
Discovering Latent Blockmodels in Sparse and Noisy
Graphs using Non-Negative Matrix Factorisation ∗

Jeffrey Chan†, Wei Liu‡, Andrey Kan§, Christopher Leckie, James Bailey,
Kotagiri Ramamohanarao

Department of Computing and Information Systems, University of Melbourne, Australia

ABSTRACT
Blockmodelling is an important technique in social network
analysis for discovering the latent structure in graphs. A
blockmodel partitions the set of vertices in a graph into
groups, where there are either many edges or few edges be-
tween any two groups. For example, in the reply graph of
a question and answer forum, blockmodelling can identify
the group of experts by their many replies to questioners,
and the group of questioners by their lack of replies among
themselves but many replies from experts.

Non-negative matrix factorisation has been successfully
applied to many problems, including blockmodelling. How-
ever, these existing approaches can fail to discover the true
latent structure when the graphs have strong background
noise or are sparse, which is typical of most real graphs. In
this paper, we propose a new non-negative matrix factorisa-
tion approach that can discover blockmodels in sparse and
noisy graphs. We use synthetic and real datasets to show
that our approaches have much higher accuracy and compa-
rable running times.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; E.1 [Data
Structures]: Graphs and Networks; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences

Keywords
Blockmodel, Graphs, Non-negative Matrix Factorisation

1. INTRODUCTION
Discovering latent community structures is an important

aspect of understanding, predicting and modelling many

∗This research was supported under Australian Research
Council’s Discovery Projects funding scheme (project num-
ber DP110102621).
†Corresponding author: jeffrey.chan@unimelb.edu.au
‡Currently at NICTA ATP Research Laboratory, Australia
§Currently at Walter and Eliza Hall Institute, Australia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505595.

types of graphs1 [10][11]. A common and intuitive defini-
tion of a community is a group of vertices that are densely
connected among themselves and sparsely connected to ver-
tices of other communities. However, there are many other
graphs that have a latent structure that is different from this
definition. For example, in the reply graph of a question and
answer (Q&A) forum, a group of experts can be identified
by their many replies to questioners, and the group of ques-
tioners by their lack of replies among themselves but many
replies from experts [3]. If we use a community definition to
decompose such a Q&A forum, everyone will be incorrectly
associated in the same community. This demonstrates that
a more general approach to finding the inherent graph struc-
ture is needed.

Blockmodelling is a powerful approach to decomposing
graphs, and has been well studied in the social sciences [13].
Vertices are in the same position (group) if they have sim-
ilar patterns of interactions to vertices of other positions.
The Q&A forum structure fits this definition. The inherent
structure is revealed by the image diagram (e.g., Figure 1f),
where each vertex represents a position and an edge repre-
sents the aggregate interaction between positions, with in-
significant interactions not displayed. The positions and the
image diagram (and matrix representation of it) clearly sum-
marise the overall social structure of the Q&A behaviour,
and together form a blockmodel. Blockmodels allow us to:
(1) explore the membership of vertices and how they relate
to each other, (2) understand and characterise the under-
lying structure (e.g., is it a community or core-periphery
structure) and (3) discover the important roles.

Blockmodelling is an NP-Hard problem [5], hence block-
modelling algorithms only seek to find good local optima.
Wang et al. [12] and Long et al. [9] have formulated the
blockmodelling problem2 as non-negative matrix tri-factor-
isation. The problem becomes one of finding the optimal
positions and image matrices that simultaneously minimise
the difference between the original graph and the graph
approximated by the blockmodel. Similarly, Reichardt et
al. [11] have shown the similarity between the blockmod-
elling problem and finding optimal spin configurations in
material physics. While promising results were reported,
there are three important, unresolved challenges.

The first challenge is that many real graphs are sparse.
Consider the well studied karate club network [13], which
represents the associations between members after a schism

1We use the terms graphs and networks interchangeably.
2The authors of these works use the term “community”, but
these works are effectively finding blockmodels.

(a) Structure using
[12].

(b) Structure ac-
counting for spar-
sity.

(c) Structure us-
ing [9].

