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Abstract

Gene expression profiling provides insight into the functions of genes at a molecular level. Clustering of gene expres-
sion profiles can facilitate the identification of the underlying driving biological program causing genes’ co-expression.
Standard clustering methods, grouping genes based on similar expression values, fail to capture weak expression cor-
relations potentially causing genes in the same biological process to be grouped separately. We have developed a
novel clustering algorithm, which incorporates functional gene information from the Gene Ontology into the cluster-
ing process, resulting in more biologically meaningful clusters. We have validated our method using two multi-cancer
microarray datasets. In addition, we show the potential of such methods for the exploration of cancer etiology.
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1. Introduction

Gene expression profiling using microarrays has be-
come a key tool in the analysis of biological systems
at a molecular level. While still producing relatively
noisy data, much improvement has been made in noise
correcting normalisation procedures and feature selec-
tion, providing rich datasets for further biological anal-
ysis. Microarray analysis pipelines generally come in
two flavours: differential expression analysis and ex-
ploratory clustering. The purpose of differential expres-
sion analysis is to find a small subset of genes which
are differentially expressed between two or more ex-
perimental conditions or samples. Having a small gene
set makes for more manageable biological interpretation
than using the 20,000 genes that are typically profiled
on an array. In contrast, exploratory clustering attempts
to utilise all genes on an array for biological interpreta-
tion by considering sets of genes with similar expression
patterns, rather than a per gene analysis. This is useful
under the assumption that genes with shared expression
patterns have similar function or are involved in simi-
lar biological processes. Each of the clusters of genes
identified provide a starting point for further biological
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analysis. Once clusters have been determined, usually a
resource such as the Gene Ontology (Ashburner et al.,
2000) is used to assist in determining the biological pro-
cess represented by a set of genes.

The Gene Ontology (GO) (Ashburner et al., 2000) is a
curated, structured vocabulary that describes genes and
gene products. It is modeled as a directed acyclic graph,
with terms as nodes and relationships between terms as
arcs. A node (term) can have one or more parents, repre-
senting a more general description of the term. A node
may also have children that are more specific definitions
of the term. The graph is hierarchical with three top par-
ent nodes: molecular function, biological process and
cellular component. In the GO, two genes may be an-
notated to the same term, or they may be related through
a shared term higher in the GO hierarchy. Given a set
of genes, tools which calculate the terms that are sta-
tistically overrepresented in the set are commonly used
to describe the biological process represented by the set
of genes. For example, GeneMerge (Castillo-Davis and
Hartl, 2003), FatiGO (Al-Shahrour et al., 2004) and oth-
ers (Martin et al., 2004; Lee et al., 2004; Alexa et al.,
2006; Zhong et al., 2004).

While a useful procedure, exploratory clustering
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analysis pipelines commonly face a difficult problem.
Clusters can be dominated by strong or noisy expres-
sion patterns, forcing genes of similar function or those
belonging to the same biological process with less cor-
related expression, to join another cluster. Therefore the
resulting clusters may not represent a biological process
in its entirety or majority, making it hard to determine
which molecular processes a particular cluster of genes
represents. Therefore, to improve the clustering pro-
cess, additional information can be introduced to en-
sure that genes with similar function or shared pathways
can be clustered together. Sequence similarity, protein
structure similarity, shared pathways and functions, are
all ways in which genes can be shown to be related. In
this paper, we focus on using the GO in the clustering
process. While we use only the GO as our additional
information source, it is possible that another source of
information might be used to further improve the clus-
tering output.

Previous attempts have been made that utilize func-
tional information in the clustering of gene expression
profiles, however these have focused mainly on the task
of predicting the function of genes with unknown func-
tion. The task in this case, is to cluster all genes with
known function, and attempt to assign genes with un-
known functions to one of these clusters. The un-
known function is then inferred from the genes with
known function. Huang and Pan (2006) and Pan (2006)
used functional annotations shared between genes to
modify standard distance and model based clustering
algorithms. Boratyn et al. (2007) proposed a gen-
eral method for modifying the distance measure based
on prior shared functional information between genes.
However both of these methods only use small numbers
of distinct functional categories, which does not apply
well when using the GO. The multiple shared functions
between genes and large structure would require signif-
icant pruning of the GO graph to work in these frame-
works. Cheng et al. (2004) attempted to address this by
developing a clique-finding algorithm for the GO and
used the cliques to perform co-clustering analysis with
gene expression profiles. Another attempt developed by
Liu et al. (2004) is a biclustering approach that prunes
possible cluster assignments based on the GO structure.

