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Abstract.
Graphs provide powerful abstractions of relational data, and are widely used in

fields such as network management, web page analysis and sociology. While many graph
representations of data describe dynamic and time evolving relationships, most graph
mining work treats graphs as static entities. Our focus in this paper is to discover regions
of a graph that are evolving in a similar manner. To discover regions of correlated
spatio-temporal change in graphs, we propose an algorithm called cSTAG. Whereas
most clustering techniques are designed to find clusters that optimise a single distance
measure, cSTAG addresses the problem of finding clusters that optimise both temporal
and spatial distance measures simultaneously. We show the effectiveness of cSTAG using
a quantitative analysis of accuracy on synthetic data sets, as well as demonstrating its
utility on two large, real-life data sets, where one is the routing topology of the Internet,
and the other is the dynamic graph of files accessed together on the 1998 World Cup
official website.

Keywords: Data mining, evolving graphs, dynamic graph analysis, spatio-temporal
analysis, correlated spatio-temporal changes, clustering, event discovery.

1. Introduction

Graphs are powerful abstractions of relational data, hence their popularity in
many fields, including network management, sociology (Chen 2005), webpage
linkage analysis (Kleinberg, Kumar, Raghavan, Rajagopalan & Tomkins 1999)
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and bioinformatics (Kawaji, Yamaguchi, Matsuda & Hashimoto 2001). Previ-
ous work has concentrated on discovering patterns within and among a set
of static graphs - graphs that are not considered to change with time. Exam-
ples include finding frequent subgraphs among a set of static graphs (Cook &
Holder 1994)(Washio & Motoda 2003), discovering communities in social and in-
formation networks (Girvan & Newman 2002)(Kleinberg 1998), and using degree
distributions, diameter and connectivity measures to characterise a computer sci-
ence literature citation graph (An, Janssen & Milios 2004).

In contrast to the focus of this prior work, many of the relationships mod-
elled by graphs evolve with time. The additional temporal dimension introduced
by these evolving, dynamic graphs permits many new types of analyses. These
include analysing how global properties of graphs, like their diameter, change
with time (Leskovec, Kleinberg & Faloutsos 2005), mining dynamic frequent
subgraphs (Borgwardt, Kriegel & Wackersreuther 2006), dynamically analysing
links using a form of incremental pagerank algorithm (Desikan, Pathak, Srivas-
tava & Kumar 2005), and detecting anomalous changes in an evolving graph
(Shoubridge, Kraetzl, Wallis & Bunke 2002).

A novel but unconsidered problem in this context is how to group changes
in a dynamic graph that are topologically and temporally related. In particular,
how to group similar sequences of changes that occur over the same period of
time (temporally correlated), as well as the same region of the graph (spatially
correlated). We refer to subgraphs that are temporally and spatially correlated
over a period of time as regions of correlated spatio-temporal change.

Changes to graphs can be structural, e.g., the appearance or disappearance
of an edge between two snapshots of an evolving graph, changes to the weights
of edges and vertices, or even changes to designated subgraphs. Although we
focus on structural changes in this paper, the techniques we present to find these
spatially and temporally correlated subgraphs are general, and can easily be
adapted to analyse changes in other graph properties.

The problem of finding regions of correlated spatio-temporal change arises in
a variety of contexts, such as:

– Fault diagnosis - When a fault occurs in a communications network, it can in-
duce changes in the structure of the routing topology of the network (Steinder
& Sethi 2004)(Lee & Poole 2006). For example, consider a packet-switched
network such as the Internet, where IP routers maintain routes between end
points in the network. If a fault occurs in an IP router, all routes that traverse
that router will be affected. Similar problems can occur in optical networks
(Kandula, Katabi & Vasseur 2005), where lightpaths traverse optical switches.
The problem of fault diagnosis in these contexts is to find the root cause(s) in
the lower level or underlying layers of the network that explains the observed
changes in the higher lever layers. In cases such as optical networks and large
networks like the Internet routing network, active probing (e.g., pinging) and
Bayesian fault diagnosis approaches are either unavailable or very expensive
for finding the root causes of faults (Steinder & Sethi 2001)(Tang, Al-Shaer &
Boutaba 2005). In these cases, changes in the end-to-end routes or lightpaths
can be used to infer faults in their underlying routers or switches (Kandula
et al. 2005). By partitioning the set of changes into spatially and temporally
correlated groups, each group is likely to be caused by a common underly-
ing fault. Hence, finding regions of correlated spatio-temporal change plays an
important role in identifying the scope of a problem and its root cause.
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Region Subgraph Edge Set Lifetime Change Waveform

1 A {1-6, 1-7} 1 – 5

2 B {1-2, 1-3} 1 – 5

3 C {2-4} 1 – 5

4 D {3-5} 1 – 5

5 E {12-13, 13-14, 1 –4

15-16}

5a E1 {12-13, 13-14} 1 – 5

5b E2 {15-16} 1 – 5

6 F {8-9, 9-10, 9-11} 1 – 5

Table 1. Regions of correlated spatio-temporal change, their subgraph, lifetime, and associated
change waveforms from Figure 1.