(d) Structure ac-
counting for noise.

(
0.104 0.138
0.138 0.159

)
(e) Image matrix
found of 1a.

(f) Image di-
agram of 1b.

Figure 1: Rearranged adjacency matrices of the Karate
club association network (Figures 1a-1b) and word adja-
cency graph (Figures 1c-1d).

in the club. The known structure is a two community struc-
ture (illustrated in Figure 1b, where an edge is represented
by a black square and an absent edge by white space.).
The blockmodel definition can represent a community struc-
ture. Hence the two non-negative factorisation algorithms in
[12][9] should be able to find these communities, but over 100
runs we regularly obtain the incorrect blockmodel structure
illustrated in Figure 1a. The reason this occurs is because
the factorisation algorithms penalise edge and non-edge mis-
matches equally, where a non-edge is the absence of an edge
between a vertex pair. In a sparse graph, the grouping of
edges is more important than the grouping of non-edges,
since performing the former is more difficult and therefore
more likely that the group represents inherent structure and
not structure by chance. Figure 1e shows the image matrix
of the blockmodel discovered by [12]. This indicates that in
the graph approximated by the blockmodel of [12], most of
the vertex pairs will be predicted to have no edge between
them, which is a good solution since many of the non-edges
are matched, but the blockmodel of Figure 1b is in fact the
more intuitive and valid one. Hence, an approach is needed
that penalises the two types of mismatches differently.

The second challenge is that in some graphs the under-
lying structure is obfuscated by background noise and un-
expected edges. For example, consider Figures 1c and 1d,
which shows a word adjacency network of common adjectives
and nouns in the Charles Dickens novel “David Copperfield”
[10]. If we divide the nouns into one position and adjectives
into another, the rearranged adjacency matrix looks almost
uniformly random, suggesting for this dataset the adjacen-
cies of the words follow structural patterns that are different
from their classifications. A possible structure is illustrated
in Figure 1d, which shows the adjectives and nouns that
are adjacent to many of the other words that are grouped
together. For this graph, the two factorisation algorithms
preferred one position (although we initialise the algorithms
to find two, see Figure 1c). As this example shows, it is im-
portant for blockmodelling algorithms to be able to handle
unexpected structure and be insensitive to noise.

The third challenge is the scalability of the algorithms.
Reichardt et al. [11] showed in their work that their ap-

proach can find blockmodels for sparse graphs. However,
their simulated annealing approach is slow (it did not fin-
ish one run for a graph with 1000 vertices after five days).
Therefore, it is important for any blockmodel algorithm to
discover blockmodels in a reasonable amount of time.

In this paper, we introduce several objectives and opti-
misation algorithms to tackle these challenges (we call our
framework FactorBlock). Our approach is able to discover
the true blockmodel structure in a) sparse graphs; b) noisy
graphs; and c) produces results of higher accuracy and com-
parable running times to the state of the art. Our approach
is based on placing more importance in approximating edges
well when the graph is sparse. We evaluate existing and
proposed algorithms using both real and sparse graphs, and
show that our proposed approaches are more accurate in
both synthetic and real datasets as well as having compara-
ble running times to the fastest existing algorithms.

2. RELATED WORK
Non-Negative Matrix Factorisation: Seung et al. [8]
were the first to popularise non-negative matrix factorisa-
tion in machine learning. Subsequent work introduced coor-
dinate descent and projected gradient descent [2] to improve
the optimisation obtained.

Long et al. [9] and Wang et al. [12] introduced the idea of
non-negative matrix tri-factorisation for finding blockmodels
for graphs, and produced different multiplicative optimisa-
tion approaches. Zhang et al. [14] introduced a coordinate
descent algorithm to find overlapping position blockmodels.
These algorithms perform well when the dataset structure
is clear, but are not able to handle sparse and noisy graphs
well, as we show in Section 6.

Blockmodelling: In [3], Chan et al. proposed an informa-
tion theoretic approach of finding blockmodels in evolving
graphs. Airold et al. [1] introduced a mixed membership
probabilistic model, where vertices can belong to multiple
positions. Karrer et al. [7] proposed a generative probabilis-
tic model that takes the difference in the degree distribu-
tions of vertices into account. However, their formulation is
specifically targeting heavy tailed graphs, while our model is
general and can easily incorporate different types of graphs.

