegatee’™— the agent to which the task was assigned—
could be in charge of a compensation if it is later required. Most approaches
suggest that a specific ‘failure handler’ agent/service be used for each activity
[3], or that the agent/service that performed the original task will be responsible
for its compensation should the need arise [4]. However, no fixed approach for
determining which agent should be responsible for compensation, is appropriate
all of the time. The agent that performed the original task may be too busy
to perform the compensation, unable to perform the compensation, or currently
offline/unreachable. If the agent failed at the original task, it should perhaps not
take on the compensation of that task. However, we do not want to automatically
target a separate failure-handling agent: often the agent that performed the ‘for-
ward’ task will be the best suited to implement its compensation. Any approach
should also accommodate situations where the delegating agent is offline.

Consider again the “dinner party” example of Section 2. The invite guests
task is delegated by the primary “party planning” agent to an “invitation”
agent. If the party needs to be canceled, then as part of the compensation pro-
cess, the invite guests task will be compensated by canceling with all con-
firmed/pending guests. As a default, it makes sense for the invitation agent to
contact the guests again— it may have retained internal state useful to the task—
but not if it is overloaded or offline. Alternatively, the invitation agent might
have failed (and contributed to the failure of the party planning task). In this
case, the delegating agent (if online) prefers that the original invitation agent
not be responsible for the invitation cancellations.

Before compensation for a task can proceed, responsibility for the compensa-
tion needs to be assigned to one of the agents in the compensation scope. Such an
assignment does not indicate which agent will actually perform the task; once
an agent is responsible for a compensation, it may delegate it. The example
above illustrates that a fixed method for assigning compensation responsibility
will not always be appropriate. It is more robust to require the relevant agents
in the scope of the compensation activity to mutually determine which will be
responsible. For this, an interaction protocol— supporting a conversation between
the agents— is required.

Below, we describe the agent’s FHC, and then detail the way in which it is
used to support a set of factored compensation-related agent interaction proto-
cols. We describe one of the protocols used by our system, which allows delegated
compensations to be robustly managed.



3.1 The Agent’s Failure-Handling Component (FHC)

A key aspect of our failure-handling model is the use of an abstract, goal-level
representation of the agent’s activities. This allows us to support a decoupled
and architecture-independent mechanism for managing goal-based compensa-
tions. As suggested in Fig. 2, we define a model in which an agent application
(the agent’s domain logic) sits upon its FHC. The FHC supports a platform-
independent API based on a goal-level failure-handling ontology, which allows
goal instantiation and status information to be exchanged with the agent ap-
plication. The agent application provides notifications on new goals and goal
achievement /failure (with failure modes) to the FHC, and the FHC may intro-
duce new goals to the agent application, to initiate both compensations and
retries. In addition, all messages to/from the agent are filtered through its FHC,
as will be further described below.

Based on the information from the agent, the FHC maintains a goal-level
history of task/subtask information for currently relevant agent tasks: for each
such task, a tree structure is built in the FHC to syntactically track the goals
and subgoals generated as the agent application’s problem-solving progresses.
We call such a tree a task-monitoring tree. The monitored information does
not include task details, only goal information. Each node in an FHC task-
monitoring tree corresponds to a task subgoal. A node may be in one of the
states shown in Fig. 4. The FHC uses this task structure in conjunction with the
goal-level failure-handling knowledge described in Section 2, and domain events,
to support compensations, task retries/alternatives, and management of task
failure and cancellation events. (When a task is canceled, the agent application
is instructed to halt all work on it). Compensations cause new task nodes to
be created, and compensation tasks may themselves support compensations or
retries.

not started

Fig.4: FHC task node states. ‘Canceled’ indicates the state of the associated task node
only; not the status of any corresponding compensation or stabilization activities.
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Any agent application which correctly supports this API, and for which
failure-handling knowledge is provided, may be “plugged into” the FHC; it is
not architecture-specific. The agent application performs planning, task decom-
position and execution. The FHC tracks task decomposition and reacts to task
failures— reported via the API- by instructing agents to achieve repair goals.
That is, an agent’s FHC makes decisions about what failure-handling goals
should be achieved, and when they will be requested of the agent. The agent’s
application logic is then invoked to implement the tasks and determine the de-



tails of how to correct for the failures. The FHC’s failure-handling augments,
not overrides, the agent application’s.