There are however two fundamental drawbacks with
these approaches. Firstly, the GO is constructed as a
directed acyclic graph, with terms lower in the hier-
archy being specialisations, or parts of, terms higher
in the hierachy. Genes are then annotated to one or
more terms in the graph, at the lowest (most specific)
level possible. Drawing a path from one gene to an-
other through this graph to determine similarity of the

genes does not necessarily imply shared biology. The
abstraction of terms across each level of the ontology
can be such that two genes with a single shared par-
ent term, may be extremely diverse in terms of their
specific function. For example, the two terms nega-
tive regulation of steroid metabolic process and posi-
tive regulation of steroid metabolic process share the
parent steroid metabolic process. Genes annotated to
each of these terms have the opposite effect on steroid
metabolism. Therefore it would not be correct to state
they had similar function based on their shared parent,
especially in the context of their co-expression. Sec-
ondly, having genes annotated to the same term does not
necessarily imply they have similar function or share a
biological pathway, in the context of their expression
patterns. A single gene can act differently in various bi-
ological contexts and thus have context specific roles.
It is therefore crucial to consider the expression context
of a gene when deciding whether to use the knowledge
of shared function to alter the clustering procedure. We
define a gene’s expression context to be the expression
of a gene when considering the expression of all genes
that are in the same biological process. It is only within
this context, that one can make an informed decision on
whether a certain gene should be considered to have a
certain function.

Our goal is slightly different from previous ap-
proaches, in the sense that we are not attempting to pre-
dict genes with unknown function, but generate clusters
of genes which are suitable for biological interpretation
and encapsulate a particular biological process better
than that of a standard clustering approach.

A method is needed that uses shared functional in-
formation between genes from the GO, that does not
rely on GO structure, and uses GO annotations only
when they are relevant to the gene set of interest
(the gene’s expression context). We previously de-
veloped GOMAC: Gene Ontology assisted Microarray
Clustering, a modified k-means clustering algorithm
which incorporates GO information only when it is rel-
evant to the gene’s expression context, thus avoiding
problems with irrelevant gene similarities (Macintyre
et al., 2008). This paper is an extension of the original
manuscript, validating the method on two microarray
datasets (Tothill et al., 2005; Ramaswamy et al., 2001)
spanning 12 and 10 cancer types respectively, demon-
strating that our method results in an alternative to k-
means clustering, providing clusters which are more in-
formative in terms of biological interpretation. We also
discuss the biological implications of our results with
respect to future research in cancer etiology.



2. Methods

The key biological assumption of the algorithm pre-
sented in this paper is that genes that share a particular
annotation in the GO, will share a detectable similarity
in their microarray expression pattern. There are three
key differences between our approach and the previous
attempts at clustering using the GO outlined above:

e Only GO terms that are statistically over-
represented within a cluster are used to calculate
the similarity between genes. This ensures that
only GO terms within the gene’s expression con-
text are used.

e Calculations of similarities between genes using
the GO is done at each iteration of the clustering al-
gorithm, rather than fixing the GO similarities be-
fore clustering begins. This means that for each it-
eration of the algorithm, the terms which are used
to describe a set of genes, and consequently alter
the distance between a gene and a cluster, are up-
dated to be the set of overrepresented terms for that
particular group of genes, at that iteration.

e We do not rely on the structure of the GO, but
rather consider every possible term as contributing
to our similarity calculation.

In order to construct a model capable of the key points
outlined above, each potential cluster of genes to be de-
termined, requires both an expression profile to model
the genes’ expression measurements and an annotation
profile to model the genes’ GO similarities. As we are
using a k-means based clustering algorithm, the number
of clusters C is a parameter set by the user.

2.1. Algorithm Overview

1. Initialise using k-means clustering, grouping genes
based on expression values using the method in
Eisen et al. (1998) with C clusters (the value for
C is selected by the user).

2. Determine the expression profile for each cluster.
3. Determine the annotation profile for each cluster.

4. Re-cluster genes based on both expression and GO
annotations.

5. Re-estimate the expression and annotation profiles.

6. Repeat steps 4 and 5 until convergence.

2.2. Expression Profile

Let k be the number of samples; let G, be the set of
genes in a cluster c. Each gene g can be viewed as a vec-
tor X, = (Xi)1<i<x € R of its expression values across
all samples. The centroid of cluster c is defined as the
vector X, = (x{...xy) € R“ with entries defined as:

c _ deGr Xgi

X; = W (1)

where x,; is the expression measurement for a particular
gene g and sample i.