Reichardt et al. [11] proposed a null model formulation
that sums the difference between the adjacency matrix and
the blockmodel approximation of it. A simulated annealing
approach was proposed to optimise this. The objective of
Reichardt is most similar to ours, but our formulation allows
the computation of the gradient and hence we can use faster
gradient descent approaches for optimisation.

3. BLOCKMODELLING BACKGROUND
In this section, we summarise the key ideas of blockmod-

elling (please see [13] for more details). A graph G(V,E)
consists of a set of vertices V and a set of edges E, E : V ×V ,
which can be represened by an adjacency matrix A. We ini-
tially consider unweighted, directed graphs in this paper,
as the definition of blockmodels are traditionally defined in
terms of this type of graphs [13].

A blockmodel is a form of dimension reduction and decom-
poses a graph (A) into a set of vertex partitions (called po-
sitions), represented by a membership matrix C ∈ [0, 1]n×k,
and an image matrix M ∈ [0, 1]k×k, which describes the

likelihood of an edge between a vertex from one position to
a vertex of another position (k is the number of positions).
Each entry in M is called a block. The blockmodel decom-
position approximates A as CMCT .

As the decomposition is an approximation, we estimate
the error as the sum of squared differences and the aim is to
find a blockmodel (C ≥ 0 and M ≥ 0) that minimises:

min
C,M
||A−CMCT ||2F (1)

Equation 1 has the same form as non-negative matrix tri-
factorisation [4]. In blockmodelling, there are different defi-
nitions of vertex equivalence and in this paper, we solve the
popular structural equivalence [13], which states that two
vertices belong to the same position if they have similar sets
of out and in neighbours. In terms of matrix structure, this
means the densities of the entries of the image matrix are
ideally close to 0 or 1.

4. MATRIX FACTORISATION
BLOCKMODELLING (FactorBlock)

We introduce two new constraints and weightings to ad-
dress the sparsity and noise challenges.

Handling Graph Sparseness.
Reconsider Equation 1, which we rewrite as:∑
i,j

µ10Ai,j(1−(CMCT)i,j)+µ01(1−Ai,j)(CMCT)i,j (2)

where µ10 and µ01 are the penalty weightings for an edge
mismatch (Ai,j = 1 and (CMCT)i,j < 1) and a non-edge
mismatch (Ai,j = 0 and (CMCT)i,j > 0) respectively. In
Equation 1, µ10 = µ01 = 1 (equal weighting).
µ10 and µ01 determine the importance we place on avoid-

ing each of the two types of errors. Real graphs tend to
be sparse, hence it is much easier to match an actual non-
edge with the blockmodel approximation. Reconsidering the
karate club example, according to Equation 1, blockmodel
A (Figure 1a) and blockmodel B (Figure 1b) have similar
objective values, as the graph is sparse and therefore the
non-edges are (mostly) matched by both blockmodels and
hence both objective values are similar. But we know that
the true blockmodel is more similar to blockmodel B, and
to make that blockmodel more desirable in terms of the ob-
jective, we need the matching of an existing edge (Ai,j = 1)
to be given more weight than the matching of an existing
non-edge (Ai,j = 0) or µ10 > µ01.

One possible scheme is to use the density of the graph as
a background model: µ10 = Ai,j− m

n2 , µ01 = m
n2 where m is

the number of edges. With this weightings, in the example
µ10 (µ01) is almost 1 (0), hence the emphasis is to match the
edges. The optimal configuration for this is to place most
of the edges into the two diagonal blocks, which is exactly
what we seek. We can rewrite Equation 1 with the changed
edge mismatching weighting as:

min
C,M

(
||(A−CMCT) ◦ (A−R)||2F

)
(3)

where R ∈ [0, 1]n×n, Ri,j = m
n2 , ∀i, j ∈ V and ◦ represents

the element-wise multiplication operator. This weighting
scheme can also be considered from the perspective of a null
model, similiar to the modularity objective for community

finding [10]. For example, our weighting scheme is the same
as assuming a Erdos-Renyi null model [10].

