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ABSTRACT

Support Vector Machines (SVMs) are a leading tool in ma-
chine learning and have been used with considerable success
for the task of time series forecasting. However, a key chal-
lenge when using SVMs for time series is the question of how
to deeply integrate time elements into the learning process.
To address this challenge, we investigated the distribution
of errors in the forecasts delivered by standard SVMs. Once
we identified the samples that produced the largest errors,
we observed their correlation with distribution shifts that
occur in the time series. This motivated us to propose a
time-dependent loss function which allows the inclusion of
the information about the distribution shifts in the series
directly into the SVM learning process. We present exper-
imental results which indicate that using a time-dependent
loss function is highly promising, reducing the overall vari-
ance of the errors, as well as delivering more accurate pre-
dictions.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Application -

Data Mining

Keywords
Time Series, Support Vector Machine, Loss Function.

1. INTRODUCTION
Time series prediction is a classic machine learning task.

In our setting, a set of univariate training samples x1, . . . , xn

ordered in time are provided and the task is to learn a model
for predicting future values. We will consider a regression
setting, where all sample values are continuous. A typical
approach for learning involves using the most recent n values
of the series xn, xn−1, xn−2, . . . x1, to learn a model to fore-
cast the future t values of the series: xn+1, xn+2, . . . xn+t.
A series can range from very frequent measurements(stock
market values taken at a 5 minutes interval) to less frequent
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and may span a larger period of time(quarterly or yearly
reports).

Depending on the value of t and the nature of the time
series being learned, we can differentiate between short-term
forecasting, which concentrates on forecasting the very next
samples following in the time series when they can be con-
fidently described by only using the last samples without
any additional knowledge or external variables influence;
intermediate-term forecasting which attempts to forecast be-
yond the very next samples; and long-term forecasting, which
besides using a quantitative model requires qualitative anal-
ysis and expert opinion. In the time series investigated in
this paper, we focus on short term to intermediate-term fore-
casting.

Many machine learning models have been used for time
series prediction, such as Linear Regression, Robust Re-
gression, Gaussian Processes, Neural Networks and Markov
models. Support Vector Machines have been used with con-
siderable success for time series forecasting and are often
able to outperform other methods. However, they may still
learn sub-optimal models, in the presence of challenging as-
pects such as nonstationarity and volatility, noise, distribu-
tion changes and shifts.

Developing a clean and simple way to incorporate the time
element into the learning process for SVM regression is the
focus of our work. Our approach is based on the following key
insight: across the samples, there is a correlation between
the magnitude of the prediction error and the magnitude
of the distribution shift(Figure 1). The samples where high
prediction error occurs, tend to be samples where a large
amount of shift in the series has occurred (and vice versa).
Based on this simple observation, we propose a time sensitive
loss function that modifies the learning process to target
the samples with large distribution shift, in order to reduce
their prediction error. The resulting SVM is not only able to
produce more accurate forecasts, but also produce forecasts
which are more stable and have lower variance in error. Our
main contributions in this paper are as follows:

• We analyse the nature of predicted errors and discover
that the error often arises due to samples which are not
outliers, but which contain with important information
about the dynamics of the series.

• We show the correlation between samples with large
prediction error and samples with distribution shift,
thus identifying an opportunity for an effective method-
ology of targeting these samples.



• We introduce a time-dependent loss function that in-
corporates this distribution shift information in the
form of a time sensitive loss into the SVM regression
learning process.

2. RELATED WORK
We categorise related work into two sub-areas: methods

for time series prediction and methods for detecting change
in time series.

2.1 Machine learning methods for time series
analysis

Extensive research in the area of machine learning models
for time series analysis has been conducted in recent years
[1, 14]. Hidden Markov Models [13] and Artificial Neural
Networks [17, 11] have been adapted to use additional infor-
mation from the time series in their learning. Linear Regres-
sion, and its advanced version Robust Regression offer inter-
pretable models with satisfactory performance [19]. Cluster-
ing has proven to be very beneficial as well [9, 12]. Feature
selection process [30], Independent Component Analysis [8],
time series segmentation [28] and motif discovery [25, 20]
are other popular methods for time series analysis.

On the econometric side, models for time series analy-
sis, such as the Autoregressive Integrated Moving Average
(ARIMA) models have been proposed and balance complex-
ity with performance. A large variety of more complex ex-
tensions also exist, such as the (General) AutoRegressive
Conditional Heteroskedasticity ((G)ARCH) [2]. A possible
drawback of these approaches is that significant user insight
and domain knowledge may be required to achieve good re-
sults and their performance may not be as strong when used
‘out of the box’.

Support Vector Machines have been widely used in prac-
tice due to their generally strong performance, and much
research has been conducted to further improve them in sev-
eral directions, including time series analysis. Use of SVMs
has been investigated for non-stationary time series mod-
elling [5] and volatile series analysis [31]. A modification
of SVMs that uses dynamic parameters for the purpose of
time series datasets analysis and forecasting has also been
suggested [3].