2.3. Gene Ontology Annotation Profile

To generate a Gene Ontology annotation profile for
a cluster, all GO terms annotated to the genes in a
cluster which are statistically over-represented need to
be found. This means that rather than reporting all
terms that are annotated to the genes in a cluster, report
only those that have sufficiently low probability of be-
ing present if we sampled a random selection of genes.
For this purpose we are using the hypergeometric dis-
tribution to calculate the statistical over-representation
of terms, similar to the approach used in Castillo-Davis
and Hartl (2003). This procedure uses the hypergeomet-
ric distribution with Bonferroni correction to generate a
p-value for each term which is annotated to genes in a
cluster. We use a threshold of » < 0.05 of the Bonferroni
corrected score, as it provides a biologically meaningful
number of terms that describe a cluster. A lower thresh-
old yields clusters based mainly on expression distances
with little or no GO terms and a higher threshold results
in many GO terms which are less descriptive. All terms
reported above the threshold are ignored. Let 7(c) be
the number of terms below the threshold b for a given
cluster c. From this, a weight d° is assigned propor-
tional to the number of genes in the cluster that are an-
notated to that term, normalised over all of a cluster’s
GO terms. The weight di shows the degree in which a
term ¢ is associated with a particular cluster. Then we
can denote a cluster ¢’s annotation profile to be the vec-

tor T = (dp)f_, <(©) with entries defined as
. n;
di = ——. 2)
7(c)
2 j=1 nj

where n, is number of genes in the cluster that are anno-
tated to GO term ¢ (below the threshold b).

2.4. Algorithm

The GOMAC algorithm can be summarised in the
following steps:



Input.
e Gene list G

e For each gene g, expression measurements
E,i...E,, for k samples

e For all GO terms 77...7 ¢, given a particular gene g
and the 1" term, A,, takes the value 1 if the gene g
is directly annotated to the term #, and O otherwise.
(Obtained by querying October 2008 release of the
GO via a relational database interface to a locally
stored copy).

Initialisation.

e Form initial groupings of genes using k-means
clustering on the expression values using algorithm
of Eisen et al. (1998).

e Calculate the cluster centroid (expression profile)
X, for each cluster.

e Calculate the annotation profile T¢ for each cluster.

Optimisation.

1. Gene assignment: In the gene assignment step,
we re-assign a gene to a cluster based on the
current values for the expression and annotation
profiles for that cluster. We use a gene’s match to
a cluster annotation profile to scale the Euclidean
expression distance of the gene from that cluster.

For each gene g let the known expression
values be E, where B € N, C {l...«} are all
indices of samples with known values for gene
g. This is due to imperfections in the microarray
experimental procedure which may generate data
with missing or unknown expression values for a
gene. This also means we need to normalise our
distance by the number of known gene values used
(1/Ng). This may skew the distance measurements
for datasets with large number of missing values
however in practice, datasets are large enough that
this is not a problem. Given this, we define the
Euclidean distance of each gene g from cluster ¢’s
centroid as:

1 ,
DE¢ = —. E (x6 — Egﬂ)z. 3)
g |Ng| pad B

Then, given a gene g and its GO annotations, we
also determine a scaling factor S (where 0 < §§ <
1). This is based on how many of the 7(c) terms

in the cluster’s annotation profile match the terms
annotated to a gene g:

Se=1- > dfx Ay @)

tet(c)

Next, the expression distance DE of gene g from
cluster c is scaled by the degree in which it’s anno-
tated terms correlates with that of cluster c:

DES¢ = DE x S¢. )

Finally, we use the minimum of this modified dis-
tance to assign a gene to a particular cluster:

¢g = argmin(DES ). 6)

2. Re-estimation of cluster profiles: With the new as-
signment of genes, we re-calculate the centroids
of each cluster and determine the new GO terms
which are over-represented and their associated
weights.

3. Repeat steps 1 and 2 until convergence (genes stop
changing clusters)

Output.

o A series of gene clusters with associated GO an-
notations, which can be used as a starting point for
further biological analysis.

3. Cancer Microarray Test Data

For testing, microarray datasets with various sam-
ple classes were required to demonstrate the potential
of GOMAC to uncover biological similarities across
classes. We used two published datasets, profiling can-
cers of unknown primary (CUP): Tothill et al. (2005)
which has cDNA microarrays across 12 cancer types
and their subtypes, and 10 cancer types profiled using
the Affymetrix Hu6800 platform, Ramaswamy et al.
(2001). These datasets were useful for our purposes
as they have samples in a range of different tissues, al-
lowing us to compare and contrast the clusters of genes
output by GOMAC across varying cancers. The Tothill
et al. (2005) dataset was filtered retaining only genes
with greater than 400 signal intensity in the test channel
(Cy5) and greater than 4 fold change (using per gene
median normalised data) in at least 5 samples. This
left 2185 genes (row of expression matrix) and 165
samples (columns in expression matrix): Breast(23),
Colorectal(12), Gastric(7), Lung(Adenocarcinoma 10,
Large Cell Carcinoma 8, Squamous Cell Carcinoma



9), Melanoma(11), Mesothelioma(5), Ovarian(21, Mu-
cinous 11), Pancreatic(8), Prostate(5), Renal(12), Squa-
mous Cell Carcinoma(11), Testicular(3), Uterine(9).
For the Ramaswamy et al. (2001) dataset, we extracted
5697 unique gene measurements (rows) across 101 sam-
ples (columns), with the cancers grouped into the fol-
lowing categories: Bladder(10), Breast(10), Colorectal
(9), Glioblastoma (10), Lung(8), Medulloblastoma(10),
Ovarian(9), Pancreatic (10), Prostate(7), Renal(8), Uter-
ine(10). When multiple probes mapped to a single gene
identifier, we took the probe with the highest mean in-
tensity across all samples.

