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DRI,	donor	risk	index	

Hb,	haemoglobin	

HCC,	hepatocellular	carcinoma	
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Abstract	

Background	

Ability	 to	predict	graft	 failure	or	primary	non-function	at	 liver	 transplant	decision	time	

assists	utilization	of	 scarce	 resource	of	donor	 livers,	while	 ensuring	 that	patients	who	are	

urgently	requiring	a	liver	transplant	are	prioritized.	An	index	that	is	derived	to	predict	graft	

failure	using	donor	and	recipient	factors,	based	on	local	datasets,	will	be	more	beneficial	in	

the	Australian	context.	

Methods	

Liver	 transplant	 data	 from	 the	 Austin	 Hospital,	Melbourne,	 Australia,	 from	 2010-2013	

has	 been	 included	 in	 the	 study.	 The	 top	 15	 donor,	 recipient	 and	 transplant	 factors	

influencing	 the	 outcome	 of	 graft	 failure	 within	 30	 days,	 were	 selected	 using	 a	 machine	

learning	 methodology.	 An	 algorithm	 predicting	 the	 outcome	 of	 interest	 was	 developed	

using	those	factors.	

Results	

Donor	Risk	Index	(DRI)	predicts	the	outcome	with	an	area	under	the	receiver	operating	

characteristic	curve	(AUC-ROC)	value	of	0.680	(95%	CI	0.669-0.690).	The	combination	of	the	

factors	used	in	DRI	with	the	model	for	end-stage	liver	disease	(MELD)	score	yields	an	AUC-

ROC	 of	 0.764	 (95%	 CI	 0.756–0.771),	 whereas	 Survival	 outcomes	 following	 liver	

transplantation	(SOFT)	score	obtains	an	AUC-ROC	of	0.638	(95%	CI	0.632–	0.645).	The	top	15	

donor	 and	 recipient	 characteristics	within	 random	 forests	 results	 in	 an	AUC-ROC	of	 0.818	

(95%	CI	0.812-0.824).	
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Conclusions	

Using	 donor,	 transplant	 and	 recipient	 characteristics	 known	 at	 the	 decision	 time	 of	 a	

transplant,	 high	 accuracy	 in	matching	 donors	 and	 recipients	 can	 be	 achieved,	 potentially	

providing	assistance	with	clinical	decision	making.	

Introduction	

Outcome	following	liver	transplantation	depends	upon	a	complex	interaction	

between	donor,	recipient	and	process	factors.		Driven	by	the	disparity	between	the	

increasing	number	of	potential	transplant	recipients	and	the	limited	number	of	suitable	

organ	donors,	there	is	increasing	use	of	organs	of	marginal	quality1,2.	This	shift	brings	into	

focus,	the	delicate	balance	with	organ	allocation,	between	organ	utility	and	the	potential	to	

cause	harm	to	the	recipient.		Add	to	this	the	significant	financial	costs	and	regulatory	

pressures	with	each	transplant,	a	quantitative	tool	which	can	help	the	transplant	surgeon	

optimize	this	decision-making	process	is	urgently	required.			

Surgeon	intuition	in	the	evaluation	of	donor	risk	is	inconsistent	and	often	

inaccurate3.		Scoring	indices	such	as	the	DRI4	attempts	to	quantify	the	quality	of	the	donor	

liver	based	on	donor	characteristics	but	include	factors	which	may	not	be	applicable	

internationally	(e.g.	ethnicity	and	regional	location	of	donor),	and	does	not	include	factors	

which	are	known	to	be	strong	predictors	of	outcome	but	may	not	be	consistently	appraised	

(e.g.	Hepatic	steatosis).		DRI	has	not	found	wide	adoption	into	routine	practice5.							

Beyond	the	assessment	of	donor	organ	quality,	is	the	concept	of	donor-recipient	

matching6,	in	order	to	maximize	organ	utilization	while	protecting	patients	from	post-

transplant	complications.	Risk	scores	that	use	both	donor	and	recipient	characteristics	such	
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as	SOFT7	score	have	been	proposed	for	this	purpose.		Theoretically,	the	success	of	a	

transplant	may	be	altered	if	a	given	donor	organ	were	transplanted	into	different	recipients.		

Unfortunately,	aside	from	blood	group	matching	and	recipient	urgency,	currently	there	is	

little	that	guides	this	decision	and	the	ideal	donor-recipient	matching	algorithm6	remains	a	

long-term	vision.		Attempts	to	match	donors	to	recipients	based	on	recipient	MELD	score	

have	had	conflicting	results8,9.		