2.2 Distribution shift and event detection
The temporal continuity of the samples in time series

datasets is an important aspect and a core analysis task
is detection of distribution changes or shifts in the series.
These changes or shifts that occur over time in the series
have been extensively researched (e.g. [22, 4, 18, 15]) in or-
der to discover the effect of all the events whose information
is concealed in the series [16], especially ones classified as
anomalies [23, 7] or noise, which can complicate the learn-
ing process.

3. TIME-DEPENDENT LOSS FUNCTION
We propose an algorithm that has two phases: (1) detec-

tion of large-error-producing samples in the series, and (2)
targeted minimization of the loss at the large-error-producing
samples by using a time-dependent loss function. We explain
each phase in turn.

3.1 Large-error-producing sample detection
It is well known that distribution change or shift within

a time series can influence and complicate the learning pro-
cess. We next make a crucial observation about distribution
shift and the forecasted error using standard SVM, which is
a core motivation in our later development.

Figure 1: Delta values (△x2
t = (xt − xt−1)

2) and
squared errors for “Boing stock market value” and
“Annual water usage in New York” time series
test samples, forecasted using standard polynomial
SVM. We can observe an almost linear correlation
between the delta values and squared errors, but
also we notice that most of the errors are clustered
around the close to zero values, and a few stand out
in error size as the delta values increase.

Consider Figure 1 . For two separate datasets an SVM
regression model has been trained and then evaluated us-
ing test data (each sample at time t is forecasted based on
the past four time series values). For each test sample, the
squared error is shown on the y axis and the x-axis shows
the amount of “shift” (△x2

t = (xt − xt−1)
2) undergone by

the sample (the difference in water usage compared to the
previous sample, or the difference in stock value compared
to the previous sample).

We observe that there is strong correlation between mag-
nitude of prediction error and magnitude of shift (Pearson
correlation coefficient: Boing stock market value series =
0.99; Annual water usage in New York series = 0.98). In
particular, the samples for which the squared prediction er-
ror is high, are samples for which high distribution shift has
occurred.

We can also observe a Pareto-like principle seems to oper-
ate for the prediction error: 80% of the error originates from
roughly 20% of the samples. This is highlighted in Figure 2,
where for each dataset the test samples are sorted according
to prediction error. The trends in Figures 1 and 2 are also
similar for samples from the training set.

This suggests the following strategy: if we additionally tar-
get the samples with high distribution shift in the learning
process, can this produce a model with overall lower predic-
tion error?

In order to attempt this, we need a formal test for whether
a sample is a “high distribution shift sample”. We choose to
do this by analysing the mean and standard deviation of the
features describing it, which correspond to the past samples
in the time series. For a given sample xt at time t and
dimensionality d(number of past values used to forecast the
sample), let md be the calculated mean of the d preceding
samples (xt−p,xt−d+1....xt−1) and let sd be the calculated
standard deviation. We define the range md ± k ∗ sd as the
range in which we expect to find the value of the sample at



Figure 2: Ordered squared values of the errors for
“Boing stock market value”and“Annual water usage
in New York” time series test sets forecasted using
standard polynomial SVM.

time t - if the sample at time t is not in this range, it can be
considered as a (high) distribution shift sample. k here is a
parameter that needs to be chosen. Formally, distribution
shift for xt is calculated as:

xt

{

xt ∈ [md − k ∗ sd,md + k ∗ sd], true

xt /∈ [md − k ∗ sd,md + k ∗ sd], false
(1)

As mentioned, by applying Equation 1 and using the intu-
ition from Figure 1, we expect the set of samples for which
the high distribution shift test is true, to substantially over-
lap with the set of samples which have high prediction error
when (standard) SVM regression is used. Of importance
here, is choice of value for the parameter k. We set d equal
to the dataset’s dimensionality. As k→∞, no samples will
be labelled as distribution shift samples. Our initial experi-
ments indicate a value of k=2 is a good default choice. We
will discuss this issue further in the experiments section.

3.2 Outliers vs distribution shift
The set of high prediction error samples might at first be

considered as a set of outliers, if we neglect the observation
that it is also a set of high distribution shift samples as well.
Outlier detection is not an unknown problem in the time
series forecasting area [24], and the same can be said for
discovering distribution changes and shifts [27, 6]. However,
understanding the nature of the large error in high predic-
tion error samples and determining the correlation with high
distribution shift samples is crucial to whether or not we
should treat these samples as outliers. Looking at the types
of outlier that these samples might be classified as, we can
comment on the difference between them:

• Additive Outliers (AO) are a type of outliers that affect
only single observation [27]. AO is an outlier in which
the observation clearly differs from the surrounding
samples. In the case of high distribution shift sam-
ples, there exists some difference in the distribution
with the preceding samples, but not with the follow-
ing samples.