– Mining of spatio-temporal co-occurring items - In this context (Celik, Shekhar,
Rogers, Shine & Yoo 2006), the aim is to find items that are near each other,
or co-located, for a significant amount of time. Typically, spatial proximity
is geographically based, and a distance metric can easily be defined. If the
spatial distances are represented as edge weights, and the items as vertices,
we can map the problem of mining of spatio-temporal co-occurrence to one of
seeking subgraphs where all the vertices are topologically close (spatially cor-
related), and where the edge weights change in a similar manner (temporally
correlated).

– Event detection - For example, discovering external events based on an analysis
of the frequency of (query, page click) pairs in search engine logs (Zhao, Liu,
Bhowmick & ng Ma 2006). Query-page pairs that are frequent and rare at
similar times (temporally correlated), and semantically related in terms of
sharing either a query or a page (spatially correlated) have been found to
correspond to real events with reasonable accuracy. For example, over the
period of the 2005 US Independence Day (June 21 - 27, 2005) there were
correlated surges in firework related queries and clicked page pairs, which
were most likely due to the Independence Day firework shows.

In this paper, we focus on the applications of fault diagnosis and event discov-
ery in multi-layered computer networks. However, we stress that any application
with data that has some relation defined over a set of entities, and exhibits cor-
related change behaviour, can make use of regions of correlated spatio-temporal
change.

To illustrate what is a region of correlated spatio-temporal change, consider
an example of five sequential snapshots of an evolving graph, shown in Figure 1.
For example, this evolving graph could represent the routing topology of an IP
network. Consider the set of edges in region A. Notice that for each of the five
snapshots, the edges are either all present, or all absent. This is an example of
correlated temporal behaviour. In addition, consider the shortest path distance
between the edge pairs in region A - all the distances are very small. This is



4 J. Chan et al

(a) Snapshot 1, G1. (b) Snapshot 2, G2.

(c) Snapshot 3, G3. (d) Snapshot 4, G4.

(e) Snapshot 5, G5. (f) The union graph of the 5 snapshots.

Fig. 1. An example of a dynamic graph with five snapshots. Bold edges highlight edges that
have experienced change in the five snapshots. The changed edges belonging to each region are
circled in Figure 1(f).
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an example of spatial correlation. Hence, the edges in region A form a region of
correlated spatio-temporal change. The same type of analysis can be performed
for the other regions. Note that computing the shortest path distance and re-
quiring all edges in a region to have small temporal and spatial distances is only
one method to group the changes to edges. In Section 3, we shall highlight sev-
eral other techniques. We use this example throughout the rest of the paper to
illustrate our approach.

To discover the regions of correlated spatio-temporal change from evolving
graphs, we have developed a framework named cSTAG (C lustering for Spatio-
Temporal Analysis of Graphs). The framework takes as input a sequence of
snapshots of a dynamic graph, and outputs the discovered regions of correlated
spatio-temporal change. It represents (structural) changes to the graph as bi-
nary waveforms. Temporal correlation can then be measured using the distance
between the associated binary waveforms. Similarly, topological distance mea-
sures are used to compute the spatial correlation, e.g., shortest path distance
(Newman 2003). In addition, we introduce various clustering solutions that si-
multaneously incorporate temporal and spatial distance information to find re-
gions of correlated spatio-temporal change. Finally, a region association method
is presented to find regions with long term correlation.

To demonstate the utility of spatio-temporal correlation analysis on evolving
graphs, we applied cSTAG to the discovery of events in two applications. One of
these applications was the discovery of the root causes of routing changes in the
Border Gateway Protocol (BGP) (Halabi & McPherson 2001) connectivity graph
of the Internet during a known external event - the landfall of Hurricane Katrina
(Cowie, Popescu & Underwood 2005). The BGP connectivity graph models the
top-level routing topology of the Internet. In this application, cSTAG was able
to discriminate regions that were spatially or temporally close, but corresponded
to different events. The other application was detecting flash crowd events at
the official 1998 World Cup website. Each flash crowd event corresponded to a
particular match being played.

In addition, we have evaluated cSTAG on a number of synthetic datasets, in
order to quantify the effectiveness of different clustering methods in our frame-
work and the effect of the parameter settings on the accuracy and timing.