Machine-learning	algorithms	can	be	used	to	predict	the	outcome	of	a	new	

observation,	based	on	a	training	dataset	containing	previous	observations	where	the	

outcome	is	known.		They	can	detect	complex	non-linear	relationships	between	numerous	

variables	and	are	used	for	predictive	applications	in	a	wide	range	of	fields	including	

agriculture,	financial	markets,	search	engines	and	match-making10-13.		They	are	also	finding	

increasing	application	in	medicine14.		A	machine-learning	algorithm,	developed	from	the	

experience	of	a	particular	liver	transplant	unit,	may	be	able	to	predict	the	likelihood	of	

transplant	success	which	is	unit-specific	and	potentially	allow	for	evolving	practice.				

The	objective	of	 this	study	 is	 to	evaluate	the	utility	of	machine-learning	algorithms	

such	as	random	forests	and	artificial	neural	networks,	in	order	to	predict	outcome	based	on	

donor	and	recipient	variables	which	are	known	prior	to	organ	allocation.		The	performance	

of	these	algorithms	will	be	compared	against	current	standards	of	donor	and	recipient	risk	

assessment	such	as	DRI,	MELD	and	SOFT	score	 in	predicting	transplant	outcome.	 	This	risk	

quantification	 tool	 may	 potentially	 assist	 donor-recipient	 matching,	 with	 improved	

balancing	of	the	considerable	risks	associated	with	liver	transplantation.		
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Materials	and	Methods	

Study	cohort		

This	 study	 included	 the	 Liver	 Transplant	 Database	 from	 Austin	 Health,	 Melbourne,	

Australia,	from	January	1988	to	October	2013.		Austin	Health	is	one	of	five	state-based	liver	

transplant	 units	 within	 Australia	 and	 serves	 the	 population	 in	 the	 States	 of	 Victoria	 and	

Tasmania.	 	 Brain-dead	 and	 cardiac	 death	 organ	 donors	 of	 whole	 liver	 and	 split	 liver	

transplants	were	 included.	 	 Transplants	 involving	 paediatric	 recipients	 (under	 18	 years	 of	

age)	 and	 transplants	 from	 living-related	 donors	were	 excluded	 from	 the	 study.	 	 Although	

transplant	 records	 are	 available	 from	 1988,	 due	 to	 the	 significant	 number	 of	 values	 not	

available	 in	 the	 records	prior	 to	2010	 (particularly	with	 the	 factors	used	 to	calculate	DRI),	

only	 transplants	 which	 occurred	 after	 January	 1st	 2010,	 were	 included	 for	 analysis.	

Transplants	 from	November	2013	 to	May	2015	were	used	 for	 validating	 the	 results.	 	 This	

research	was	 approved	 by	 the	 Austin	 Health	 Human	 Research	 Ethics	 Committee	 (Project	

Number:		LNR/14/Austin/368).			

Dataset	Collation		

The	prospectively	maintained	database	contains	comprehensive	information	about	each	

transplant	 including	donor	 factors,	 transplant	 factors,	 recipient	 factors	as	well	as	 recipient	

outcomes.		The	database	was	collated	into	the	working	dataset,	with	all	fields	arranged	into	

categorical,	ordinal	or	continuous	variables.					

Model	Development		

Well-known	machine	learning	techniques	such	as	random	forests15,16,	artificial	neural	

networks	and	logistic	regression	were	employed	for	model	development17.	However,	logistic	
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regression	was	not	used	for	models	with	many	factors	due	to	its	comparatively	poor	

performance	during	initial	testing.		

Training	 and	 test	 datasets	were	 created	 by	 bootstrap	 sampling	with	 replacement.	 	 In	

brief,	an	equivalent	number	of	cases	from	the	original	dataset	were	randomly	selected	with	

duplicates	 to	 create	 a	 sample	 training	 set.	 It	 has	 been	 shown	 in	 literature	 that	 such	 a	

bootstrap	 sample	 will	 contain	 about	 63%	 unique	 cases	 from	 the	 original	 dataset18.	 The	

remaining	transplants,	not	included	in	the	training	set	were	allocated	as	the	corresponding	

test	set.	This	methodology	known	as	out-of-bag	error	estimation,	ensures	that	there	will	be	

no	 overlaps	 between	 the	 training	 and	 test	 sets18,	 and	 is	 similar	 to	 the	 leave-one-out	

bootstrap	technique	for	estimating	prediction	error19.		This	process	was	then	repeated	1000	

times	to	yield	a	set	of	1000	training	and	corresponding	testing	datasets.		Performances	of	all	

the	 algorithms	 were	 evaluated	 by	 the	 average	 of	 AUC-ROC	 values	 for	 the	 corresponding	

1000	 testing	 samples.	 	 Random	 forest	 and	 artificial	 neural	 network	 implementations	 in	

Weka	data	mining	 software	were	used	 for	 the	experiments	 (Refer	Appendix	 2	 for	 further	

information).		

First,	random	forest	algorithms	and	artificial	neural	networks	were	trained	using	all	

available	characteristics	for	the	1000	bootstrapped	samples.	