The use of the FHC reduces the agent developer’s implementation require-
ments, by providing a model that structures and supports the failure-handling
information that needs to be defined. The motivation behind the use of the FHC
is analogous to that of the exception-handling mechanism in a language like Java,
the developer is assisted in generating desired agent failure-handling behavior,
and the result is easier to understand and predict than if the knowledge were
added in an ad-hoc fashion.

[2] provides additional detail, describes the API, and discusses the require-
ments on an agent application to correctly support the interface with the FHC.
In particular, the agent must utilize a goal/subgoal representation of its task
problem solving, and communicate changes in this information to its FHC. It
must also be able to determine whether or not a given goal is already achieved,
and support instructions to start/halt work on a goal.

Below, we focus on one specific aspect of the FHC. Its representation and
maintenance of goal-level agent information allows failure-handling interaction
protocols to be specified and implemented orthogonally from the agent applica-
tion logic, to the benefit of system robustness and behavioral consistency. In the
following, we assume that, as shown in Fig. 2, the agent architecture includes a
“conversation” layer, which ensures that the agent’s incoming/outgoing messages
adhere to the system’s prescribed interaction protocols [5,6]. We assume that
this layer supports ‘are you alive’ pings to the agent(s) participating in active
conversations, and generates error events if these other agents are not reachable.

3.2 Compensation Interaction Protocols

The agent application’s ‘regular’ interaction protocols will determine how sub-
tasks are allocated and delegated. These protocols may involve negotiation or
bidding [5] or market mechanisms [7], as well as direct sub-task assignments or
subscriptions, and typically include the reporting of error/task results.

We do not require the FHC to understand the semantics of these conversa-
tions. We separate failure-handling conversations the agent’s ‘regular’ protocols,
and implement them in the FHC. Based on the way in which we decouple the
FHC from the agent application, and the way in which the FHC represents and
maintains high-level task information as communicated from the agent, we are
able to support failure-handling protocols in a manner transparent to the agent
application. This factoring obviates the need for the agent application to imple-
ment handling the compensation-related protocols itself. The agent application
developer does not have to build the agent applications to support these pro-
tocols, and as long as the agent’s implementation of its FHC API is correct,
the protocol’s correct implementation is independent of changes to the agent
logic. Similarly, the compensation-related interaction protocols may be changed
without impacting the agent application.

To implement robust compensation-related interactions via the agent’s FHCs,
we have two requirements. First, the FHC must be able to explicitly detect con-



versation ‘timeout’ events, when an agent is offline (down or unreachable). As
described above, we assume this information is provided by the agent’s under-
lying conversation layer. Second, we must be able to associate, or “connect” the
pair of task nodes— one in the delegating agent’s FHC task tree structure and
one in the delegatee’s— that correspond to the same delegated task, without re-
quiring the FHCs to parse the conversations that led to the delegation. With
this, compensation information can propagate from one agent’s FHC to another
using the associated nodes.

“Connecting” delegated tasks across agents. To connect FHC task nodes
across delegations, we make three requirements of the agent application as part
of its implementation of the FHC API. First, we require that agents represent
a task to be allocated explicitly as a task, so that they can communicate the
creation of such tasks to their FHC. Second, we require that the agents ‘know’
when they are sending out messages related to assigning or allocating a task,
and can associate those messages with their local representation of the task.
Third, we require that receiving agents know when they are creating a task
based on an incoming message, and are able to associate this new task with
the relevant message ID (MID). This level of awareness on the part of the agent
application is necessary to allow the FHC to operate independently of any specific
agent delegation protocols. We then require the agent to implement the following
aspects of the FHC API to support task node association:

1. When an agent begins a task delegation activity for which communication
will be required, it notifies the FHC of the new task (goal). The FHC will
build a new task node associated with the task.

2. When the agent sends out messages related to delegation of that task, it
associates these messages— which are passed via the FHC— with the UID of
the new goal. The FHC annotates the outgoing message information with
the UID of the corresponding FHC task node (TNID).