• Innovation Outliers (IO) are a type of outlier that af-
fect the subsequent samples, starting from the position
where the outlier is introduced [27]. We observed the
following samples were similar to the high distribution
shift sample, and were not affected by the outlier as
they follow similar distribution and did not produce
large errors, so we cannot classify them as IO.

• Level Shift Outliers (LSO) are the type of outlier when
there is a sudden extreme change in the distribution
of the process and the change is permanent [27]. This
means that until time ts, the output is explained as yt=
wxt + b, and from that point onwards(for t ≥ ts) as
yt = wxt+b+M(t), whereM(t) is a process(stationary
or non-stationary) that caused the level shift. This
means the change in the process is significant enough
to build a separate model from that point onwards, as
these changes occur with a high intensity and less fre-
quently, unlike the distribution shift which is a more
continuous process with mild changes that do not re-
quire the need from more than one model.

One potential approach might be to remove high distribu-
tion shift samples from the time series altogether, for exam-
ple if we classify the high distribution shift samples as AO
or IO. This would not necessarily help, since it would mean
that the samples immediately following the AO/IO sample,
which have similar distribution, would then likely be labelled
as AO/IO samples as well and the problem would remain.
Also, removal might result in important information being
lost to the training process.

If we consider that case of LSO, we have several methods
of dealing with the level shift: if the number of shifts is very
small, even an ARIMA model can be adopted, if it satisfies
the accuracy criteria of the users. Another approach would
be to see if the set of samples is cohesive enough to be learned
by using one model or we should keep removing from the
samples until we have no more distribution shifts. This will
result in removing most of the samples in the series. This
conclusion is confirmed the analysis of the occurrence of the
distribution shift through the series which we conducted for
several datasets, shown in Table 1. In the analysis, each time
series dataset has been divided into quarters and the number
of distribution shift samples per quarter was counted. The
continuous occurrence of distribution shifts, which is rather
uniform, further confirms the difference with LSO.

Table 1: Placement of the distribution shift samples
detected in the training sets per quarter, in %. We
can observe that on average each quarter has around
25% of the detected distribution shift samples of the
training set.

Dataset Q1 Q2 Q3 Q4
Apple 27.4 30.2 22.6 19.8
Coke 35.9 20.3 22.4 21.4
Johnson & Johnson 36.5 21.8 18.9 22.8
Earthquakes 6.7 26.7 13.3 53.3
Employment 25.4 23.6 25.5 25.5
Average 26.4 24.5 20.5 28.6

A more analytical approach would be to model the new
process M(t) starting from ts, for example yt = wxt + b +
w1J1(t)xt, where J1(t) = 0, for t < ts, J1(t) = 1, for t ≥
ts. The starting position of the level shift at ts for J is
determined by using conditional probability of ts being a
level shift point, along with the forecasted error at time ts if
we use the all the previous samples in order to build a model.
It is apparent that in the case of j level shifts detected, the

final model has the form of yt = wxt + b +
j
∑

i=1

wiJi(t)xt,



where Ji(t) = 0, for t < ti, Ji(t) = 1, for t ≥ ti, ti being
the point in time the i-th level shift is detected. Even for
low values of j this model is likely to become complex and
difficult to interpret.

Instead, the intuition behind our approach will be to
change the loss function used in SVM regression, to place
special emphasis on distribution shift samples and their im-
mediate successors. The distribution shift is not treated as
an outlier, but instead, as useful information that we can in-
corporate into an enhanced SVM regression algorithm. De-
tails are described next.

3.3 SVM Regression time-dependent empiri-
cal loss

Let us consider the class of machine learning methods that
address the learning process as finding the minimum of the
regularized risk function. Given n training samples (xi,yi)
(i=1,..., n), xi ∈ R

d is the feature vector of the i–th training
sample, d is number of features, and yi ∈ R is the value we
are trying to predict, the regularized risk function will have
the form of:

L(w∗) = argminw φwTw+Remp(w) (2)

with w as the weight vector, φ is a positive parameter that
determines the influence of the structural error in Equation
2, and Remp(w) = 1

n

∑n

i=1
l(xi, yi,w) is the loss function

with l(xi,yi,w) as a measure of the distance between a true
label yi and the predicted label from the forecasting done
using w. The goal is now to minimize the loss function
L(w∗), and for Support Vector Regression, this has the form
of

L(w∗) =
1

2
|| w ||2 +C

n
∑

i=1

(ξ+i + ξ−i ) (3)

subject to
{

〈w, xi〉+ b+ ǫ + ξ+ ≥ yi

〈w, xi〉+ b− ǫ − ξ− ≤ yi
(4)

with b being the bias term, ξ+i and ξ−i as slack variables
to tolerate infeasible constraints in the optimization prob-
lem(for soft margin SVM), C is a constant that determines
the trade-off between the slack variable penalty and the size
of the margin, and ǫ being the tolerated level of error.