Next	 all	 the	 characteristics	 were	 ranked	 per	 training	 sample	 using	 AUC-ROC	 based	

characteristic	 ranking	method,	which	 is	 suitable	 for	datasets	with	high	number	of	 factors,	

missing	values	and	imbalanced	class	sizes20,21.	The	implementation	on	“party	package”	for	R	

statistical	software22	was	used	for	this	task.	By	scoring	the	characteristics	according	to	their	

importance	per	each	sample,	over	the	1000	samples,	we	determined	the	overall	ranks	of	the	

characteristics	for	our	training	data.	
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As	the	next	step,	the	top	15	factors	for	each	sample	were	trained	and	evaluated	using	

the	 random	 forests	 and	 artificial	 neural	 networks.	 	 Fifteen	was	 chosen	 as	 the	 number	 of	

factors	 to	 be	 considered	 based	 on	 clinical	 utility.	 	 When	 training	 random	 forests,	 the	

following	standard	parameters	were	used23:	5000	as	the	number	of	trees,	the	square	root	of	

the	number	of	available	factors	as	the	number	of	randomly	selected	factors	considered	at	

each	decision	point.	Two	hidden	layers	were	used	when	training	artificial	neural	networks.	

Random	 forests	 and	 artificial	 neural	 networks	 with	 the	 overall	 top	 15	 ranked	

characteristics	were	employed	to	determine	the	performance	with	the	validation	data.	

Outcome	Parameters			

The	primary	outcome	parameter	used,	to	develop	and	evaluate	the	prediction	model	

was	graft	failure	or	primary	non-function,	as	defined	by	death	or	re-transplantation,	within	

30	days	of	the	transplant.		As	a	secondary	outcome	parameter,	the	performance	of	the	

developed	model	to	predict	graft	failure	at	3	months	was	evaluated,	using	a	separate	

validation	dataset.	

Donor	Risk	Index	

As	 a	 comparative	 predictor	 of	 outcome,	 the	 DRI	 was	 calculated	 using	 the	 definition	

provided	 by	 Feng	 S	 et	 al.4.	 	 In	 the	 dataset,	 some	 factors	 required	 to	 calculate	 DRI	 for	 a	

particular	 donor	 may	 not	 have	 been	 recorded.	 	 DRI	 was	 considered	 as	 missing	 for	 that	

record,	if	any	of	the	factors	that	are	used	in	DRI	were	missing;	age,	cause	of	death	(stroke,	

anoxia,	trauma,	other),	whether	the	organ	offer	is	after	brain	death	or	cardiac	death,	height,	

race	(white,	African	American,	other),	donor	hospital	location	(local,	regional,	national),	cold	

ischemia	 time,	 partial/split	 liver.	 	 Actual	 cold	 ischemia	 time	 recorded	 was	 used	 in	 the	
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calculations.	 Donor	 hospital	 location	 was	 assigned	 as	 follows:	 offers	 from	 hospitals	 in	

Melbourne	 metropolitan	 area	 as	 local,	 within	 Victoria	 state	 as	 regional,	 and	 others	 as	

national.	Logistic	regression	was	used	to	evaluate	the	performance	of	the	samples	with	DRI.	

DRI	+/-	MELD	by	Random	Forest	

The	 coefficients	 of	 the	 factors	 in	 DRI	 were	 derived	 in	 accordance	 to	 a	 Cox	 linear	

regression	 analysis	 of	 a	 large	 dataset	 from	 the	 United	 States4.	 	 It	 is	 possible	 that	 if	 the	

coefficients	were	recalculated	or	used	to	develop	a	non-linear	model,	the	factors	considered	

in	 DRI	may	 be	more	 specific	 to	 the	 local	 Australian	 context.	 	 Therefore,	 a	 random	 forest	

algorithm	was	developed	using	the	DRI	factors	to	assess	their	predictive	capability.			

A	further	random	forest	algorithm	was	developed	using	the	factors	required	to	calculate	

the	DRI	 and	 the	MELD	 score.	 	 This	was	 an	 attempt	 to	 consider	 both	 donor	 and	 recipient	

factors	in	their	contribution	to	transplant	outcome.		

SOFT	Score	

We	calculated	SOFT	score	as	another	comparative	predictor	of	the	outcome	concerned,	

using	the	definition	provided	by	Rana	A	et	al.7.		Portal	bleed	48	hours	pre-transplant	was	

removed	from	the	formula	due	to	its	unavailability	in	the	dataset.	SOFT	score	was	

considered	as	missing	for	a	record,	if	any	of	the	18	factors	used	for	SOFT	score	calculations	

were	missing.	Due	to	the	high	number	of	missing	values	in	SOFT	score	(56%),	performance	

with	SOFT	score	was	evaluated	using	random	forests.	