Handling Background Noise.
In noisy graphs, it can be difficult to distinguish between

the true structure of the graph and the background noise.
We can differiate better by encouraging blocks to be either
dense or sparse (according to the null model). If the density
of the block is below what the null model predicts it should
be, then we encourage the block to be sparse and hence does
not attract edge assignments to it. Conversely, if the density
is above what the null model predicts, then we encourage the
block to be dense and attract more edges to it.

Recall that in the ideal case, the densities of the image
matrix entries should either be 0 or 1 and we denote this as
the ideal image matrix, Mideal ∈ {0, 1}k×k. Then we seek an
M that is as close to Mideal as possible, i.e., it minimises the
distance ||Mideal−M||2F . Mideal is a function of M, and can
be defined as Mideal(i, j) = argminu={0,1}(|u−M(i, j)|).

However, this is not differentiable and we cannot use faster
gradient descent approaches. Hence we propose a sigmoid
function to approximate it: Mideal = 1

1+γe−υ(M−τ) with υ

related to the growth rate, and γ and τ related to when
the function approaches 1. Combining Equation 3 with this
constraint term and letting U = A−R, we aim to minimise
the following objective:

L = ||(A−CMCT) ◦U||2F + β · ||Mideal −M||2F (4)

subject to C ≥ 0 and 0 ≤M ≤ 1. The first term in Equa-
tion 4 tries to minimise the approximation of the blockmod-
elling tri-factorisation, while the second, constraint term
tries to find an M that is as close as possible to the ideal for
the particular equivalence required. β ∈ [0, 1] is a parameter
that controls the amount of influence from the constraint.

The matrix τ , τ ∈ [0, 1]k×k, controls the boundary be-
tween what is considered as a sparse or dense block. When
there is no null model, i.e., U = 1, then the default is for
τ = 0.5 for all its entries. When a null model is used, the
edge mismatch errors µ10 and µ01 determine the density
boundary. When we use our weighting scheme, then τ = m

n2 .
υ controls the slope of the function, and after performing
parameter evaluation, we found a setting of 100-1000 works
well, as the sigmoid function is almost a step function and
hence approximates the exact Mideal formulation well.

We have three different objectives that we evaluate in Sec-
tion 6. We call Equation 1 as Euclidean, and Equation 3,
4 and, 4 with U = 1 as adjusted, constrained adjusted and
constrained Euclidean respectively.

5. OPTIMISATION APPROACHES
Both non-negative matrix factorisation and blockmodelling

of three or more positions are NP-Hard problems [5]. Hence,
we developed alternating optimisation approaches to find
good M and C solutions to Equation 4, which can also be
used to solve the other objectives.

We introduce three approaches for optimising C, one where
we assume hard memberships (i.e., each vertex must belong
to one and only one position), and a gradient descent and
a coordinate descent algorithm for soft, overlapping mem-
berships. In addition, we introduce two approaches, one
based on gradient descent and the other on coordinate de-
scent for optimising M. Unless stated otherwise, the deriva-

tions for the algorithms and their gradients are available at
http://people.eng.unimelb.edu.au/jeffreyc.

5.1 Position Optimisation

5.1.1 Hard Membership
When the position memberships are hard, then we are

solving a discrete, NP-Hard problem. The objective function
needs to be recomputed and reassessed after each member-
ship change. Recomputing Equation 4 is expensive (com-
plexity O(n2k2)), hence we introduce an incremental ap-
proach that only updates the necessary entries.