The Support Vector Regression empirical loss for a sample
xi with output yi is l1(xi,yi,w)=max(0, |wT xi–yi|–ǫ), as
shown in Table 2. Each sample contribution to the loss is
independent from the other samples contribution, and all the
samples are considered to be of same importance in terms
of information they possess.

The learning framework we aim to develop should be ca-
pable of reducing the difference in error at selected samples.
The samples we focus on are samples where a distribution
shift is detected, as these samples are expected to be large-
error-producing samples. An example is shown in Figure 3,
which displays some large spikes in prediction error (and
these coincide with high distribution shift). Instead, we
would prefer smoother variation in prediction error across
time (shown by the dotted line). Some expected benefits of
reducing (smoothing) the difference in error for successive
predictions are:

• Reduced impact of the distribution shift reflected as
a sudden increase of the error - models that produce

Figure 3: Actual price for American Express stock
market shares, with the forecasted error (from
SVM) and preferred forecasted error (what we
would prefer to achieve). The peaks in error size
occur at samples where a distribution shift can be
visually observed(samples 4-6) and these errors con-
tribute significantly more to the overall error that
the error being produced by the other samples fore-
casts.

volatile errors are not suitable in scenarios where some
form of cost might be associated with our prediction,
or the presence of an uncertain factor may undermine
the model decision.

• Reduced variance of the overall errors - Tighter confi-
dence intervals for our predictions provides more con-
fidence in the use of those predictions.

• Avoiding misclassification of samples as outliers - A
sample producing large error can be easily considered
an outlier, so in the case of a distribution shift sample,
preventing the removal of these samples ensures we
have retained useful information.

A naive strategy to achieve smoothness in prediction error
would be to create a loss function where higher penalty is
given to samples with high distribution shift. This would
be unlikely to work since a distribution shift is behaviour
that is abnormal with respect to the preceding time win-
dow. Hence the features (samples from the preceding time
window) used to describe the distribution shift sample will
likely not contain any information that could be used to
predict the distribution shift.

Instead, our strategy is to create a loss function which
minimises the difference in prediction error for each distri-
bution shift sample and its immediately following sample.
We know from the preceding discussion, that for standard
SVM regression the prediction error for a distribution shift
sample is likely to be high and the prediction error for its
immediately following sample is likely be low (since this fol-
lowing sample is not a distribution shift sample). By reduc-
ing the variation in prediction error between these successive
samples, we expect a smoother variation in prediction error
as time increases. We call this type of loss time-dependent
empirical loss.

More formally, for a given sample xi and the previous
sample xi−1, the time-dependent loss function



Table 2: Support Vector Regression and Time-Dependent Support Vector Regression empirical loss and its
derivative

Support Vector Regression Time-Dependent Support Vector Regression
Empirical loss l1(xi,yi,w) max(0, |wT xi – yi| – ǫ) max(0, |wT xi – yi| – ǫ)
Derivative l′1(xi,yi,w) sign(wT xi–yi) if |w

T xi–yi| > ǫ; sign(wT xi – yi) if |w
T xi – yi| > ǫ;

otherwise 0 otherwise 0
Time-Dependent loss 0 for all samples max (0, |(wT xi – yi) – (wTxi−1 – yi−1)| - ǫt )
l2(xi,yi,w,xi−1,yi−1) for distribution shift samples; otherwise 0
Derivative 0 for all samples sign((wT xi–yi)–(w

Txi−1–yi−1))
l′2(xi,yi,w,xi−1,yi−1) if |(wT xi–yi)–(w

T xi−1 – yi−1)| > ǫt
for distribution shift samples, otherwise 0

l2(xi, yi,w, xi−1, yi−1) is

{

| (wT xi − yi)− (wT xi−1 − yi−1) | xi−1is dist. shift

0 otherwise

(5)

where it can be seen that if xi−1 is not a distribution shift
sample, then no loss is incurred. Otherwise, the loss is equal
to the amount of difference between the prediction error for
xi and the prediction error for xi−1. We can further incorpo-
rate a tolerable error term ǫt to yield a soft time-dependent
loss. This is shown in Table 2. By linearly combining our
time-dependent loss function with the standard loss function
for SVM regression, we formulate a new type of SVM, which
we henceforth refer to as TiSe SVM (time sensitive SVM).
Observe that if no samples are classified as distribution shift
samples, then a TiSE SVM is exactly the same as SVM. Us-
ing the definitions from Table 2, the modified empirical loss
and regularized risk function for TiSE SVM have the form

RTiSe
emp (w) =

1

n

n
∑

i=1

(l1(xi, yi,w) + λ ∗ l2(xi, yi,w,xi−1, yi−1))

(6)

L(w∗) = argminw φwTw+RTiSe
emp (w) (7)

The λ parameter is a regularization parameter that deter-
mines the extent to which we want to minimize the time-
dependent loss function. Larger values of λ will result in the
time-dependent loss function having more influence in the
overall error. We investigate the effect of this parameter in
the experimental section, in order to determine values suit-
able for our experimental work.