In summary, the main contributions of this work are as follows:

1. We propose a new pattern to mine from evolving graphs, namely regions of
correlated spatio-temporal change, which groups changes based on their spatio-
temporal correlation;

2. We provide a comprehensive evaluation of the accuracy and efficiency of cSTAG us-
ing a synthetic dataset, as well as demonstrating the utility of discovering re-
gions of correlated spatio-temporal change by discovering reported events on
the Internet routing topology during the 2005 Hurricane Katrina disaster, and
identifying flash crowd events at the 1998 World Cup website during matches.
The real dataset analyses demonstrate that cSTAG is able to accurately iden-
tify multiple simultaneous events occurring on a dynamic network.

The rest of the paper is organised as follows. In Section 2, the problem of
discovering regions of correlated spatio-temporal change is formally presented.
Section 3 describes the cSTAG algorithm in more detail. Accuracy and timing
evaluation using synthetic datasets, and an analysis of the patterns mined from
two real application domains, are presented in Section 4. In Section 5, related
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Symbol Description
G(VG, EG) A graph, with vertex and edge set VG and EG.
< G1, G2, . . . , GS > A sequence of S snapshots of a dynamic graph G.
W ts,te A subsequence of snapshots < Gts, Gts+1, . . . , Gte >.

Ets,te
union Union of edge sets of snapshots in subsequence W ts,te.

Ets,te
C Set of edges in Ets,te

union that have experienced at least one change.
qts,te(ei) The change waveform of edge ei of subsequence W ts,te.

dts,te
tem (ei, ej) Temporal distance measure between edge ei and ej , over subse-

quence W ts,te.

dts,te
spa (ei, ej) Spatial distance measure between edge ei and ej , over subsequence

W ts,te.

Rts,te
r rth region of correlated spatio-temporal change, defined over sub-

sequence W ts,te.

Rts,te
r .Q The set of (change waveform, frequency) pairs of region Rts,te

r .
R Set of regions of correlated spatio-temporal change, of varying sub-

sequences.
ω Length of the sliding window used.
inc Number of snapshots to slide for each iteration of the sliding window

process.
ωspd Length of the union window used for computing shortest path dis-

tances.
dlimit Maximum number of hops that a shortest path search can explore.

Table 2. Description of symbols used.

work is surveyed. Finally, Section 6 presents future work and concludes the pa-
per.

2. Problem Statement

In this section, we formally define the problem of discovering regions of correlated
spatio-temporal change. First, we introduce the notation we use. For ease of
reference, Table 2 provides a description of the main symbols used in the paper.

A graph G(VG, EG) consists of a set of vertices VG, and a set of (unweighted)
edges EG, EG : VG×VG, representing the pairwise relationships over VG. Where
there is no ambiguity, we shall use G to denote G(VG, EG). A dynamic graph
is represented as a sequence of consecutive snapshots < G1, G2, . . . , GS > of
the graph, 1 ≤ t ≤ S. We denote the subsequence of snapshots (or window) <

Gts, . . . , Gte > by W ts,te, 1 ≤ ts ≤ te ≤ S. The union of the edge sets, Ets,te
union,

of the subsequence W ts,te, 1 ≤ ts ≤ te ≤ S, is defined as Ets,te
union =

⋃te
t=ts EGt .

For example, Figure 1(f) represents the union graph of the subsequence W 1,5

from Figure 1.
A structural change of an edge e, e ∈ E1,S

union, is defined as the appearance
(e /∈ EGt , e ∈ EGt+1) or disappearance (e ∈ EGt , e /∈ EGt+1) of e between any
two consecutive snapshots Gt, Gt+1, 1 ≤ t ≤ S − 1. Then the set of all edges
that have experienced at least one structural change over the S time intervals,
or the set of changed edges E1,S

C ⊆ E1,S
union, can be defined as E1,S

C = {e|e /∈
EGt , e ∈ EGt+1} ∪ {e|e ∈ EGt , e /∈ EGt+1}, 1 ≤ t ≤ S − 1.

Next, we define our notation for the change waveforms, which represent the
temporal change behaviour of edges over a particular subsequence of snapshots.

Definition 1. For structural changes to edge ei, over the subsequence W ts,te, we
can represent these changes by a binary valued change waveform qts,te(ei) =
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q(ei)[1]q(ei)[2] . . . q(ei)[te− ts + 1], where

qts,te(ei)[k] =
{

0 ei /∈ Gts+k−1

1 ei ∈ Gts+k−1
, 1 ≤ k ≤ te− ts + 1

As an example, the change waveforms for each changed edge in Figure 1 are
shown in Table 1. This representation of temporal behaviour can easily be ex-
tended to continuous entities, like real-valued edge weights. Where there is no
ambiguity, we will use the notion q(ei) for qts,te(ei).

Finally, we present the notation used to describe the temporal and spatial
distance measures between changed edges. We then give the formal definition
of a region of correlated spatio-temporal change, and summarise the problem of
discovering such regions of correlated spatio-temporal change.