4. Implementation

The previous version of the GOMAC algorithm was
implemented in Perl and used the software GeneMerge
(Castillo-Davis and Hartl, 2003) for calculating the
over-representation of terms. In order to handle larger
datasets and to interface with the latest version of the
Gene Ontology, we have re-implemented the experi-
mental set-up in C using a memory resident database as
an internal data structure. Using a newer version of the
GO (October, 2008) compared to the previous publica-
tion (Macintyre et al., 2008) (September 2007), meant
that an extra 2631 terms were considered, altering the
output of our algorithm by increasing the biological in-
terpretability of the results on the same dataset (Tothill
et al., 2005). The main goal of the re-implementation
was to facilitate easy integration of any version of the
GO, rather than the precompiled GO data files used by
GeneMerge. In addition, the memory resident database
provides a structured interface to the data used for cal-
culations and the results. By extracting the relevant tu-
ples for our algorithm from the Gene Ontology into our
memory resident database we are able to easily interface
with the required subset of the Gene Ontology without
the overhead of the full Gene Ontology database. The
SQL interface to the dataset thus allows for trivial inte-
gration with the Gene Ontology, while providing a rich
computational platform.

5. Clustering Performance Assessment

External clustering assessment typically uses a ‘gold
standard’ clustering determined by external means to
compare clusterings. However, in the case of ex-
ploratory clustering, there is no ‘gold standard’. In-
stead, when clustering microarrays, the standard mea-
sure to determine whether a new algorithm provides bi-
ologically better clusters than a previous algorithm, is

to look for statistically over-represented GO terms in
each of the clusters and show that the new algorithm
has clusters of superior biological relevancy. However
because we have used the GO in the clustering process,
this measure is not suitable. Therefore we have devised
alternative means of validation.

5.1. Cluster partition criterion

When attempting to interpret the biology represented
by a cluster of genes, a typical task is to perform addi-
tional clustering across the samples, to identify shared
or distinct trends across sample classes. In our case
this would mean for a given cluster of genes, assessing
whether the samples could be grouped in such a way
where a distinct expression difference could be seen
among sample classes, for that set of genes. If this dis-
tinction can be made, then the cluster would be deemed
a biologically interesting cluster. We therefore devel-
oped a method which assigns a p-value to each cluster,
which represents the biological interpretability of the
cluster. We call this the partition p-value.

Specifically, for each cluster of genes, we partition
the samples into two groups using the hierarchical clus-
tering algorithm of Eisen et al. (1998). Generally, the
two resulting groups consist of one group containing all
samples that have higher expressed genes in the clus-
ter than the other group with lower expressed genes.
Given a good clustering, a partition of a cluster should
contain all of a particular sample class. In our setting
of analysing cancer samples, we would expect cancers
sharing some (perhaps unknown) biology to be grouped
together. To quantify this, the hypergeometric distribu-
tion was used to determine the probability of observing
a particular enrichment, or saturation, of cancer type(s)
in that partition. In order to use the hypergeometric dis-
tribution for this purpose, it is necessary to group the
cancer types into two classes; positive and negative. To
decide which cancer types should belong to the posi-
tive class (enriched cancer types) and which should be-
long to the negative class, we used a majority member-
ship approach: if the majority of one cancer type was
contained in the highly expressed sample partition, that
cancer type was considered in the positive class, other-
wise negative. The enrichment calculation was made as

follows:
()0

()
E. is the probability of observing the partition for clus-

ter ¢ by chance given there are n samples in a partition,
of which s are from the positive class, and there are S

E.=




total positive class elements and the total number of el-
ements partitioned is N. From this, a Bonferroni cor-
rected p-value is generated which is used to determine
the quality of a particular cluster in reference to its bi-
ological usefulness. Corrected p-values which pass a
threshold of less than 0.05 are considered partitionable
clusters.