Statistical	Analysis	

The	predictive	performance	of	all	the	models	was	assessed	using	AUC-ROC	analysis,	a	

measurement	of	the	discriminative	ability	of	the	model	which	is	especially	suited	for	
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imbalanced	class	classification24-26.	AUC-ROC	values	vary	from	0	to	1,	where	>	0.9	is	

considered	excellent	discrimination,	>	0.75	is	considered	good	discrimination	and	0.5	is	

equivalent	to	random	guessing24.	AUC-ROC	values	were	computed	for	each	of	the	1000	

sample	training/testing	datasets	and	95%	confidence	intervals	were	determined.	

Results	

Dataset	Characteristics	

The	final	dataset	had	180	transplants,	including	16	retransplants,	with	11	graft	

failures	(6.1%)	within	30	days.		276	available	donor	and	recipient	characteristics	(95	

dichotomous,	25	non-dichotomous,	156	numerical)	were	included	for	characteristic	

selection,	where	32%	of	the	values	in	the	dataset	were	missing	values.		One	hundred	

seventy-three	(173)	donor	characteristics,	including	demographic,	clinical	and	logistical	

information	were	included.	The	recipient	characteristics	used	in	the	study	included	103	

demographic	and	pre-transplant	clinical	information.	A	summary	of	the	donor	and	recipient	

demographic	and	clinical	characteristics	are	shown	in	Table	1	and	the	full	list	of	

characteristics	are	given	in	the	appendix.		

	

Table	1:		Summary	of	donor	and	recipient	characteristics	

Characteristics	 Average	±	standard	deviation	(range)	for	numerical		
factors,	%	for	nominal	factors	

Donor	Factors	 Study	dataset	 Validation	dataset	

Age	 45.8	±	16.8	(14-78)	 45.4	±	16.2	(14-78)	

Gender	

			Male	

	

52.8%	

	

53.3%	



12	
	

			Female	

			Not	recorded	

46.7%	

0.5%	

46.7%	

0%	

BMI	 26.3	±	4.5	(17.6-40.4)	 26.9	±	5.6	(16.8-54.5)	

Number	of	organs	from	donor	 2.5	±	0.8	(1-4)	 2.6	±	0.9	(1-4)	

Donor	offer	

			Donation	after	brain	death	

			Donation	after	cardiac	death	

			Not	recorded	

	

91.1%	

8.9%	

0%	

	

91.1%	

5.6%	

3.3%	

Ethnicity	

			Caucasian	

			Other		

			Not	recorded		

	

87.2%	

8.3%	

4.5%	

	

76.7%	

7.8%	

15.5%	

Cause	of	death	

			Stroke	

			Anoxia	

			Trauma	

			Other	

			Not	recorded		

	

65%	

16.1%	

10.6%	

7.8%	

0.5%	

	

56.7%	

22.2%	

10%	

8.9%	

2.2%	

Donor	pancreas	retrieved	

			Yes	

			No	

			Not	recorded	

	

36.7%	

53.9%	

9.4%	

	

27.8%	

72.2%	

0%	

Smoking	history	

			Yes	

			No	

			Ex-smoker	

			Not	recorded	

	

56.1%	

37.2%	

5%	

1.7%	

	

55.6%	

27.8%	

14.4%	

2.2%	

Insulin	use	

			Yes	

			No	

			Not	recorded	

	

41.1%	

40.6%	

18.3%	

	

6.7%	

21.1%	

72.2%	
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Alcohol	consumption	

			No	

			Yes	(quantity	unknown)		

			Mild	(<1/d)	

			Mod	(2-4/d,	up	to	14/w)	

			Heavy	(>4/d,	>14/w)	

			Not	recorded	

	

19.4%	

27.8%	

33.3%	

11.1%	

6.7%	

1.7%	

	

15.6%	

25.5%	

38.9%	

1.1%	

8.9%	

10%	

Bilirubin	 13.4	±	17.1	(2-166)	 9.5	±	6.2	(2-37)	

Plasma	sodium	 144.3	±	6.5	(128-164)	 140.4	±	4.2	(133-156)	

Creatinine	 86.8	±	48.4	(26-392)	 94.1	±	47.4	(39-305)	

ALT	 77.7	±	107.5	(5-733)	 110.8	±	166.9	(10-668)	

Hb	 116.7	±	26.4	(60-183)	 128.0	±	23.5	(74-175)	

Cold	ischemia	time	 6.4	±	2.0	(3-18.8)	 6.5	±	2.6	(0.9-20.3)	

Cut	down	

			Whole	

			Split	

95.6%	

4.4%	

	

95.6%	

4.4%	

Recipient	Factors	 	 	

Age	at	transplant	 50.6	±	11.6	(19.3-70.9)	 53.5	±	11.3	(20.8-66.8)	

Gender		

			Male	

			Female	

	

66.1%	

33.9%	

	

72.2%	

27.8%	

MELD	score	 18.2	±	7.5	(6-43)	 19.6	±	8.6	(6-46)	