The pairwise temporal distance between a pair of edges is defined as
dtem(ei, ej ,W

ts,te) = d(qts,te(ei), qts,te(ej)), where d(qts,te(ei), qts,te(ej)) repre-
sents the distance between the two waveform representations. The temporal
distance measures the difference in temporal change behaviour of the edges ei

and ej over the subsequence W ts,te. We shall elaborate on the measures we
used to compute the distance in Section 3. We similarly define a spatial dis-
tance dspa(ei, ej ,W

ts,te). As mentioned in the introduction, the spatial distance
is based on the topological properties of the dynamic graph. As the topological
properties and hence the spatial distance may change with time, spatial distance
is also defined over a subsequence.

Definition 2. A region of correlated spatio-temporal change Rts,te
r is

defined as a subset of Ets,te
C , for which the spatial and temporal correlation of

its edges is valid over the subsequence W ts,te. The set of changed waveforms
associated with the changed edges in Rts,te

r is denoted by Rts,te
r .Q, the set of

(change waveform, frequency) pairs.

Rts,te
r .Q summarises the temporal behaviour of the edges in Rts,te

r . We define the
set of change waveforms for a region as the collection of the change waveforms of
its member edges. Then we define the (relative) frequency of each unique change
waveform in the collection of waveforms as the (relative) number of times it
occurs. The frequency ranges from 0 (exclusive) to 1 (inclusive).

The lifetime of a region of correlated spatio-temporal change Rts,te
r is defined

as the period of time the edges in the region are correlated. The correlation span
is required to be continuous, i.e., there are no gaps in it. The lifetime is defined
by the start time ts and end time te.

For example, Table 1 shows the regions of correlated spatio-temporal change from
the dynamic graph in Figure 1. Of particular interest are regions 5, and 5a and
5b. Region 5 has a lifetime of 1 to 4, because its three edges 12 − 13, 13 − 14
and 15− 16 are only temporally correlated over the subsequence < G1 – G4 >.
However, if correlation is sought over the whole sequence, then edges 12−13 and
13 − 14 form a region (region 5a), and edge 15 − 16 forms another (region 5b),
due to the difference in their change waveforms (i.e., their temporal behaviour).

Where there is no ambiguity, we shall use Qr.qa and Qr.freqa to denote
a waveform-frequency pair (qa, freqa) in Rts,te

r .Q. Recall qa denotes a change
waveform in the set of change waveforms of a region, and freqa denotes the
relative frequency of waveform qa in the region. In addition, if it is clear from
the context, we use Rr instead of Rts,te

r .
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With all the definitions in place, we can now define the set of regions of
correlated spatio-temporal change and the problem of discovering these regions.

Definition 3. The set of regions of correlated spatio-temporal change R
is a hard partition of E1,S

C into {Rts1,te1
1 , . . . , RtsL,teL

L }, where Rtsr,ter
r ⊆ EC ,

Rtsr,ter
g ∩Rtss,tes

h = ∅, g 6= h, 1 ≤ g, h ≤ L, and L is the number of regions.

Definition 4. The problem of discovering regions of correlated spatio-
temporal change involves finding a set of regions of correlated spatio-temporal
change that maximise the following intra-region criteria simultaneously and across
all regions:

1. maxR

∑
Rr∈R criteriatem(Rr, dtem);

2. maxR

∑
Rr∈R criteriaspa(Rr, dspa),

where criteriatem and criteriaspa are the criteria used to measure the spatial
and temporal compactness of the edges in Rr, based on the distance measures
dtem and dspa respectively. Given that there are two criteria to be optimised
simultaneously, the exact interpretation of maximisation in this context can be
approached in several different ways. We propose several specific approaches to
this problem in Section 3.5.1.

To summarise, the problem of discovering regions of correlated spatio-
temporal change can be summarised as follows:

Input:
The sequence of graph snapshots, < G1,G2, . . . ,GS >
The temporal and spatial distance measures, dtem, dspa

The temporal and spatial cohesion criteria, criteriatem, criteriaspa

Process:
Find a set of regions, R, that maximises

∑
Rr∈R criteriatem(Rr, dtem)

and
∑

Rr∈R criteriaspa(Rr, dspa) simultaneously
Output:

The set of regions of correlated spatio-temporal change, R

3. cSTAG

In this section, we first outline the challenges in solving the problem of discovering
regions of correlated spatio-temporal change. We then provide an overview of
cSTAG, our solution to this problem, which discovers regions of correlated spatio-
temporal change. It consists of a number of components, which we will describe
in the following subsections.

3.1. Challenges and Overview

There are a number of challenges that need to be addressed by any solution to
this problem:

– The number of regions of correlated spatio-temporal change is unknown a-
priori.