3.4 SVM Regression time-dependent loss op-
timization

The new SVM regression which incorporates the time-
dependent loss will now have the following form:

LTiSe(w∗) =
1

2
||w||2 +C1

n
∑

i=1

(ξ+i + ξ−i ) + C2

n
∑

i=2

(ζ+i + ζ−i )

(8)
subject to































〈w, xi〉+ b+ ǫ + ξ+i ≥ yi

〈w, xi〉+ b− ǫ − ξ−i ≤ yi

(〈w, xi〉 − yi)− (〈w, xi−1〉 − yi−1) + ǫt + ζ+i ≥ 0

(〈w, xi〉 − yi)− (〈w, xi−1〉 − yi−1)− ǫt − ζ−i ≤ 0

ξ+i , ξ
−

i , ζ
+

i , ζ
−

i ≥ 0

(9)

where ǫt is the allowed value of the differences in the time
sensitive error, and ζ+ and ζ− are slack variables for the time
sensitive loss. In order to solve this, we introduce Lagrange
multipliers α+

i ≥ 0, α−

i ≥ 0, µ+

i ≥ 0 and µ−

i ≥ 0 for all i,
β+

i , β−

i , η+i and η−i for i = 2 . . . n:

LP =C1

n
∑

i=1

(ξ+i + ξ−i ) + C2

n
∑

i=2

(ζ+i + ζ−i ) +
1

2
||w||2

−
n
∑

i=1

(µ+

i ξ+i + µ−

i ξ−i ) −
n
∑

i=1

α+

i (ǫ+ ξ+i − yi + 〈w, xi〉 + b)

−
n
∑

i=1

α−

i (ǫ + ξ−i + yi − 〈w, xi〉 − b)

− λ

n
∑

i=2

(η+i ζ+i + η−i ζ−i )

− λ

n
∑

i=2

β+

i ((〈w, xi〉 − yi) − (〈w, xi−1〉 − yi−1) + ǫt + ζ+)

− λ

n
∑

i=2

β−

i (−(〈w, xi〉 − yi) + (〈w, xi−1〉 − yi−1) + ǫt + ζ−)

(10)

Differentiating with respect to w, b, ξ+i , ξ−i , ζ+i and ζ−i and
setting the derivatives to 0, we will get the dual form:

LD =
n
∑

i=1

(α+

i − α−

i )yi + λ

n
∑

i=2

(β+

i − β−

i )yi

− λ

n
∑

i=2

(β+

i − β−

i )yi−1 − ǫ

n
∑

i=1

(α+

i + α−

i )− λǫt

n
∑

i=2

(β+

i + β−

i )

−
1

2

n
∑

i,j=1

(α+

i − α−

i )(α+

j − α−

j )xixj

−
1

2
λ2

n
∑

i,j=2

(β+

i
− β−

i
)(β+

j
− β−

j
)(xixj − 2xixj−1 + xi−1xj−1)

− λ

n
∑

i=1,j=2

(α+

i − α−

i )(β+

j − β−

j )(xixj − xixj−1)

(11)

This form allows for a Quadratic Programming to be ap-
plied in order to find w and b. Also, it can be noticed that if
we need to move to a higher dimensionality space x → ψ(x),
such that a kernel function exists k(xixj) = ψ(xi)ψ(xj), we
can do so as LD can be kernelized.



3.5 Quadratic mean for simultaneous loss op-
timisation

We are proposing simultaneous minimization of the errors
for all samples (loss function l1) and differences of errors
for selected samples (loss function l2). It is because of this
reason that we are expecting the trade-off between these two
losses to produce a model with smaller variance in the error,
but which might incur an increase in the overall error. For
this reason we investigate an alternative method using the
quadratic mean, for adding our time-dependent loss, aiming
to reduce any impact on the overall error.

The quadratic mean has been successfully applied in the
case of imbalanced data to simultaneously optimize the loss
of two non-overlapping groups of samples [21]. The quadratic
mean is a lower bound for the arithmetic mean, and the
quadratic mean of two quantities implicitly considers the
difference (variance) between their values, as well as their
sum. Here we use it to combine two different loss func-
tions calculated over all the samples, with the objective of
ensuring that both loss functions are minimized while still
minimizing the overall loss as well. The final quadratic em-
pirical loss RTiSe−Q

emp (w) and regularized risk function will
have the form of

RTiSe−Q
emp (w) =

√

(
∑n

i=1
l1(i))2 + λ(

∑n

i=2
l2(i))2

1 + λ
(12)

L(w∗) = argminw φwTw+RTiSe−Q
emp (w) (13)

with l1(i)=l1(xi,yi,w), l2(i)=l2(xi,yi,w,xi−1,yi−1) as shown
in Table 2. This new time-dependent loss for SVM is a
quadratic mean version of our time series SVM, named TiSe-
Q SVM. Both l1 and l2 are convex functions, and quadratic
mean has the feature of producing the resulting function as
a convex function.