3. The FHCs of the receiving agent(s) process the message envelope to record
MID/TNID associations.

4. If an agent is assigned a delegated task (either directly or after an exchange),
the delegating agent informs its FHC of the assignment, and the receiving
agent annotates its new task notification to its FHC with the MID of the
message by which the task was assigned. Based on its MID/TNID bookkeep-
ing, the FHC of the receiving agent will create a new task node with an ID
that links it to the parent task node in the delegating agent.

Fig. 5 illustrates this process with an example ContractNet-like delegation
protocol. The FHC is not required to parse the agent’s messages; it is only
necessary for the agent application to implement the interface correctly with
respect to indicating associated task/delegation message correspondences. It is
this bookkeeping that allows compensation-related protocols to be factored from
the agent’s regular conversations. The agent’s normal conversations take care of
any task delegation for a given scenario, but the FHCs of the agent involved
ensure that the delegator/delegatee relationship for a task is made explicit. If
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Fig.5: “Connecting” a related task nodes in two agent’s FHCs, with an example bid
delegation protocol. Agent A’s application logic associates RFB (request for bid) mes-
sages with their associated subtask ID (g1), and communicates this to its FHC. Agent
A’s FHC annotates these outgoing messages with g1’s task node ID (TN1). When B’s
bid is accepted, A’s FHC notes the delegation, and B’s FHC uses the request MID to
associate the new task with TN1.

Failure-Handling Protocols. The protocols related to compensation scope
utilize inter-agent FHC task node associations, and must encompass several re-
lated types of communications necessary to support predictable failure-handling
in delegated task contexts. These include:

1. When a canceled task is to be compensated, determination of which agent
will be responsible for the compensation.

2. Propagation of a task cancellation notification to a sub-task delegatee and
collection of the cancellation results by the parent task. (Cancellation re-
quires task ‘halt’; sub-task agents report if cancellation was successful. Re-
call that “canceled” refers to the FHC task node for the original task, not
the status of any subsequent compensation tasks).

3. Notification of sub-task failure and failure mode from delegatee to delegator.
(The agents’ “regular” protocols may support exchange of sub-task failure
information as well; but the respective agents’ FHCs ensure that this infor-
mation is always exchanged regardless of other prescribed interactions).

We require that these protocols encompass situations where a participating agent
has crashed or gone offline. In addition, we would like them to support ‘reason-
able’ autonomy of agents while enforcing predictability of behavior. In defining
the protocols, we assume that reliable message delivery and acknowledgment is
supported by the agents’ underlying communication layers.

We define our protocols using Petri nets [8]. A Petri net consists of places
(depicted as ovals) and transitions (depicted as rectangles), which are linked
by arrows. A transition in a Petri net is enabled if each incoming place has at
least one token. An enabled transition can be fired by removing a token from
each incoming place and placing a token on each outgoing place. We follow the



notation used in [9], which may be mapped to FIPA AUML [10] diagrams: we
have two types of places, one corresponding to protocol states and the other to
messages and events?. An exchange of messages adheres to a given protocol if
each successive message, when activated by a token, enables a transition to a new
(protocol state) place. In our semantics, for all protocol states with subsequent
transition(s), one and only one of the transitions must occur.

Fig. 6 shows Protocol 1 above: determination of compensation responsibility.
This protocol is a pairwise conversation between a delegator and delegatee. It
can only be initiated from a system state in which the “forward” task has been
successfully canceled, and cancellation information propagated, as supported by
Protocol 2. From Protocol 1’s start states (s0 and s1), if the delegator (parent)
is offline, the delegatee (child) must take responsibility. Otherwise, the delegatee
is given autonomy to decide independently of the delegator whether it will take
responsibility for the compensation, unless it has itself failed. If the delegatee
rejects the compensation responsibility, is offline, or fails in the compensation,
the delegator must take responsibility®. If a delegated task has failed, then is
subsequently canceled and compensation required, the delegating agent (if on-
line) must decide whether or not the delegatee will be allowed to make decisions
about the compensation. As long as at most one of the agents are offline, the
protocol ensures that one and only one agent in the compensation scope will
take responsibility for the compensation.