Re-transplant	

			No	

			Yes	

	

91.1%	

8.9%	

	

98.9%	

1.1%	

If	HCC,	number	of	tumours	 1.4	±	0.5	(1-3)	 2.1	±	1.1	(1-6)	

Oesophageal	varices	

			<	¼	of	lumen,	not	bandable	

	

31.1%	

	

25.5%	
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			Large	

			Not	present	

			Not	recorded	

25.6%	

17.2%	

26.1%	

16.7%	

6.7%	

51.1%	

Bilirubin	 134.6	±	172.0	(5-902)	 94.9	±	131.0	(4-682)	

INR	 1.6	±		0.5	(1-3.8)	 1.5	±	0.4	(1-3.2)	

Albumin	 29.3	±		6.4	(13-47)	 30.1	±	7.8	(16-44)	

Portal	vein	patency	

			Patent	

			Thrombosed	

			Partial	Thrombosis	

			Patent	transjugular	transhepatic	
portosystemic	shunt		

			Not	recorded	

	

78.9%	

3.3%	

2.2%	

1.7%	

	

13.9%	

	

82.2%	

4.5%	

6.7%	

2.2%	

	

4.4%	

Ethnicity	

		Caucasian	

			Asian	

			Other	

			Not	recorded	

	

55%	

7.8%	

3.3%	

33.9%	

	

37.8%	

8.9%	

3.3%	

50%	

Primary	diagnosis	/	Disease	
category	

			Hepatitis	C	

			Malignancy	/	Hepatoma	

			Primary	Sclerosing	Cholangitis	

			Alcoholic	Cirrhosis	

			Other	

			Chronic	Active	Hepatitis	

			Metabolic	Disease	

			Primary	Biliary	cirrhosis	

			Acute	Hepatic	Necrosis	

			Cirrhosis-Cryptogenic	

			Chronic	Active	Hepatitis	B	

			Biliary	Atresia	

	

	

22.8%	

14.4%	

10.6%	

8.9%	

8.9%	

5.6%	

4.4%	

4.4%	

3.9%	

3.9%	

2.8%	

	

																																					
11.2%	

37.8%	

14.4%	

6.7%	

13.3%	

1.1%	

3.3%	

5.6%	

1.1%	

3.3%	

1.1%	

0%	
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			Not	recorded	 0.5%	

8.9%	

1.1%	

	

	

Algorithm	Performances	

The	 ranks	of	 the	 factors	were	determined	 from	 the	 sample	 training	datasets	using	

random	 forest	 characteristic	 importance	method	 and	 the	 overall	 top	 15	 predictive	 donor	

and	recipient	factors	were	selected.				

	 These	 donor	 factors	 were:	 cause	 of	 death	 (stroke,	 anoxia,	 trauma,	 other),	 serum	

albumin	level,	donation	after	brain	or	cardiac	death,	the	state	in	which	the	donor	hospital	is	

located,	 alcohol	 consumption	 (no,	 unknown	 quantity,	 <1,	 2-4,	 >4	 drinks	 per	 day),		

haemoglobin	 level,	 total	 protein	 level,	 insulin	 usage,	 age,	 previous	 surgery,	 whether	

pancreas	was	retrieved	concurrently,	and	donor	cytomegalovirus	status.	

The	 recipient	 factors	 were:	 	 disease	 category,	medical	 status	 at	 activation	 (home,	

frequent	 hospital	 care,	 hospital	 bound,	 ICU,	 ventilated)	 and	 serum	 herpes	 simplex	

antibodies.	Table	2	provides	the	ranking	of	overall	top	15	factors	with	their	percentages	of	

missingness	 in	 the	 study	 and	 validation	 datasets.	 It	 is	 noteworthy	 that	most	 of	 these	 top	

predictors	have	less	missing	percentages	when	compared	with	the	average	of	32%.	

Table	2:	Overall	top	15	predictors	with	the	percentage	of	missing	values	in	the	study	data	

and	validation	data	

Characteristic	 Average	rank	
sum	

Missing	%	in	
study	data	

Missing	%	
in	
validation	
data	

Recipient	disease	category		 1.619	 8.89	 1.11	
Donor	serum	albumin	level	 18.836	 8.89	 36.67	
Donor	cause	of	death		 20.420	 0.56	 2.22	



16	
	

Donation	after	brain	or	cardiac	death	 24.931	 0	 3.33	
Donor	haemoglobin	level	 30.375	 16.67	 45.56	
Donor	alcohol	consumption		 30.805	 1.67	 10	
The	state	in	which	the	donor	hospital	is	located	 31.373	 0	 0	
Donor	total	protein	level	 32.441	 18.89	 41.11	
Donor	insulin	usage	(dichotomous)	 35.011	 18.33	 72.22	
Recipient	medical	status	at	activation		 36.285	 33.89	 27.78	
Donor	pancreas	retrieved	(dichotomous)	 38.166	 9.44	 0	
Donor	age	 38.412	 0	 0	
Serum	herpes	simplex	antibodies	 38.654	 12.78	 8.89	
Donor	previous	surgery	(dichotomous)	 41.505	 2.78	 0	
Donor	cytomegalovirus	(CMV)	Status	
(dichotomous)		