The quadratic mean time-dependent loss function has been
derived in Primal form, so for both linear and quadratic
mean time-dependent loss function versions, a linear op-
timization method, such as the bundle method [26], is an
effective way to optimize our new time-dependent loss func-
tion: by calculating the subgradients of the empirical loss
and time-dependent loss, we can iteratively update w in a
direction that minimizes the quadratic mean loss presented
at Equation 12.

4. EXPERIMENTS AND RESULTS
Evaluation of the performance in terms of error reduc-

tion and error variance reduction of TiSe SVM and TiSe-Q
SVM was the main target of the experimental work we con-
ducted. To achieve this goal in the experiments both real
datasets and synthetic datasets were used. We tested 35
time series datasets obtained from [29] and [10], consisting
of stock market values, chemical and physics phenomenon
measurements.

We also created a set of 5 different versions of a synthetic
dataset with different levels of added distribution shift: 1
distribution shift free dataset, 2 datasets with distribution
shift added to random 10% of all the samples, and 2 more
with distribution shift added to 25% of the samples. The
sizes of all the datasets are between 100 and 600 samples,
divided on training set and test set of around 10-15%, re-
sulting in our forecasting task being classified as short to
intermediate-term forecasting.

The effect of the regularization parameters φ and λ was
investigated by dividing the training set of several datasets
into initial training and validation sets. We tested with val-
ues of λ in the in the range of 0.001 to 0.01 for TiSe SVM and
0.01 rising to 0.2 for TiSe-Q (Figure 4), and with φ in the
range of 1E-6 to 1E-3(increasing the range was terminated
when no continuous improvements in results were made). A
greater range of values for λ was chosen for TiSe-Q as we
wished to investigate the effect of the quadratic mean and
the limit to which we can minimize the time-dependent loss
without affecting the minimization of the empirical loss in a
negative way.

Our initial investigation was conducted on several datasets
by splitting the training set into initial training set (the first
95% of the samples) and validation set(last 5% of the sam-
ples). The results of the ranges of values for φ and λ in-
dicated that values of φ=5E-6, λ = 0.005 for TiSe SVM
and λ = 0.05 for TiSe-Q SVM were good defaults for all
of the files, and these values were used in all of the experi-
ments. Using different values for each dataset testing would
be a better approach when conducting work on individual
datasets, but as with any new method, some form of good
default values of the parameters, if such exist, needed to be
determined.

We adopted the same approach with initial training and
validation set and testing over a range of values for deter-
mining the best parameters for the baseline methods as well.
The final values which produced best performance on the
validation sets are presented later in the description of each
method accordingly.

Figure 4: Standard deviation of the forecasted error
for different choices of lambda for TiSe and TiSe-Q
for validation sets of several datasets. Starting with
λ=0, adding the time-dependent loss in the mini-
mization process leads to lower standard deviation,
but as λ increases, the minimization of the empiri-
cal loss is reduced to the extent that the forecasted
errors are becoming large and volatile again.

With regard to the value for the parameter k (which is
used to classify whether a sample has undergone distribution
shift), we use a value of 2 in all our experiments, testing for
high distribution shift in the range of md±2∗sd. A specific
example of varying k is shown in Figure 5 for the “Walt
Disney market values” dataset.

4.1 Testing and results
Comparison of TiSe SVM(φ = 1, ǫ=0.001, k=2, λ=0.005,

ǫt=1E-8) and TiSe-Q SVM(φ = 1, ǫ=0.001, k=2, λ=0.05,
ǫt=1E-8) with 6 methods was conducted in order to evaluate
the effect of the TiSe SVM and TiSe-Q SVM methodology:
ARIMA(3,0,1), Neural Network (NN, learning rate=0.3,



Table 3: Root Mean Square Error (RMSE), Error Reduction (ER, in %) and Error Standard Deviation
Reduction(SDR, in %) of TiSe and TiSe-Q compared to SVM. Both TiSe and TiSe-Q achieved significant
SDR reduction, though RMSE increased in several cases for TiSe. In bold is the method with the lowest
RMSE.