Let the current position membership and image matrices
be denoted by C(t) and M(t). Without loss of generality, let
the vertex vi be reassigned from its current position Pg to its
new position Ph, and let the corresponding matrices (of size
n×k) to perform these atomic operations be denoted by ∆−i,g
and ∆+

i,h respectively. ∆−i,g = −1 for (i, g), and 0 otherwise,

and ∆+
i,h = 1 for (i, h) and 0 otherwise. Note that C(t+1) =

C(t)−∆−g +∆+
h , hence we can rewrite Equation 4 (we drop

the superscript for M(t)) as D(t+1) = D(t) + PI(t)ΛT +

ΛIP(t) − ΛMΛT , where D(t) = (A − C(t)M(C(t))T), Λ =

∆−g −∆+
h , PI(t) = C(t)M and IP(t) = M(C(t))T . We can

compute D(t+1) by first assuming D(t+1) = D(t) and then:

D
(t+1)
∗,i = PI(t)∗,g −PI

(t)
∗,h (5)

D
(t+1)
i,∗ = IP(t)

g,∗ − IP
(t)
h,∗ (6)

D
(t+1)
i,i = Mg,g −Mh,g −Mg,h +Mh,h (7)

Then for vertex vi, the position that results in a minimal sum
of the D(t+1) terms in Equations 5 to 7 is its best position
assignment. Computing Equations 5 to 7 has a complex-
ity of O(k) and since we precompute D(t), PI(t) and IP(t),

the complexity of position evaluation is also O(k). PI(t+1)

and IP(t+1) can be similarly updated using rules similar to
Equations 5 and 6. We call this approach HardIncr.

5.1.2 Soft Memberships
Projected Gradient Descent: A simple approach to solve
Equation 4 is to use projected gradient descent [2]. The
idea is to compute the gradient of C and M, then use a line
search to find the appropriate step size (ψ) that results in
the minimal objective value. To ensure that both M are
C are non-negative, they are projected to the non-negative
quadrant. We call this approach SoftGrad.

Coordinate Descent: Another well known optimisation
approach is coordinate descent. We optimise C by optimis-
ing a sequence of sub-problems based on a set of conjugate
bases. It has been shown that optimising for each of the
conjugate bases sequentially will converge to a stationary
point. We follow [6][14] and use the unit bases of C, de-
noted E ∈ [0, 1]n×k, where Ei,j = 1 for (i, j), otherwise
0. Let ψ denote the step size for each conjugate basis and
C(′) = C + ψEi,j . Each sub-problem can be written as
minψ Li,j(ψ), where

Li,j(ψ) = ||(A−C(′)M(C(′))T)◦U||2F +β ·||Mideal−M(t)||2F
(8)

Following a similar approach taken by [14], we solve Equa-
tion 8 for ψ, which results in a polynomial of order 4. Since

Name Objective Pos. Method Im. Method
grad-H Euclidean HardIncr ImageGrad
coor-H Euclidean HardIncr ImageCoord
RGC-H Euclidean HardIncr Mult. [9]
reic-H Reichardt [11] SA [11] SA [11]

grad-H-Cn Con. Euc. HardIncr ImageGrad
coor-H-Cn Con. Euc. HardIncr ImageCoord
grad-H-Ad Ad. Euc. HardIncr ImageGrad
coor-H-Ad Ad. Euc. HardIncr ImageCoord

grad-H-CnAd Con. Ad. Euc. HardIncr ImageGrad
coor-H-CnAd Con. Ad. Euc. HardIncr ImageCoord

RGC-S Euclidean Mult. [9] Mult. [9]
ANMF-S Euclidean Mult. [12] Mult. [12]
BNMTF-S Euclidean Coord. D. [14] Coord. D. [14]
grad-S-Ad Ad. Euc. SoftGrad ImageGrad
coor-S-Ad Ad. Euc. SoftCoord ImageCoord

grad-S-CnAd Con. Ad. Euc. SoftGrad ImageGrad
coor-S-CnAd Con. Ad. Euc. SoftCoord ImageCoord

Table 1: Summary of the algorithms and objectives.
Names in italic represent our proposed algorithms.

Name Vert. # Edge # Pos. #
Baboon 14 23 2

Monastery 18 34 4
Karate 34 78 2

Politic Books 105 441 2
College Football 115 613 12
Politic Blogs 1490 19090 2

Table 2: Statistics of the real graphs.

we use a similar approach to finding the roots as [14], please
refer to [14] for details. We call this approach SoftCoord.