– The length of correlation, or lifetime, of each region is unknown a-priori.
– The exact start time of each region is unknown a-priori.
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Region Subgraph Edge Set Lifetime Change Waveform

6 F {8-9, 9-10, 9-11} 1 – 5

6a F {8-9, 9-10, 9-11} 1 – 4

6b F {8-9, 9-10, 9-11} 2 – 5

1 A {1-6,1-7}, 1 – 5

1a A {1-6,1-7}, 1 – 4

1b A {1-6,1-7}, 2 – 5

Table 3. Example where region 6 from 1 has broken up into regions 6a and 6b, and region 1
into regions 1a and 1b.

G1 G5G4G3G2

Wcommon

6

6a

6b

Fig. 2. An example of Wcommon, taken from region 6 and its sub-regions 6a and 6b.

A quick sketch of a naive method to find the set of regions R demonstrates
the difficulty of the problem. A naive method would partition the sequence into
a number of overlapping windows, of lengths 2 to S. Then for each window, it
would enumerate all regions of correlated spatio-temporal change that exhibit
temporal correlation over the window. From the set of all such regions, we find
a subset, across all window lengths, that satisfies the constraints outlined in the
problem statement and which maximises the temporal and spatial criteria. This
step may require further splitting and merging of regions. The naive method
would be complete, but intractable - this naive approach is similar to finding an
optimal job/timetable schedule from a set of known jobs of different lengths and
costs, which is known to be NP-Hard.

Hence, we have developed an approximate solution to the problem of dis-
covering regions of correlated spatio-temporal change. As an illustration of the
approach, consider an example from Figure 1. Consider the case where region 6
has been split into two regions, 6a and 6b, where region 6a is defined over the
snapshots G1 to G4, and region 6b over snapshots G2 and G5. Refer to Table
3 for details about regions 6, 6a and 6b, and Figure 2 for the alignment of the
change waveforms of region 6.
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There are several important points to note:

1. Both regions 6a and 6b have the same set of edges as region 6, since if the edges
8-9, 9-10, 9-11 are spatially and temporally correlated over the subsequence
W 1,5, then they are also correlated over W 1,4 and W 2,5.

2. For the snapshots common to both W 1,4 and W 2,5, which we denote Wcommon

(Wcommon = W 2,4, and illustrated in Figure 2), the change waveforms for 6a
and 6b are the same.

3. Even though regions 1a (1b) have the same change waveforms over Wcommon

to regions 6b (6a) respectively, the two regions (1a and 6b, 1b and 6a) have
different sets of edges.

This means that we can first find regions of correlated change over shorter
correlation periods, then merge those that have high overlap in their set of edges
and high similarity in their change waveforms (over the common subsequence of
snapshots) to form regions with longer correlation periods. This can be repeated,
until the region with the maximal correlation period is found.

From this illustrative example, it can be seen that we can find the regions of
correlated change by first dividing the sequence of snapshots into a set of over-
lapping, subsequences of snapshots. Then for each subsequence, we find the set of
regions of correlated change for each subsequence, using a clustering approach.
This is analogous to finding R1a for subsequence 1, then R1b for subsequence
2. Up to this point, we can find regions with correlation up to the length of
each subsequence. To find regions with correlation greater than the length of a
subsequence, we merge regions discovered in adjacent windows, using the crite-
rion that two regions should be merged across subsequences if both their sets of
edges and their change waveform, over the common subsequence of snapshots,
are highly overlapping and similar.

The general process is illustrated in Figure 3, and in more detail in Algo-
rithm 1. Note that there are some terms and ideas in Algorithm 1 that are not
introduced until later in this section. Nevertheless, the general direction of the
algorithm can still be appreciated without understanding all the terms in detail.

The overall process of cSTAG can be broken down to the following steps.
First, in the windowing step, the input sequence is split into a number of sub-
sequences using a sliding window process. The set of changed edges Ets,te

C , for
subsequence W ts,te, is then extracted by the function extract() (line 15). This
can be easily done by examining if an edge appears or disappears between two
snapshots in the subsequence. Then the temporal and spatial distances are com-
puted in lines 19 and 21 respectively. Next, we discover the set of regions whose
correlation length is the same as the length of the sliding window. We call this
step the discovery of regions of correlated spatio-temporal change, represented by
the regDiscovery() function (line 23). The final step, region association, merges
regions discovered in the individual windows to find regions of correlated spatio-
temporal change, whose lifetime is greater than the sliding window length (line
32).

In comparison with the naive method, cSTAG has the advantage that it
enumerates only the regions of correlated spatio-temporal change for one given
subsequence/window length. Although it is an approximate solution, we show
in the evaluation section that it can achieve up to 100% accuracy in detecting a
variety of regions of correlated spatio-temporal change. In the coming sections,



Discovering Correlated Spatio-Temporal Changes in Evolving Graphs 11

Windowing

Discover 
Regions of 
Correlated 

Change

Region 
Association

Time series of Snapshots

<G1, G2, ... , GS-1, GS>

Windows of Snapshots

W1 = <G1, G2, ... , GW>

W2 = <G1+inc , G2+inc , ...  , GW+inc >

Sets of regions for each window

{R1
1,W, R2

1,W, ... } (W1)

{R1
1+inc ,W+inc , R2

1+inc ,W+inc , ... } (W2)
Set of (merged ) 

regions
R = {

R1
ts 1,te 1,

R2
ts 2,te 2,

R3
ts 3,te 3,

       ... 
      }

Fig. 3. Summary of the cSTAG Algorithm.

we describe each component in detail. We also discuss the temporal (dtem) and
spatial (dspa) distance measures that we have applied to this problem.