5.2. Assessing the biological utility of clusters

Interpreting the biology behind a cluster of genes is
made easier by having GO terms that describe the clus-
ter. We have therefore designed two ways to quantify
the association of GO terms with clusters:

e GO term abundance: As mentioned previously, if
a cluster can be easily partitioned on its samples,
it is likely to be useful for biological exploration.
However, without any terms associated with a par-
titioned cluster, it is difficult to generate any fur-
ther insight. Therefore it is desirable to have a
large number of terms associated with partitioned
clusters. Given a collection of partitioned clusters,
the number of associated terms can be measured,
known as the GO term abundance. Good GO term
abundance is achieved when large numbers of clus-
ters have large numbers of terms.

e GO term significance: In the case where two clus-
ters have the same terms describing them it is im-
portant to know how many of the genes are related
to these terms. This is generally reflected in the
p-value associating each term with a cluster. The
lower the p-value the more of the genes in the clus-
ter this term is likely to be annotated to. Therefore,
a good measure of GO term significance is when
term p-values are consistently small.

6. Results

Before assessment of the performance of our algo-
rithm is carried out, a value of C, the number of clusters,
is required. Only after this can we use the performance
criteria outlined above to compare GOMAC with other
clustering methods.

6.1. Finding a default value for C: the number of clus-
ters

As our algorithm takes the number of clusters C as a
parameter input by the user, we attempted to find a ‘de-
fault’ value for C which produced the most biologically
useful results. Standard approaches for determining the
number of clusters, such as the average silhouette, have
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Figure 1: This graph shows the average number of genes in a cluster
output by GOMAC and k-means (y-axis) for varying values of the
number of clusters (x-axis) using the Tothill dataset.

been shown to be ineffective in when using GO clus-
tering algorithms (Huang and Pan, 2006). Therefore,
an informative measure for assessing a good value for
C might be average number of genes in a cluster. As
C increases, a large number of singleton clusters arise,
generally with no associated GO terms. Therefore we
expect a value of C where an increase beyond it will not
yield more biologically informative clusters, but rather
breakdown core informative clusters into singleton clus-
ters. Thus by measuring the average number of genes in
a cluster while increasing C we can observe the point
where we begin to break down core clusters (a plateau
in the graph). We performed our analysis of the behav-
ior of C on the Tothill et al. (2005) dataset only, reserv-
ing the Ramaswamy et al. (2001) dataset for testing and
discussion. Figure 1 shows that a plateau occurs at ap-
proximately C = 60. Therefore the remainder of our
analysis is performed using the value C = 60. However,
the best value for C will determine largely on how many
genes there are in the dataset and how many sample sub-
classes are in the dataset. We therefore recommend that
a number of different values for C are used in practice.

6.2. Assessing the impact of GO evidence codes on GO-
MAC

When a gene is annotated to a term in the GO, an ev-
idence code is recorded. This keeps track of the type
of evidence used to form the annotation. For exam-
ple, EXP means the annotation is ‘Inferred from Exper-
iment’ or IDA is an annotation ‘Inferred from a Direct
Assay’. While most annotations are curated and likely
to be free of noise, one type of annotation may impact



on the performance of our method- IEA: Inferred from
Electronic Annotation’. These annotations are automat-
ically generated and are not curated and considering
the GO with these annotations drastically increases the
number of annotations in the GO. Given the automatic
and uncurated nature of these annotations, it is possible
that using IEA annotations may add noise. Therefore
we have performed our analysis on two versions of the
GO, with and without IEA annotations.

6.3. Comparing GOMAC, regular k-means, and k-
means with a fixed GO annotation profile

Using the performance assessment criteria outlined
above, we analysed the Tothill et al. (2005) dataset to
observe key differences between our approach and reg-
ular k-means clustering. We also sought to compare
GOMAC to previous methods that use the GO in clus-
tering (Huang and Pan, 2006; Pan, 2006; Cheng et al.,
2004; Liu et al., 2004). In these methods, the decision
on which GO terms to use is fixed before clustering,
whereas in our method we decide whether to shrink the
distance between a gene and a cluster centroid at each
iteration of the algorithm, using only overrepresented
GO terms specific to that cluster (the annotation pro-
file). Therefore to make a fair comparison (removing
effects from using different underlying clustering algo-
rithms. e.g. k-means vs k-mediods), we modified a ver-
sion of the k-means algorithm that used a ’fixed’ GO
representation. That is, after cluster initialisation, we
determined the overrepresented terms for each cluster,
and fixed these terms for the remaining iterations of the
clustering algorithm. All comparisons are made with a
cluster number C = 60, and the following sections dis-
cuss performance under different criteria.