42.083	 0	 0	

	

Without	characteristic	selection,	neural	networks	had	an	average	AUC-ROC	of	0.734	

(95%	 CI	 0.729-0.739)	 while	 random	 forests	 achieved	 0.787	 (95%	 CI	 0.782-0.793).	 By	

comparison,	 when	 using	 the	 top	 15	 factors	 of	 each	 sample	 for	 30	 day	 graft	 failure,	 the	

predictive	ability	had	an	average	AUC-ROC	value	of	0.818	(95%	CI	0.812-0.824)		with	random	

forests	and	0.835	(95%	CI	0.831-0.840)	with	neural	networks.		

The	validation	dataset	contained	90	transplants	with	3	graft	failures	within	3	months,	

which	was	selected	as	the	outcome	for	validation	due	to	the	lack	of	graft	failures	within	30	

days.	When	the	performance	of	the	final	model	with	the	overall	top	15	factors,	trained	for	

graft	failure	at	30	days,	was	assessed	in	its	prediction	ability	for	graft	failure	at	3	months,	

random	forests	achieved	an	average	AUC-ROC	value	of	0.715	(95%	CI	0.705-0.724),	whereas	

neural	networks	yielded	0.559	(95%	CI	0.548-0.569).	

DRI,	SOFT	score	and	DRI	+/-	MELD	by	Random	Forest	Performance	

To	compare,	the	DRI	for	each	donor	in	our	dataset	was	calculated	with	a	mean	value	of	

1.56	(±	0.37).		DRI	predicted	graft	failure	within	30	days	with	an	average	AUC-ROC	value	of	
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0.680	(95%	CI	0.669-0.690).	 	Using	DRI	trained	for	graft	 failure	at	30	days,	 to	predict	graft	

failure	at	3	months	for	the	validation	dataset,	the	average	AUC-ROC	value	was	0.595	(95%	CI	

0.587-0.602).					

Using	 the	 same	 factors	 that	 are	 used	 in	 DRI,	 we	 developed	 a	 model	 using	 Random	

Forests.	 	 This	model	 achieved	 an	 average	AUC-ROC	 of	 0.697(95%	CI	 0.688-	 0.705).	When	

MELD	 score	 were	 added	 to	 the	 DRI	 factors	 for	 Random	 Forest	 modelling,	 a	 predictive	

average	AUC-ROC	of	0.764	(95%	CI	0.756	–	0.771)	was	observed.		

The	SOFT	score	was	also	assessed	and	had	a	mean	value	of	5.5	(±	4.3).		As	a	predictor	for	

30	day	graft	failure,	it	had	average	AUC-ROC	of	0.638	(95%	CI	0.632	–	0.645).	

A	comparison	of	all	the	results	with	the	study	dataset	is	given	in	Table	3	and	Figure	1.	

Table	3:	Comparison	of	AUC-ROC	values	of	different	models	created	during	the	study	

Characteristics	used	 AUC-ROC	(95%	CI)	

Donor	risk	index		 0.680	(0.669-0.690)	
SOFT	score		 0.638	(0.632-0.645)	
Neural	network	with	all	the	factors	 0.734	(0.729-0.739)	
Random	forest	with	all	the	factors	 0.787	(0.782-0.793)	
DRI	characteristics	in	random	forest	 0.697	(0.688-0.705)	
DRI	characteristics	and	MELD	score	in	random	forest	 0.764	(0.756-0.771)	
Random	forest	with	characteristic	selection	(Top	15)	 0.818	(0.812-0.824)	
Neural	network	with	random	forest	characteristic	selection	(Top	15)	 0.835	(0.831-0.840)	
	

DRI	–	donor	risk	index	factors:	age,	cause	of	death,	race,	partial/split,	height,	regionality,	

cold	ischaemia	time;	MELD	–	model	for	end	stage	liver	disease	factors:		recipient	creatinine,	

bilirubin	and	INR;	SOFT-	Survival	outcomes	following	liver	transplantation	score	factors-age,	

BMI,	number	of	previous	transplants,	previous	abdominal	surgery,	albumin,	dialysis	prior	to	
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transplantation,	intensive	care	unit	pre-transplant,	admitted	to	hospital	pre-transplant,	

MELD,	life	support	pre-transplant,	encephalopathy,	portal	vein	thrombosis,	ascites	pre-

transplant,	portal	bleed	48	h	pre-transplant,	donor	age,	donor	cause	of	death	from	cerebral	

vascular	accident,	donor	creatinine,	national	allocation,	cold	ischemia	time.	