For example, suppose in Fig. 6 that the delegatee (C) is offline when the pro-
tocol is initiated at state s1— a completed task is canceled. C’s “offline” event
causes a transition to s3. Because one and only one transition from a protocol
state must occur, the delegator (P) must take responsibility for the compen-
sation, and indicates this to C (message (1)). If/when C comes back online, it
will retrieve this message and will not address the compensation. Alternatively,
suppose that C is online and declines the compensation responsibility (2), but
then receives notification that P is offline. From this state (s4), C must now take
on the compensation (3), if possible.

A compensation is treated by the agent application as a new task like any
other, though the FHC of the responsible agent logs the association with its
original task. The protocol described above does not determine task delegation.
The FHC-based interactions determine only which agent is initially responsible
for the new compensation task; then, as is possible with any task, the responsible
agent may decide to delegate it.

4 The protocol below includes agent communication timeouts; other compensation-
related events are cancel and failure.

The protocol in the figure is simplified for readability: the compensation information
is not parameterized, and it does not include the case where the delegatee, based
on its local knowledge, does not believe that the cancellation needs to be compen-
sated. Note also that in this protocol, the delegator is not required to report on
compensation results to the delegatee. An alternate protocol could require this as
well.

5
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Fig.6: The protocol to determine compensation responsibility. ‘P’ is the delegating

(“parent”) agent, and ‘C’ is the delegatee (“child”) agent, with respect to the given

canceled goal. The ‘protocol state’ labels are used only to distinguish the states. The

numbered messages are referenced in the example.

3.3 Prototype Implementation and Initial Experiments

We have implemented a prototype multi-agent system in which for each agent, an
FHC interfaces with an agent application logic layer. The agents are implemented
in Java, and the FHC of each agent is implemented using a Jess core[11]. The
agent-application components of our prototype are simple goal-based problem-
solvers to which an implementation of the FHC interface was added. Currently,
the interface uses Jess “fact” syntax to communicate goal-based events.

The prototype implements the goal-based semantic compensation model de-
scribed here. The protocols it uses, while not yet specified declaratively, are
implemented as described here with respect to the messages that must be ex-
changed by the delegating and delegatee agents. However, the current prototype
is more limited than the model in that it does not yet support pings/timeout



events, and its means of “connecting” delegated task nodes across agents is
hardwired to a specific delegation protocol.

We have performed initial experiments in several relatively simple problem
domains. Our prototype has helped us to conclude that this approach is feasible,
and suggests that our approach to defining and employing goal-based failure-
handling information generates useful behavior in a range of situations. Work is
ongoing to define failure-handling knowledge and strategy rules for more complex
problem domains in which agent interaction will feature prominently.

4 Related Work

Our approach is motivated by a number of transaction management techniques
in which sub-transactions may commit, and for which forward recovery mecha-
nisms must therefore be specified. Examples include open nested transactions [1],
flexible transaction [12], SAGAs, [13], and ConTracts [14]. Earlier related project
work has explored models for the implementation of transactional plans in BDI
agents [15-18], and a proof-of-concept system using a BDI agent architecture
with a closed nested transaction model was constructed [19].

In [20], Greenfield et al. discuss a number of issues that can arise when em-
ploying “traditional” compensation models, similar to those raised here. In Nagi
et al. [21,22] an agent’s problem-solving drives ‘transaction structure’ in a man-
ner similar to that of our approach (though the maintenance of the transaction
structure is incorporated into their agents, not decoupled). However, they define
specific compensation plans for (leaf) actions, which are then invoked automat-
ically on failure. Thus, their method will not be appropriate in domains where
compensation details must be more dynamically determined.

Parsons and Klein et al. [23,24] describe an approach to MAS exception-
handling utilizing sentinels associated with each agent. For a given domain, “sen-
tinels” are developed that intercept the communications to/from each agent and
handle certain coordination exceptions for the agent. The exception-detecting
and -handling knowledge for that shared model resides in their sentinels. En-
twisle et al.[25] take a related approach in which decoupled exception-handling
agents utilize a knowledge base to monitor, diagnose, and handle problems in
a system. In our approach, while we decouple high-level handling knowledge,
the agents retain the logic for failure detection and task implementation; some
agents may be designed to handle certain compensations.