Comparing cluster size

One of the goals of the GOMAC algorithm is to out-
put clusters which encapsulate a biological process in
its entirety. In other words, if a small cluster of genes
is labeled with a significant term(s) representing a bio-
logical process, GOMAC should consolidate this cluster
by allowing more genes associated with that process to
join the cluster, providing their expression profiles are
closely enough related. This results in more biologically
interpretable clusters. A consolidation of clusters also
results in a shift from evenly distributed cluster size, to
clusters of larger size (consolidated clusters) and single-
ton clusters (genes with no related function). In figure 2
we plotted the distribution of cluster size for GOMAC,
k-means and k-means with a fixed GO annotation pro-
file.

k-means with and without IEA show a preference for
clusters of size 2-10 genes, with few clusters greater
than 50 genes. This is in contrast to the sizes observed
for GOMAC, which has a three times increase in single-
ton clusters and and roughly two times increase in clus-
ters greater than 50 genes. This change in cluster size
validates our expectations of GOMAC to favour clus-
ters of larger size with more terms explaining them, and
are thus more biologically interpretable. k-means with
a fixed GO appears to have behavior half-way between
regular k-means and GOMAC, suggesting that methods
using GO information before clustering can improve bi-
ological interpretability, but not as well as GOMAC. It
is the ability of GOMAC to recalculate which terms are
useful for calculating gene similarity that sets it apart
from other GO clustering algorithms.

Assessing GO term abundance

We looked at GO term abundance by ranking the
clusters output from all algorithms on partition p-value,
then plotted the range of the number of terms asso-
ciated with each cluster for the top 20 clusters (Fig-
ure 3a). Only the top 20 clusters were considered as
many clusters are unparitionable and/or singleton clus-
ters and therefore uninformative. Figure 3a demon-
strates a clear increase in GO term abundance of GO-
MAC over the other algorithms. It is interesting to note
that GOMAC with no IEA has more terms than GO-
MAC with IEA. Intuitively one would expect with more
annotations, more terms would be found, however this
is not the case. In fact, fewer overall annotations of
terms to genes results in more terms passing the signif-
icance cut-off when using the hypergeometric distribu-
tion for over-representation calculation. This suggests
that using a GO version with no IEA version is prefer-
able. In addition, while in figure 2, k-means with a fixed
GO looked like an intermediary between GOMAC and
regular k-means, it appears to have the worst GO term
abundance, suggesting that using the GO to calculate
similarities between genes before clustering is done can
deteriorate biological GO term abundance. In this case,
the use of the GO does not promote a balance between
clusters with coherent expression and shared biological
function. Instead, a degree of functional similarity is in-
troduced that does not take into account the context of
the genes’ expression. This introduction of functional
similarity that is irrelevant to gene expression is there-
fore an introduction of noise.

Assessing GO term significance
GO term significance was assessed by ranking the
clusters on their number of associated terms, then calcu-
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Figure 2: This figure displays the number of clusters (y-axis) that have
a particular number of genes (x-axis) for the Tothill dataset. Three
algorithms are compared: GOMAC, regular k-means and a modified
k-means that uses a fixed version of the GO. In addition, results on
two different versions of the GO are shown, with and without IEA
annotations. These results are for C = 60.

lating the average p-value of associated terms for each
cluster. Figure 3b shows the ranges of average term p-
values for the top 20 clusters of each algorithm. It can
be seen that GOMAC provides, on average, more signif-
icant terms than the other algorithms and thus has better
GO term significance. There also seems to be no ad-
vantage to using a fixed GO, versus regular k-means for
trying to improve GO term significance.

6.4. Interpretation of clustering output

Given there are 60 clusters to consider for both
datasets used in our study, we have opted to show the
output for a subset of the clusters for the Tothill et al.
(2005) dataset and use a visualisation tool to look at
the results output using the Ramaswamy et al. (2001)
dataset. Table 1 contains examples of three clusters out-
put from clustering of the Tothill et al. (2005) dataset.
These clusters were chosen as they are significantly par-
titionable and have significantly overrepresented terms
associated with them. For the Ramaswamy et al. (2001)
dataset, there were 59/60 clusters that were partition-
able with 26 of those having significant terms describ-
ing them. Due to these large numbers, we employed a
visualisation technique to help interpret the relationship
between cancers and certain biological processes repre-
sented by each cluster of genes. To do this, we took the
most significantly overrepresented term for each clus-
ter, and determined a mean expression value for the two
partitions associated with that term (cluster of genes).
We then used a heatmap to represent the differences
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Figure 3: This figure demonstrates the range of values observed under
two criteria, GO term abundance (a) and GO term significance (b),
for three algorithms applied to the Tothill dataset: GOMAC, regular
k-means and a modified k-means using a fixed GO. In addition, results
on two different versions of the GO are shown, with and without IEA
annotations. In (a) the number of significant terms describing a cluster
(x-axis) is shown for the top 20 clusters ranked by partition p-value,
where C = 60. In this graph, large values are best. In (b) the average
p-value of terms annotated to a cluster is shown for the top 20 clusters
ranked by total number of terms associated with that cluster (C = 60).
In this case, smaller values are better. The black line represents the
mean value, the box edges represent the first and third quartile and the
whiskers extend to 1.5 times the interquartile range of the box. Dots
are considered outliers.