5.2 Image Matrix Optimisation
Optimising the image matrix involves optimising the sig-

moid Mideal term. There is no closed form solution to a
sigmoid function, hence we do not use the traditional mul-
tiplicative method and instead use the gradient and coor-
dinate descent approaches combined with a line search to
optimise for M.

Projected Gradient Descent: We apply the same pro-
jected gradient descent approach as for optimising C. Please
see the supplement for the gradient with respect to M. We
call this method ImageGrad.

Coordinate Descent: Similar to optimsing for C, we now
solve the following problem:

min
ψ
Li,j(ψ) = ||(A−CM′CT) ◦U||2F + β||Mideal

′ −M′||2F
(9)

where M′ = M + ψEi,j (E ∈ [0, 1]k×k) and Mideal
′ = 1 +

[γe−υ(M
′−τ)]−1. We use a line search to solve for ψ. We call

this method ImageCoord.

6. EVALUATION
In this section, we compare the accuracy and running

times of the different objectives and algorithms. We use
both real and generated datasets to evaluate our algorithms.

6.1 Datasets and Evaluation Criteria
In Section 5, we introduced a number of objectives and po-

sition and image matrix optimisation approaches. As there
are many possible combinations, we selected 12 of them
for reporting (see Table 1) and compared them against five
existing algorithms. We divided the algorithms into two

groups. The first group uses our incremental hard position
approach (hardIncr) and evaluates the Euclidean objective
and its variants. We also compare our proposed approaches
against Reichardt’s simulated annealing approach (reic-H)
and Long et al. [9] (RGC-H3) The second group are based
on soft memberships. The existing algorithms of [9], [12]
and [14] are proposed for soft membership (RGC-S, ANMF-
S and BNMTF-S, respectively).

6.1.1 Datasets
We generate our synthetic datasets with the aim of eval-

uating how sparsity and noise affect the running time and
accuracy of the different objectives and algorithms.

Our approach is the reverse of the blockmodelling prob-
lem. We first generate the memberships (C) and the im-
age matrix (M). Then we generate the graph (A) using
A = CMCT . We generate C by first generating the posi-
tion sizes from a uniform distribution (note that other dis-
tributions can be used). Then we determine the position
membership of vertices by drawing from a hyper-geometrical
distribution, where the probability of each position is its rel-
ative size. We generated M such that they replicate three
common graph structures: community, core periphery and
hierarchy. To vary the sparsity, we keep C the same, but
change the densities of the dense blocks in M. To vary the
noise, we use an approach similar to [7], which adds uni-
formally random background noise to M, with parameter λ
controlling the amount of noise.

We also evaluate the algorithms using six real networks4

that have known vertex labels. These are graphs that are
commonly used to evaluate blockmodelling algorithms. Their
statistics are displayed in Figure 2.

6.1.2 Evaluation Criteria
Normalised mutual information (NMI) has been used to

evaluate blockmodelling algorithms [9][14], hence we also use
NMI as the basis of our evaluation. We use the clock run-
ning times to evaluate the scalability of the algorithms. All
algorithms are implemented in Matlab 2012b. Experiments
were performed on an Intel Core 2 2.53GHz laptop with 4GB
of memory. For existing methods that have parameters, like
reic-H, we used the default parameter settings of the original
implementation. Due to space constraints, our evaluation of
the parmeter sensitivity of the sigmoid function and the ef-
fect of graph size are available in the supplement.

6.2 Results
In this section, we present the results of our evaluation.

For the synthetic datasets, we generated 5 graphs of 100
vertices per parameter setting, then ran each algorithm 10
times. For each run, we generated 10 random initialisations,
obtained a blockmodel from each initialisation, and choose
the blockmodel with the lowest objective value as the one to
compare against. For each algorithm, we averaged the NMI
and running times across the runs.

6.2.1 Sparsity Sensitivity

3We coupled our incremental position approach with their
image matrix update, which we found to be faster and more
accurate then their default approach.
4Available at http://www-personal.umich.edu/~mejn/
netdata/

To evaluate the effect of sparsity, we varied the density of
the dense blocks from 1.0 to 0.1. We obtained similar results
for the three graph types, hence we only report the results
for the community structure.