RMSE ER(in %) SDR(in %)
Dataset ARIMA NN KNN SVM RBF RR TiSe TiSe-Q TiSe TiSe-Q TiSe TiSe-Q
Imports 24E3 14E4 16E3 130E3 129E3 132E3 133E3 130E3 -2.39 -0.18 16.45 13.7
Starbucks 1.627 1.029 1.43 0.705 0.855 0.705 0.738 0.698 -4.68 0.99 1.51 34.55
Amazon.com 1.853 1.641 2.66 0.623 0.863 0.625 0.631 0.614 -1.28 1.44 2.67 34.67
British Airways 0.11 0.129 0.139 0.126 0.12 0.129 0.132 0.124 -4.76 1.59 5.26 5.26
Apple 12.25 6.1 16.98 2.169 4.558 2.302 2.105 2.133 2.95 1.66 4.95 26.43
Fedex 1.276 1.183 1.745 0.725 0.89 0.73 0.731 0.711 -0.83 1.93 12.69 15.38
Johnson & Johnson 0.556 0.369 0.361 0.357 0.404 0.352 0.341 0.346 4.48 3.08 11.51 25.03
Chocolate 1986 1842 1852 1701 1880 1697 1544 1646 9.24 3.25 35.56 22.69
Ford 0.858 0.324 0.391 0.251 0.27 0.255 0.261 0.242 -3.98 3.59 5.19 29.2
IBM 19.25 6.68 9.97 7.425 11.66 7.577 7.294 7.145 1.76 3.77 6.52 14.77
Boeing 7.205 3.934 7.14 1.235 2.39 1.274 1.285 1.185 -4.05 4.05 18.18 20.59
Auto registrations 106.9 106.4 104.6 104.2 109.2 100.9 102.2 99.99 1.91 4.07 6.42 17.96
Earth’s rotations 98 16.22 51.31 15.39 46.28 14.74 14.49 14.74 5.85 4.22 4.98 13.4
Radioactivity 10.79 12.17 11.5 11.499 10.96 12.015 11.698 10.912 -1.73 5.10 13.22 23.92
Simulated sample 5 7.659 8.235 8.21 6.309 7.17 6.449 6.153 5.978 2.47 5.25 7.93 15.74
Island Pacific 1.283 1.1 1.39 0.967 1.48 0.997 0.932 0.916 3.62 5.27 21.13 17.31
McDonalds 1.854 1.045 3.08 0.662 0.84 0.668 0.649 0.627 1.96 5.29 6.73 28.66
Simulated sample 4 13.051 2.549 6.68 1.973 4.1 2.162 1.962 1.862 0.56 5.63 14.36 7.87
Water usage 79.55 47.72 39.52 18.6 44.26 19.66 18.28 17.55 1.72 5.65 6.92 29.58
American Express 2.253 0.65 0.849 0.709 0.956 0.679 0.697 0.668 1.69 5.78 52.2 57.44
Microsoft 0.932 0.828 0.859 0.252 0.375 0.243 0.245 0.237 2.78 5.95 9.76 15.4
Walt Disney 3.199 1.161 3.35 0.552 0.87 0.542 0.518 0.518 6.16 6.16 15.36 35.51
AUD/USD exch. 0.0684 0.018 0.033 0.0175 0.029 0.0167 0.0165 0.0164 5.71 6.29 13.71 33.7
Hewlett-Packard 1.865 0.724 0.9 0.664 0.94 0.64 0.619 0.619 6.78 6.78 5.88 14.02
Colgate Plamolive 1.745 0.569 0.635 0.519 0.696 0.504 0.605 0.483 -16.5 6.94 21.23 28.87
Earthquakes 8.8 8.02 8 6.176 7.29 5.976 5.85 5.738 5.28 7.09 13.28 14.79
Tree 0.242 0.215 0.203 0.183 0.182 0.187 0.176 0.17 3.83 7.10 17.46 34.92
Intel 2.67 0.885 1.35 0.932 1.06 0.912 0.906 0.856 2.79 8.15 6.64 25.17
Coke 0.995 0.335 0.529 0.302 0.388 0.295 0.281 0.277 6.95 8.28 45.45 42.86
Temp. anomalies 19.628 15.27 18.35 14.834 13.98 14.996 13.952 13.596 5.95 8.35 36.08 18.88
Siemens 3.039 2.846 7.04 1.861 2.53 1.831 1.768 1.704 5.00 8.44 16.75 38.27
Ebay 1.7 0.583 0.945 0.443 0.516 0.446 0.44 0.404 0.68 8.80 7.14 15.04
Employment 3.29 2.29 4.28 0.54 1.56 0.53 0.53 0.49 1.85 9.26 43.14 45.71
Rhine 239 194 187 179 192 179 191 161 -6.70 10.06 14.84 45.9
Chemical process 0.364 0.234 0.295 0.221 0.28 0.231 0.203 0.197 8.14 10.86 10.14 10.64
Robberies 95.17 84.45 91.86 70.92 87 70.06 61.97 62.42 12.62 11.99 22.65 45.17
Simulated sample 2 12.2 1.61 6.43 1.866 3.74 1.807 1.638 1.631 12.22 12.59 18.03 31.87
Airline passengers 120 64.6 98.99 58.196 105.4 49.529 49.384 48.081 15.14 17.38 34.76 40.33
Simulated sample 3 12.008 2.564 4.78 2.054 4.5 1.965 1.581 1.554 23.03 24.34 39.05 38.92
Simulated sample 1 11.98 1.607 6.46 1.972 3.9 1.769 1.528 1.446 22.52 26.67 43.28 42.21
Wilcoxon matched 9.9E-8 1E-6 5.2E-7 0.003 3.4E-6 0.006 base 0.0002 Average(in %) Average(in %)
p.s.ranked p-value 5.4E-8 2E-7 3.7E-8 6.8E-7 7.3E-7 5.5E-8 0.0002 base 3.47 7.07 17.23 26.81