C Cancer p-value
L€ | |

22 | Squamous cell 3.388 e-05 | GO Terms

carcinoma anatomical structure development, anatomical structure morphogenesis,
axon guidance, biological adhesion, cell adhesion, cell differentiation, cell-
cell adhesion, cellular developmental process, collagen fibril organization,
developmental process, extracellular structure organization, homophilic
cell adhesion, multicellular organismal development, multicellular organ-
ismal process, muscle development, nervous system development, organ
development, sensory perception of light stimulus, system development,
visual perception

Genes

ABLIMI1, ANKH, ANKRD38, ANXA13, AQP4, ARMCX2, BMPS,
Cllorf41, Cl3orfl, CACNAIH, CASKIN2, CASQ2, CD34, CDHI11,
CDH11, CDHI12, CDH16, CDH2, CDH22, CDH3, CDH4, CDH5, CDH6,
CDSN, CHRDL2, CLDN1, CLDN10, CLPTM1, COL11A1, COL11A1l,
COLS5A2, COL5A3, COL6A1, COL6A1, COL6A2, COL6A3, COL7AL,
COLS8AI1, COL8A2, COMP, CSRP3, CST6, CSTB, CTNNA2, CYRG61,
DAB2, DAB2, DCN, DPT, DSC1, DSC2, DSG3, ECM2, EFEMPI,
EFHD1, EFNB2, EGFL6, EMCN, FAMS1A, FAT2, FBLN2, FBLNS,
FEZ1, FHL1, FKTN, FLRT2, GAS1, GAS7, GJA4, GJB1, GJB2, GJBS,
GJC1, GPCl1, GPC3, GPC4, GPM6B, GPNMB, HMGB3, IFRD1, IMPGI,
INA, ISLR, JUP, JUP, KAL1, KIF5C, KRT10, KRT13, KRT14, KRT19,
KRT6A, LICAM, LAD1, LDB2, LMO2, LOC729231, LUM, LY6D,
MATN3, MB, MEST, MLLT11, MOSPD3, MPZL2, MTL5, MYHIO,
MYH3, MYL1, MYO1A, MYOC, MYOM2, NELLI1, NPTN, NPTXI,
NRCAM, NTNGI, PCDH17, PCM1, PCOLCE, PCP4, PDZD2, PKP2,
POSTN, PPL, PRELP, S100A3, SCRG1, SEMASA, SGCG, SIRPA,
SLIT3, SMTN, SNTA1, SPOCK2, SPONI1, SPON2, SPP1, SPRR2A,
SPRR2C, SRPX, SSPN, TAGLN, TCL1A, THBS2, TNFAIP2, TNFSF11,
UPKI1A, VCAMI, VCAN, VSNLI, WIPF3, ZFR, ZMYM6, ZMYM6

Expression

Genes are more highly expressed in squamous cell carcinoma versus all
other cancers.

26 | Lung 6.46e-07 GO Terms

Adenocarcinoma homeostatic process, regulation of biological quality, regulation of liquid
surface tension, respiratory gaseous exchange

Genes

SFTPB, SFTPC, SFTPD

Expression

Genes are more highly expressed in lung adenocarcinoma versus all other
cancers.

45 Mesothelioma 1.360e-05 | GO Terms

none

Genes

CALB2, CLDN15, TM4FS1

Expression

Genes are more highly expressed in mesothelioma versus all other cancers.

Table 1: This table represents a summary of a number of interesting clusters output by runing GOMAC on the Tothill et al. (2005) dataset. The
p-values are Bonferroni corrected at 0.05 alpha level.
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Figure 4: This figure represents the output of GOMAC applied to the Ramaswamy dataset. The heatmap relates clusters of genes described by the
GO terms down the right hand side, with the cancer types across the bottom of the diagram. For each gene set, the samples have been partitioned
into two groups, groups highlighted in red have higher expression than those in green. The intensity of the colours reflects the difference in the
mean expression between two groups. A bright red and green suggest the mean expression of the two groups is very different, whereas a subtle
change in red and green mean that although the samples could be partitioned, their mean expression was not significantly different.The colours in
the heatmap have been scaled for contrast however the maximum difference between means is 2.78 with means ranged between 5.54 and 12.04.
Overall, this graph allows differences and similarities to be observed across cancer types and certain biological processes.
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in means between two partitions for each cluster (Fig-
ure 4). This figure allows a comparison of cancer types
and the differences in their expression across the GO-
MAC generated gene clusters.