Figure 2 shows the results of our evaluation. Note that
each column of figures use the same legend. We divided
the evaluation into three groups. The first group, Figures
2a, 2b, 2f and 2g, compare the different objectives with our
proposed algorithms. It shows that coor-H-Ad and coor-
H-AdCn has the highest average NMI across most of the
density range. In particular, the results for algorithms that
use the adjusted Euclidean objective or variants are gener-
ally higher than those that only use the Euclidean objective
as we decrease the density of the graphs.

All the algorithms find it difficult to find the true block-
model when the density is 0.1. At that density, there are
only a few edges in each diagonal block, which makes it
almost like noise and hence difficult to optimise. The run-
ning times (Figure 2f) of the projected gradient descent al-
gorithms are generally faster than coordinate descent ones
(Figure 2g), so the results suggest to use coordinate descent
if accuracy is more important, but projected gradient de-
scent if speed is more important.

Next, we compare the two best algorithms (coor-H-Ad and
grad-H-Ad) against the existing algorithms, RGC-H [9] and
reic-H [11] for hard position blockmodelling, illustrated in
Figures 2c and 2h. The results show that our algorithms are
clearly much more accurate than the other two, and of com-
parable speed to RGC-H. Finally, we evaluate how the soft
approaches perform for these datasets. We follow [9], [12]
and [14] and use k = maxk Ci,k to determine the position of
vertex vi (k). Figures 2d and 2i show the results. As can be
seen, BNMTF-S [14] has the highest accuracy, but also the
slowest running time. In addition, all the NMI results are
clearly much lower than the results of the algorithms that
use hardIncr, suggesting that these soft position algorithms
might be inadequate for finding hard positions.

6.2.2 Noise Sensitivity
To evaluate how each of the algorithms perform as the

amount of background noise increased, we vary λ from 0 (no
noise) to 0.9 (almost uniformly random edge distribution).
We divide the analysis into three groups again, but due to
space limitations, we only report the best results for hard
positions (Figures 2e and 2j). The results for soft positions
algorithms have the same trends as the sparsity results. Of
the algorithms proposed, coor-H-Ad is the most accurate
for most of the background noise range, although coor-H-
AdCn is actually the most accurate at a noise proportion
of 0.9 (see supplement). The figures again show the two
best algorithms coor-H-Ad and grad-H-Ad are much more
accurate than the existing algorithms over a large range of
noise levels, and have comparable running times.

6.2.3 Real Datasets
Our results for the real datasets are given in Table 3. Note

that we stopped the evaluation of reic-H and BNMTF-S on
the Political blogs dataset after 72 hours, which we believe
is an unreasonable length of time to evaluate a graph with
around 1500 vertices. Apart from the Baboon dataset, the
results show that the adjusted Euclidean algorithms have
the highest NMI while having comparable running speeds to
the other hard position results. Our FactorBlock approaches

(a) Grad des alg., NMI. (b) Coor des alg., NMI. (c) Hard pos alg., NMI. (d) Soft pos alg., NMI. (e) Hard pos alg., NMI.

(f) Grad des alg., time. (g) Coor des alg., time. (h) Hard pos alg., time. (i) Soft pos alg., time. (j) Hard pos alg., time.

Figure 2: Sparsity (first 4) and noise (last column) sensitivity results. The figures in each column share the same legend.

Alg.
Data Baboon Monastery Karate Pol. Books Football Pol. Blogs

NMI Time NMI Time NMI Time NMI Time NMI Time NMI Time
RGC-H 0.5295 0.062 0.1551 0.169 0.0064 0.176 0.0131 0.540 0.2618 3.340 0.0002 922.4
Reic-H 0.0588 17.73 0.1898 49.02 0.038 34.67 0.0238 135.7 0.2352 2342.8 * *

Grad-H-Ad 0.135 0.135 0.2551 0.190 0.152 0.139 0.4451 0.483 0.5849 4.003 0.1025 480.4
Coor-H-Ad 0.3163 0.181 0.3083 0.588 0.0064 0.300 0.3049 0.817 0.5133 6.564 0.0001 609.7