Figure	1:	ROC	curve	comparison	of	different	models	created	during	the	study	

	

Discussion	

This	study	is	a	proof-of-concept	that	machine-learning	algorithms	can	be	an	

invaluable	tool,	supporting	the	decision-making	process	for	liver	transplant	organ	allocation.		

This	is	particularly	relevant	in	the	current	high-stakes	environment	where	suboptimal	organ	

utility	leads	to	either	increased	waiting	list	mortality	or	patient	mortality	following	

transplantation.					
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The	results	of	this	study	revealed	that	using	15	of	the	top-ranking	donor	and	

recipient	variables	available	prior	to	transplantation	were	the	best	predictors	of	outcome	

with	an	average	AUC-ROC	of	0.818	with	the	random	forest	algorithm	and	0.835	with	

artificial	neural	networks.		Both	machine	learning	techniques	showed	significant	

improvements	in	AUC-ROC	with	characteristic	selection.	This	was	followed	by	training	the	

random	forest	classifier	with	the	variables	used	to	calculate	DRI	plus	MELD	score	(AUC-

ROC=0.764).		Using	the	random	forest	classifier	with	the	factors	used	to	calculate	DRI	

improved	the	discrimination	of	DRI	from	0.680	to	0.697.	SOFT	score	achieved	an	average	

AUC-ROC	of	0.638.		Assessing	the	predictive	accuracy	of	the	final	models	with	top	15	factors,	

as	trained	for	30	day	outcome,	for	graft	failure	at	3	months,	the	AUC-ROC	value	decreased	

from	0.818	to	0.715	with	random	forests	and	0.835	to	0.559	with	neural	networks.		By	

comparison,	DRI	prediction	of	3	month	graft	failure	was	0.595.			

There	are	many	machine-learning	paradigms,	of	which	two	of	the	most	widely	used	are	

artificial	neural	networks	and	random	forest	classifiers.		In	a	recent	landmark	paper	where	

the	performance	of	179	different	machine-learning	classifiers	were	used	to	classify	all	121	

datasets,	representing	the	entire	University	of	California	Irvine	Machine	Learning	

Repository,	random	forest	classifiers	were	found	to	be	the	most	accurate27.		There	are	four	

reports	using	artificial	neural	networks	to	predict	transplant	outcome	in	literature28-31.		The	

present	study	is	the	first	report	using	a	random	forest	machine-learning	algorithm	for	

predicting	outcome	following	liver	transplantation.			

There	are	multiple	theoretical	advantages	with	the	use	of	random	forest	algorithms	in	

this	application.		It	is	well	known	in	machine	learning	literature	that	artificial	neural	

networks	are	prone	to	overfitting	and	learning	noise	in	data,	resulting	in	unstable	models	
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with	poor	generalization	ability32-35.	However,	by	design,	random	forest	classifiers	are	less	

prone	to	overfitting	producing	more	stable	models36-38.		In	medical	datasets,	there	is	

frequently	a	large	degree	of	missing	data	since	the	data	is	often	not	collected	for	research	

purposes,	and	some	tests	are	not	routinely	performed	even	though	they	may	be	highly	

prognostic	(e.g.	donor	liver	biopsy	for	assessment	of	steatosis).		Simply	excluding	these	

cases	may	bias	the	results	due	to	the	fact	that	the	“missing-ness”	of	the	data	is	not	

completely	at	random39,40.		Random	forest	algorithms	are	superior	in	handling	datasets	

missing	a	significant	proportion	of	input	data	such	as	with	this	study41.		Furthermore,	while	

artificial	neural	networks	are	essentially,	a	“black-box”	into	which	data	is	inputted	and	a	

prediction	is	outputted,	the	characteristic	importance	measure	with	random	forest	can	

indicate	the	importance	of	each	variable	in	the	dataset	thereby	improving	the	transparency	

of	the	algorithm38,41,42.			

Myriad	factors	interact	to	influence	liver	transplant	including	donor,	recipient	and	

locally	specific	transplant	factors.		There	have	been	many	attempts	to	predict	graft	failure,	

following	liver	transplant	in	literature7,8,43-48.		Some	studies	looked	at	predicting	graft	failure	

using	either	donor	factors,	recipient	factors43,	or	a	combination	of	both7,8,45-48.		However,	

these	approaches	have	all	failed	to	gain	greater	adaptability	because	they	are	developed	

from	patient	populations	which	may	not	be	generalizable	to	other	centres	due	to	regional	

differences	in	patient,	donor	or	process	factors,	or	changes	in	practice	since	their	

development5,6.		Furthermore,	they	are	calculated	from	simple	multiple	regression	

statistical	models	which	assumes	the	linear	influence	of	different	variables.	A	predictive	

model	required	to	enable	effective	organ	allocation	needs	to	be	locally	and	temporally	
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applicable,	and	account	for	the	complex	interactions	within	the	data	available	prior	to	

transplantation.		