7. Discussion and Future Work

The Gene Ontology is usually used only after the
clustering of genes and samples has been done. Here
we reasoned that since multiple genes are coordinately
expressed by means of biological programs, such as cell
types and organs, the use of the GO in the process of
clustering would focus the analysis on the driving pro-
gram rather than individual genes.

We have shown through our analysis, that incorpo-
ration of additional biological information into the mi-
croarray clustering process in a biologically justified
manner, can enhance the interpretability of microar-
ray data. An obvious advantage of benchmarking the
ontology-assisted clustering on the carcinoma of un-
known primary datasets, is the robust nature of tissue
specific gene expression, which is related to the original
functions of the cancer organ of origin. For example,
cluster 26 of the Tothill et al. (2005) dataset is specific
to lung adenocarcinoma, and is composed of genes that
code for lung specific surfactants. Other gene clusters
also successfully distinguish cancers, whose cell of ori-
gin is not a typical epithelial cell, such as mesothelial
cells giving rise to ovarian cancer, or squamous cells.
For example, Tothill et al. (2005) dataset cluster 22 or
cluster 45 are specific to SCC or mesothelial cell type
cancers, respectively.

Figure 4 demonstrates the utility of the GOMAC pro-
cedure to highlight novel aspects of cancer etiology.
The proximity of related cancer types, such as Medul-
loblastoma and Glioblastoma confirms that GOMAC
gives biologically sensible results. Indeed the first re-
markable feature is GO terms that are unique to one
type of cancer, such as ‘cytosolic calcium ion home-
ostasis’ for renal cancer, and ‘sterol metabolic process’
for pancreatic cancer. Somewhat related to this is the
association of Medulloblastoma, Glioblastoma, pancre-
atic, etc. cancers according to their germ layer of ori-
gin, by the ‘ectoderm development’ and ‘neurological
system process’ GO term. Both these associations are
likely driven by the nature of cancer cell precursor and
the biological function of the corresponding normal tis-
sue. i.e. osmotic regulation, lipid digestion, and neuro-
ectoderm development, respectively. The GO terms also
present some translational potential, as they highlight
cancer types more likely to be driven, and thus suscepti-
ble to targeting of ‘protein kinase activities’. Another
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feature in the GO-cluster is the association of other-
wise unrelated processes, and the reflection of the reg-
ulatory interdependence. For example, all GO terms
appearing on the top of the cluster, starting from ‘cell
redox homeostasis’ appear to be co-expressed and re-
flect a co-regulation of energy generation, i.e. ‘mito-
chondrial ATP synthesis coupled proton transport’ and
‘isocitraten metabolic process’ (TCA cycle) and ‘mi-
totic metaphase anaphase transition’ implies that cell
division in the context of cancer, is limited by the over-
all ATP/energy load in the cell (TCA being the main
source thereof). Furthermore, these processes are likely
controlled by epithelial cell polarity, as reflected by co-
expression of the ‘actin filament severing’ and ‘intra-
cellular protein transport” GO terms, or epithelial to
mesenchymal transition (EMT). The latter also agrees
with the metastatic propensity of these cancer types and
with their tendency to undergo cell death (‘regulation of
apoptosis’). Association with ‘glutamate catabolic pro-
cess’ representing a primitive form of programmed cell
death (King and Gottlieb, 2009). The overall biosyn-
thesis of the cell (‘regulation of translational initiation’
and ‘rna splicing’) is linked with ‘regulation of apopto-
sis’ (or rather sensitisation to apoptosis via elevated ex-
pression of its mediators), is likely a negative feedback
control mechanism that confirms cell numbers are held
in balance through either lack of expansion, or expan-
sion coupled with death. Many of our observations are
in concordance with those observed previously (Segal
et al., 2004). Obviously, some associations identified
by the empirical results run beyond our understanding
of biology, and hopefully will be explained in future
research. For example, why ‘immune response’ is as-
sociated with ‘glutamate catabolic process’ and ‘sulfur
amino acid metabolic process’ in tumour tissue, is dif-
ficult to rationalize. Perhaps the latter two are the most
critical determinants of cell surface exposed antigenic
epitopes. It is these observations that drive the overall
conclusion that figure 4 shows that GOMAC unravels
novel aspects of cancer expression profiles that deserve
further analysis.

We have shown the potential of incorporating addi-
tional information into expression profile clustering to
unravel the complex nature of the biological processes
involved in cancer. Ideally, our method would be re-
peated multiple times, while alternating the source of
the ontology, the cancer types, and genes. Followed
by ranking of the segregating lists according to signif-
icance, then formation of an integrated summary list,
that records all possible drivers of the biological system-
atic variations among cancers in different organs. A key
benefit of such an exercise would be hypothesis gener-



ation, in the field of cancer etiology with an organ spe-
cific focus.
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