momentum=0.2), K-Nearest Neighbour(KNN, k=4), Poly-
nomial Support Vector Machines (SVM, φ = 1, C=1, ǫ=0.001,
ξ= ξ∗=0.001), RBF Support Vector Machines(RBF, γ =
0.01) and Robust (HuberM -estimator) Regression(RR). We
choose the Root Mean Square Error(RMSE) as a perfor-
mance metric to give us an evaluation on how the new time-
dependent loss function affected the overall error, and we
also calculated the percentage Error Reduction (ER) and Er-
ror Standard Deviation Reduction(SDR) achieved by TiSe
SVM and TiSe-Q SVM when compared to the Polynomial
SVM:

ER = (1−
RMSE of TiSe/TiSe-Q SVM

RMSE of Polynomial SVM
) ∗ 100.

SDR = (1−
Standard Dev. of TiSe/TiSe-Q SVM

Standard Dev. of Polynomial SVM
) ∗ 100.

4.2 Prediction loss reduction
Presented in Table 3 are the Root Mean Squared Values

for all methods, the Error Reduction(ER) and Error Stan-
dard Deviation Reduction(SDR), in percentage, of the TiSe
SVM and TiSe-Q SVM models compared to SVM. The re-
sults are ordered by the Error Reduction of TiSe-Q SVM.
As the datasets used were from different scientific areas and
with values of different magnitude, we used the Wilcoxon
Matched-Pairs Signed-Ranks test, a non-parametric test to
determine whether the differences between the methods were
statistically significant. We can observe that the TiSe SVM
method performed significantly better than the ARIMA,
Neural Network and K-Nearest Neighbour models, and still
produced statistically significant better performance than
Robust Regression and both SVMRegression models, though
in few cases a small increase of the RMSE was registered.
However, the results show even better performance for the
TiSe-Q SVM version of our time-dependent SVM, with only



Figure 5: The error achieved for different values of k,
“Walt Disney stock market series”. For k=0, all the
samples are considered as distribution shift samples,
we minimize differences of errors already very small,
yielding no improvement. As k increases, the mini-
mization of differences in errors at selected samples
is visible, and for large enough values of k, no sam-
ples are included in the time-dependent loss, equat-
ing to standard SVM.

one sample showing an increase in the RMSE value, indi-
cating the quadratic mean was an appropriate choice in the
attempt to minimize additional errors without trading of the
overall error.

As the purpose of our time-dependent loss function is to
additionally minimize the large errors at distribution shift
samples, an overview of the errors, particularly the variance
or standard deviation, can indicate which model produces a
better quality error, with more stability and less volatility.
We looked into standard deviations of the errors for SVM,
TiSe SVM and TiSe-Q SVM. We found that the desired goal
of producing substantially lower variance error was accom-
plished to a satisfactory level: on average 17.23% reduction
in the error standard deviation(Table 3) for TiSe SVM, and
TiSe-Q SVM delivered even better performance - 26.81%
reduction in the error standard deviation.

Figure 6: The forecast errors for a) Tree dataset
and b) Ebay stock market values dataset. We can
observe that both TiSe SVM and TiSe-Q SVM re-
duced the peaks in the error, with TiSe-Q SVM pro-
ducing the most significant reduction.

Not only did our models result in keeping the overall er-
ror low, but they also successfully targeted the distribution
shift sample errors, causing the peaks in forecast errors to
reduce significantly, leading to a decrease in the variance

of the error. As can be seen from Figure 6, presenting the
forecasts for the Tree dataset and Ebay stock market val-
ues dataset, the peak regions have been targeted and ad-
ditional minimization of the error was achieved. Though
TiSe managed to achieve sufficient minimization of the tar-
geted errors, TiSe-Q performed better, leading to the con-
clusion that the quadratic mean was a suitable choice for
simultaneous optimization of both overall error and error
variance/standard deviation.

5. CONCLUSION AND FUTURE WORK
Time series forecasting is a challenging prediction prob-

lem, and SVM regression is a very popular and widely used
method. However, it can be susceptible to large prediction
errors in time series when distribution shifts occur frequently
during the series.

In this paper, we have proposed a novel time-dependent
loss function to enhance SVM regression, by minimizing the
difference in errors for selected successive pairs of samples,
based on consideration of distribution shift characteristics.
We combined our time-dependent loss function with the loss
function for standard SVM regression, and optimized the
two objectives simultaneously. Not only we were able to
achieve large reductions in the variance of prediction error,
but our method also achieved substantial reductions in root
mean squared error as well.

Interesting future work could include extending the time-
dependent loss function to consider the difference in error
across sequences of three or more samples (rather than only
two), as well as deriving the primal form of the quadratic
mean, so that Quadratic Programming can be applied, and
possibly allow for Kernel functions to be used for the quadratic
mean as well.
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