3.2. Windowing

Sliding windows have been extensively studied and applied in the literature.
Consequently, we provide only a brief description of the sliding window proce-
dure. The sliding window procedure involves moving a window across a sequence,
generating a number of overlapping windows.

More formally, let the length of the sliding window be denoted by ω, and
the increment by which the sliding window is moved each time be denoted by
inc, 1 ≤ inc ≤ ω − 1. Then for sequence < G1, . . . , GS >, a sliding window
process of window length ω and increment inc will generate a set of dS−ω+1

inc e
subsequences {W 1,ω,W 1+inc,ω+inc, . . . ,W ts,ω+ts−1, . . . ,WS−ω+1,S}.

The window length ω represents the minimum length of temporal correlation
that a region of correlated spatio-temporal change must possess to be considered
a region. A short window length tends to produce few regions of many edges, but
most of the discovered regions are uninteresting and the changes are more likely
to be grouped together by coincidence. A longer window length will avoid these
problems, but tends to produce many regions of small size, which again may be
of limited use. We shall empirically investigate the effect of window length in the
evaluation section (Section 4.1.3).
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Algorithm 1 Overview of the cSTAG Algorithm.
1: Input: GS = < G1, G2, . . . , GS > - sequence of snapshots, ω - length of

sliding window
2: Output: R - the regions of correlated spatio-temporal change
3:

4: // Compute the set of union graphs, which is used to compute the spatial
distance

5: UG = computeUnion(GS)
6:

7: // Initialise the index of the initial snapshot, ts, and last snapshot, te, for
the first window W 1,1+ω in the sliding window process

8: ts = 1
9: te = ts + ω

10: // While there are more windows to extract in the sequence, find the regions
Rts,te for each window W ts,te

11: while ts ≤ S − ω do
12: // Construct current window of snapshots
13: W ts,te = < Gts, Gts+1, . . . , Gte >
14: // Extract the set of changed edges Ets,te

C

15: Ets,te
C = extract(W ts,te)

16: // Compute the set of change waveforms Q for the current window
17: Q = constructWaveform(Ets,te

C )
18: // Compute the temporal distances Dts,te

tem for current window
19: Dts,te

tem = computeTem(Ets,te
C , Q)

20: // Compute the spatial distances Dts,te
spa for current window

21: Dts,te
spa = computeSpa(Ets,te

C , UG)
22: // Compute the set of regions for current window
23: {Rts,te

1 , Rts,te
2 , . . .} = regDiscovery(Ets,te

C , Dts,te
tem , Dts,te

spa )
24: // Add discovered regions to Rts,te, which holds regions discovered for

current window
25: Rts,te = {Rts,te

1 , Rts,te
2 , . . .}

26: // Slide window by inc number of snapshots
27: ts += inc
28: te += inc
29: end while
30:

31: // Merge the regions in each set Rx,y (where x and y are valid window
indices) across adjacent windows

32: R = regAssoc(R1,1+ω,R1+inc,1+ω+inc, . . .)

3.3. Temporal Distance Measures (computeTem)

The choice of what is the “best” temporal distance measure is dependent on
the application context. For example, in the case of applications such as network
fault diagnosis, where we wish to group routing changes induced by the same root
cause, changes effected by the same root cause might exhibit delays as changes
cascade through the network. In this context, two waveforms should only be
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considered similar if they have the same shape, and the timing of the changes
roughly coincides.

In this section, we shall outline several temporal distance measures that are
potentially relevant in this context and discuss their advantages and disadvan-
tages. We then describe the actual distance measure we have developed for use
in network fault diagnosis. Note that in general, cSTAG can accept any temporal
distance measure, as long as it is symmetric and produces a distance relation on
the set of changed edges.

Two candidate distance measures that take waveform shape similarity into
consideration are Dynamic Time Warping (DTW) (Cormen, Leiserson, Rivest
& Stein 2001) and Longest Common SubSequence (LCSS) (Vlachos, Kollios &
Gunopulos 2002). They can handle translations between the compared wave-
forms, and in the case of LCSS, are robust to noise. However, the main drawback
of these measures is that they are computationally expensive for comparing sim-
ple binary waveforms. In particular, if q(1) and q(2) are the compared waveforms,
where l1 = |q(1)| and l2 = |q(2)|, and δ is a threshold specifying the maximum
waveform stretching allowed, then an implementation of DTW that computes
exact distances has O(max(l1, l2)2) (Salvador & Chan 2004) complexity, and it
is O(δ3(l1 + l2)) for LCSS (Vlachos et al. 2002).