Chen and Dayal [26] describe a model for multi-agent cooperative transac-
tions. Their model does not directly map to ours, as they assume domains where
commit control is possible. However, the way in which they map nested transac-
tions to a distributed agent model has many similarities to our approach. They
describe a peer-to-peer protocol for failure recovery in which failure notifica-
tions can be propagated between separate ‘root’ transaction hierarchies (as with
cooperating transactions representing different enterprises).

[27] describe a model for implementing compensations via system ECA rules
in a web service environment— the rules fire on various 'transaction events’ to



define and store an appropriate compensating action for an activity, and the
stored compensations are later activated if required. Their event- and context-
based handling of compensations have some similarities to our use of strategy
rules. However, in their model, the ECA rules must specify the compensations
directly at an action/operation level prior to activation (and be defined by a
central authority). WSTx [4] addresses transactional web services support by
providing an ontology in which to specify transactional attitudes for both a ser-
vice’s capabilities and a client’s requirements. WSTx-enabled ‘middleware’ may
then intercept and manage transactional interactions based on this service in-
formation. In separating transactional properties from implementation details,
and in the development of a transaction-related capability ontology, their ap-
proach has similar motivations. However, their current implementation does not
support parameterized or multiple compensations.

Workflow systems encounter many of the same issues as agent systems in try-
ing to utilize transactional semantics: advanced transactional models can be sup-
ported [28], but do not provide enough flexibility for most 'real-world” workflow
applications. Existing approaches typically allow user- or application-defined
support for semantic failure atomicity, where potential exceptions and problems
may be detected via domain rules or workflow ‘event nodes’, and application-
specific fixes enacted [29, 30].

We are not aware of existing work which explicitly uses protocols for flexi-
bly managing compensation responsibility. Recently, there have been efforts to
specify languages for web service composition and coordination. For example,
BPEL4WS and WS-Coordination/Transaction [3,31] provide a way to specify
business process composition, scoped failure-handling logic, and coordination
contexts and protocols. Each BPEL activity may have a compensation handler,
which may be invoked by the activity’s failure handler. Compensation and fault
handlers may be arbitrary processes. Our approach to semantic compensation
has some similarities to the BPEL model, with strategy rules (Section 2) and
protocols serving to coordinate “inner scope” compensation. However, our model
pushes the implementation of failure handling to the agent application logic.

5 Conclusion

We have described an approach to increasing robustness in a multi-agent system.
The approach is motivated by transactional semantics, in that its objective is
to support semantic compensations for tasks in a given domain; we assume
environments in which we cannot wait to “commit” actions. We augment an
agent’s failure-handling capabilities by improving its ability to “clean up after”
and undo its failures, and to support retries. This behavior makes the semantics
of an agent system more predictable, both with respect to the individual agent
and with respect to its interactions with other agents; thus the system becomes
more robust in its reaction to unexpected events.

Our approach is goal-based, both with respect to defining failure-handling
knowledge for agent tasks, and in determining when to employ it. By abstracting



the agent’s failure-handling knowledge to a goal level, it can be decoupled from
agent domain implementations and employed via the use of a failure-handling
component with which the agent application interfaces, supporting predictable
behavior and decreasing the requirements on the agent developer. Our method-
ology separates the definition of failure-handling knowledge from the agents’ im-
plementation of that knowledge, allowing the compensations to leverage runtime
context in a way that makes them both more robust and more widely applicable.

For semantic compensation to be effective and predictable, it is necessary to
control not only how individual agents react when a task fails or is canceled,
but how the agents in the system interact when problems develop with a task
assigned by one agent to another. Flexible interaction protocols are necessary
to achieve a useful degree of control. We have described a method for factoring
compensation-related protocols from the agent application to its failure-handling
component, allowing them to be developed independently, and have described
one key such protocol used by our system.

Project work will continue in evaluating our failure-handling methodologies,
and to further develop our prototype. Evaluation will include development of
scenarios in additional domains— with emphasis on scenarios that require multi-
agent interaction; analysis and characterization of failure-handling strategies (in-
cluding strategies for dealing with cascading failures and analysis of the overhead
incurred by the use of the FHC infrastructure); and will also include tests in
which we “plug in” different application agent architectures on top of the FHC,
e.g. a BDI agent [15]. Our experiments will also help us to evaluate the ways in
which a failure-handling strategy is tied to the problem representation.
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