Grad-H-AdCn 0.1854 0.185 0.2207 0.132 0.3592 0.140 0.1704 0.429 0.6031 2.115 0.1012 610.3
Coor-H-AdCn 0.3163 0.273 0.2478 0.319 0.0064 0.389 0.0137 0.816 0.4375 13.48 0.001 487.9

RGC-S 0.0026 0.019 0.1817 0.014 0.0023 0.023 0.0014 0.038 0.2481 0.072 0.001 3.888
ANMF-S 0.0669 0.046 0.2538 0.020 0.0123 0.02 0.0035 0.039 0.2453 0.056 0.0013 5.335
BNMTF-S 0.0175 2.700 0.2181 7.044 0.0129 6.917 0.0171 24.95 0.3141 173.9 * *

Table 3: Real dataset results (time in seconds). For each dataset, the algorithm with the best NMI is highlighted in bold.
The algorithms proposed in this paper are in italics. * indicates that the algorithm did not finish after 72 hours.

have an improvement of 21.47% (Monastery dataset) or 0.3
or higher in absolute NMI for the Karate, Political blogs,
Football and Political books datasets. In the Karate and
Football datasets, the sigmoid constraints achieved the high-
est NMI, suggesting that the constraint term makes it easier
for the algorithm to avoid sub-optimal minima. In addition,
these tests show that the soft position algorithms have diffi-
culties finding good blockmodels, and hence are a potential
area of future research.

7. CONCLUSION
In conclusion, we have described the important problem

of blockmodelling and shown why the current state of the
art factorisation methods cannot discover blockmodels accu-
rately in sparse and noisy graphs. We proposed our frame-
work FactorBlock, which enables new approaches based on
optimising a weighted and constrained objective with gra-
dient and coordinate descent methods. In our evaluation,
we showed that the weighting for sparseness and the sig-
moid constraint term enabled our approaches to have much
higher accuracy for sparse and noisy graphs, while having
comparable running time to the state of the art methods.

8. REFERENCES
[1] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg,

and Eric P. Xing. Mixed membership stochastic
blockmodels. JLMR, 9:1981–2014, 2008.

[2] M. Berry, M. Browne, A. Langville, V. Pauca, and
R. Plemmons. Algorithms and Applications for

Approximate Nonnegative Matrix Factorization. CSDA,
52(1):155–173, 2007.

[3] J. Chan, W. Liu, C. Leckie, J. Bailey, and R. Kotagiri.
SeqiBloc: Mining Multi-time Spanning Blockmodels in
Dynamic Graphs. In KDD, pages 651–659, 2012.

[4] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal
Nonnegative Matrix Tri-Factorizations for Clustering. In
KDD, pages 126–135, 2006.

[5] J. Fiala and D. Paulusma. The computational complexity
of the role assignment problem. Technical report, 2003.

[6] C. Hsieh and I. Dhillon. Fast coordinate descent methods
with variable selection for non-negative matrix
factorization. In KDD, pages 1064–1073, 2011.

[7] B. Karrer and M. Newman. Stochastic blockmodels and
community structure in networks. Phys. Rev. E,
83(016107):1–11, 2011.

[8] D. Lee and H. Seung. Algorithms for Non-negative Matrix
Factorization. In NIPS, 13:556–562, 2001.

[9] B. Long, Z. Zhang, and P. Yu. A general framework for
relation graph clustering. KAIS, 24(3):393–413, 2009.

[10] M. Newman. Modularity and community structure in
networks. PNAS, 103(23):8577–82, 2006.

[11] J. Reichardt and D. R. White. Role models for complex
networks. Eur. Phy. J B, 60(2):217–224, 2007.

[12] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding. Community
discovery using nonnegative matrix factorization. DMKD,
22(3):493–521, 2010.

[13] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambr. Univ. Press, 1994.

[14] Y. Zhang and D. Yeung. Overlapping Community
Detection via Bounded Nonnegative Matrix
Tri-Factorization. In KDD, pages 606–614, 2012.