An alternative approach that addresses these complexity costs is the popular
Euclidean distance measure (deuc), which is simple and efficient to calculate
(O(W ) where W = |q|).
Definition 5. For two binary sequences q(ei) and q(ej) of length ω, the (nor-
malised) Euclidean distance can be defined as

deuc(q(ei), q(ej)) =
1
ω

ω∑

k=1

q(i)[k]⊕ q(j)[k] (1)

where ⊕ represents exclusive OR (0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1).

However, two of the known weaknesses of the Euclidean distance measure
are that it is not robust to any delays or difference in scale between two com-
pared waveforms, even if the two waveforms have the same shape. Since we are
using binary valued waveforms, there are no scaling problems. To overcome the
translation weakness, we additionally consider the shapes when comparing the
(binary) waveforms. The approach we take is similar to DTW, particularly the
Derivative DTW (DDTW) (Keogh & Pazzani 2001), but we do not need to use
the relatively expensive dynamic programming technique to stretch or compress
the time axis of the waveforms.

Before we present our modified Euclidean distance measure, we first introduce
the concept of a transition sequence. In a transition sequence, we represent
the changes in a binary waveform as a sequence of transitions. Let a 1 → 0
transition in a change waveform be denoted as −, and a 0 → 1 transition as
+. We then define a sequence of transitions trans(ei) for waveform q(ei) as a
sequence of alternating −/+ transitions. Using this definition, two waveforms
with the same shape will have transition sequences of the same length and each
of the −/+ transitions in the sequences will match. For example, consider Table
4, which shows the change waveforms and transition sequences for edges e1−6,
e1−3, and e2−4 from Figure 1. The transition sequences of e1−6, e1−3 are different,
corresponding to the difference in the shape of their change waveform. However,
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Edge Change Waveform Transition Sequence

e1−6 < −+ >

e1−3 < − >

e2−4 < − >

Table 4. Changed edges and their corresponding change waveforms and transition sequences

the transition sequences of e1−3 and e2−4 are the same, despite q(e2−4) being a
delayed version of q(e1−3).

So, our modified distance measure is then defined as:

Definition 6. The modified Euclidean distance between waveforms q(ei) and
q(ej) of lengths ω can be defined as

dm euc(q(ei), q(ej)) =
{

1, trans(ei) 6= trans(ej)
deuc(q(ei), q(ej)), otherwise

where 0 ≤ dm euc(q(ei), q(ej)) ≤ 1.

Intuitively, this version of the Euclidean distance measure determines the num-
ber of snapshots in which two edges are either both present or both absent,
while taking into consideration the shape of the waveforms. Two waveforms are
similar if they have the same general shape (in terms of their transition se-
quences) and their unmodified edit distance is low (i.e., dm euc() is close to 0).
For example, reconsider the waveforms in Table 4. The modified distance be-
tween q(e1−3) and q(e2−4) is 0.2, as they have the same transition sequence and
deuc(q(e1−3), q(e2−4)) = 0.2, but dm euc(q(e1−6), q(e1−3)) = 1 since the transi-
tion sequences are different.

The complexity of computing the modified Euclidean distance is O(|q|), which
is the same or lower than the other alternatives. We further reduce the complexity
of computing the modified Euclidean distance by implementing an incremental
version of deuc and trans.

We can incrementally compute the Euclidean distance deuc(ei, ej ,W
ts+ω,te+ω)

for window W ts+ω,te+ω from the computed Euclidean distance for the previous
window W ts,te by the following relation:

deuc(ei,ej ,W
ts,te)

= deuc(ei, ej ,W
ts−inc,te−inc)− deuc(ei, ej , W

ts−inc,ts−1)

+ deuc(ei, ej ,W
te−inc+1,te)

= deuc(ei, ej ,W
ts,te−inc) + deuc(ei, ej ,W

te−inc+1,te)

(2)

The correctness of Equation (2) can be shown by writing both the left and right
hand sides of the equality in their summation form.

Similarly, trans(ei,W
ts,te) can be computed from trans(ej ,W

ts−inc,te−inc)
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by:

trans(ei,W
ts,te)

= concat(truncate(trans(ei,W
ts−inc,te−inc), ts− inc, ts− 1),

trans(ei,W
te−inc+1,te))

= concat(trans(ei,W
ts,te−inc), trans(ei,W

te−inc+1,te))

(3)

where the function truncate(trans(ei,W
ts−inc,te−inc), ts − inc, ts − 1) removes

the changes or transitions associated with the snapshots ts − inc to ts − 1,
inclusive, from the transition sequence trans(ei,W

ts−inc,te−inc). The function
concat(trans(ei,W

ts,te−inc), trans(ei,W
te−inc+1,te)) concatenates the transition

sub-sequence trans(ei,W
te−inc+1,te) of changes from snapshot te− inc+1 to te,

to the transition sub-sequence trans(ei,W
ts,te−inc), to form the the transition

sequence for snapshots ts to te, trans(ei,W
ts,te).