Currently,	decisions	for	organ	allocation	are	largely	subjective	or	based	on	a	recipient	

“sickest-first”	or	“waiting-time”	approach	rather	than	an	outcome-based	approach.		

Machine-learning	algorithms	are	increasingly	used	for	modern	clinical	decision-making.		

Compared	to	current	methods,	they	are	data	driven,	able	to	accommodate	numerous	

interdependent	variables	and	specific	to	the	population	from	which	they	were	trained	on.		

In	addition,	compared	with	static	indices,	they	are	dynamic,	able	to	“learn”	case-by-case	

with	the	expansion	of	the	training	set.								

Using	characteristic	importance	measure,	the	most	influential	donor	and	recipient	

variables	were	determined.		Most	of	these	factors	such	as	donor	age,	whether	the	offer	is	

after	brain	death	or	cardiac	death,	donor	cause	of	death,	donor	hospital	State	(geographical	

distance),	donor	alcohol	consumption,	recipient	disease	category	and	medical	status	at	

activation	are	already	known	as	important	factors4,45,49,50.		Donor	haemoglobin,	protein	level	

and	insulin	usage	were	also	top-ranking	predictive	characteristics	which	make	sense	

clinically.		Donor	CMV	and	recipient	HSV	status	were	also	predictive	and	although	less	

intuitive,	has	been	shown	to	be	associated	with	acute	viral	infection	and	rejection51,52.		

Interestingly,	the	decision	to	retrieve	the	pancreas	for	islet	cell	or	whole	organ	transplant	

was	also	a	top-ranking	factor,	although	the	decisions	to	retrieve	kidneys,	lungs	or	heart	

were	not	significant	factors.		This	is	likely	because	the	decision	for	pancreas	retrieval	is	

usually	more	stringent,	requiring	more	ideal	donor	conditions.		

This	study	highlights	the	importance	of	characteristic	selection	and	tailoring	in	predictive	

modelling.		The	predictive	accuracy	of	the	well-known	DRI	was	improved	when	tailored	to	
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the	specific	influences	at	the	Austin	Health	Liver	Transplant	Unit.			Accuracy	was	further	

improved	with	the	addition	of	recipient	MELD	characteristic	with	the	best	accuracy	found	

with	the	application	of	a	unit-specific	Random	Forest	algorithm	using	the	top-ranking	

predictive	factors.			

The	main	 limitations	 of	 machine-learning	 algorithms	 are	 that	 they	 are	 best	 suited	 to	

predicting	 outcome	 in	 the	 environment	 from	 which	 they	 are	 derived.	 	 Conversely,	 this	

limitation	 is	also	 its	 strength,	 in	 that	 it	 is	highly	 specific	 to	 the	peculiarities	of	a	particular	

transplant	 centre,	 enabling	 the	 best	 decision	 for	 each	 individual	 transplant.	 	 Therefore,	

while	 it	 is	not	 ideal	 to	export	a	 trained	algorithm	 from	one	 transplant	 centre	 to	 the	next,	

certainly,	the	approach,	with	an	algorithm	tailored	to	each	transplant	centre	is	possible.			A	

further	limitation	of	this	algorithm	is	that	while	it	is	trained	to	predict	30	day	graft	failure,	its	

predictive	accuracy	may	not	extend	to	other	important	liver	transplant	outcomes	such	as	3,	

6	 or	 12	 month	 graft	 failure,	 early	 graft	 dysfunction,	 acute/chronic	 rejection,	 infections,	

immunosuppression	 or	 late	 biliary	 strictures.	 	 Each	 of	 these	 outcomes	 might	 require	 a	

separately	trained	algorithm.			

A	 limitation	 of	 this	 study	 is	 that	 the	machine-learning	 algorithm	was	 derived	 from	 an	

observational	 database.	 	While	 the	 bootstrapping	 with	 replacement	methodology	 is	 well	

validated	 for	 the	development	of	 robust	predictive	machine-learning	models53,54,	 	and	our	

attempts	to	predict	3	month	graft	failure	for	a	separate	validation	dataset	looks	promising,	

prospective	validation	 for	30	day	graft	 failure	would	be	valuable	 to	confirm	the	predictive	

ability	.	

This	study	confirms	that	machine-learning	algorithms	based	on	donor	and	recipient	

variables	which	are	known	prior	to	organ	allocation	can	be	utilized	to	predict	transplant	



23	
	

outcomes.	This	approach	may	be	used	as	a	tool	for	transplant	surgeons	to	improve	organ	

allocation	decisions.		The	ability	to	quantify	risk	may	allow	for	improved	confidence	with	the	

use	of	marginal	organs	and	better	outcome	following	transplantation.			
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