Using these Equations (2) and (3), deuc can be incrementally computed by
keeping the subsequence distances calculated in the previous window, Dts,te−inc

euc ,
and just computing the distances of the snapshots that are newly arrived,
Dte−inc+1,te

euc . For each change in the transition sequences, we introduce time
markers to record the time the change occurred. This enables the truncation to
be computed in constant time. Hence for transition sequences, we only need to
maintain the set of transition sequences for the last window, Transts−inc,te−inc.

In the remainder of the paper, in order to simplify the description of our
algorithms, we describe cSTAG in terms of using a non-incremental temporal
distance implementation. However, it is a straightforward matter to use the de-
scribed incremental distance implementation.

3.4. Spatial Distance Measures (computeSpa)

Given that we are mining patterns in graphs, the spatial distance measures that
we use are topology based. There are many topology based measures, but the
most intuitive one for fault diagnosis is the shortest path distance. Two changing
vertices that have low shortest path distance, and hence are spatially similar, are
more likely influenced by the same change event, e.g., consider the router example
from the introduction. In general, changes (to edges) caused by the same change
event will have edges that possess small shortest path distances between them.
Again, the exact definition of closeness depends on the specific application.

For example, in prior work (Chan, Bailey & Leckie 2006), two changed edges
were considered to be close if there exists a path between the two edges that only
consists of edges from the set of changed edges, i.e., among the changed edges,
the sets of changed edges that form connected components are considered close to
each other. Although this enabled very fast computation of spatial proximity and
is generally well suited for network fault detection, it can be inaccurate in certain
cases. For example, there can be two different faults occurring at the same time
and inducing the same routing changes. The two affected sets of edges are also
topologically connected by a single edge (i.e., a bridge). Then using the previous
connected component method, the two sets of edges will be incorrectly identified
as one spatially close region. However, if we use the shortest path distance and
use a clique definition (i.e., a set of edges that are considered spatially close
should all have low shortest path distances between them), then we can correctly
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separate the edges into two separate regions, based on their spatial differences.
In general, using shortest path distance can allow many definitions of spatial
proximity, hence can increase the range of applications for which finding regions
of correlated change can be useful.

Before we introduce how we compute the shortest path distance between two
edges in a snapshot graph, we shall consider how to compute shortest path dis-
tances on a dynamic graph. As the underlying graph is dynamic, the shortest
path distances themselves are dynamic too. A naive method would be to com-
pute the shortest path distances for each snapshot, and then take the average
across all the snapshots. However, this approach is expensive. Hence, a popular,
alternative approach is to maintain the shortest path trees between vertices (or
edges in our case) (Demetrescu & Italiano 2004)(King 1999)(Frigioni, Marchetti-
Spaccamela & Nanni 1996) (Ramalingam & Reps 1996). By maintaining the
shortest paths, only paths which are affected by changes need to be updated,
and queries can be answered in constant time. However, due to the storage and
maintenance of the shortest paths, this causes a substantial increase in memory
usage. For example, an implementation of several well-known dynamic shortest
path algorithms (Demetrescu & Italiano 2006) required over 1.5 GB of memory
when tested on scale-free graphs with a few thousand vertices and edges. Hence,
we do not consider dynamic shortest path algorithms to be a viable option for
use in cSTAG.

The alternative method we used was to compute the shortest path distances
over a subsequence of snapshots. Basically, we compute the union graph over
the subsequence and compute the shortest path distances on these. This reduces
the time cost of computing the distances for each snapshot, while avoiding the
high memory cost of maintaining shortest paths. Computing the distances over a
union graph is accurate if the shortest path distances themselves do not undergo
significant change. This will occur when there are few changes. Even when there
are many changes, if there exist many alternative shortest paths between any pair
of edges (e.g., in a dense graph), most of the shortest path distances themselves
do not vary much. We will observe this phenomenon in the evaluation of the
synthetic datasets in Section 4.1.

We compute the shortest path distances for a subsequence of consecutive
snapshots of length ωspd, 1 ≤ ωspd ≤ S. The sequence of snapshots is segmented
into a number of disjoint subsequences, all of length ωspd. The last window
can be less than ωspd. For each subsequence, we compute the union graph of
the snapshots (performed by the function computeUnion) in Algorithm 1, then
compute the shortest path distances on this union graph. For example, if the
subsequence of snapshots is <G1, G2, . . . , G5> and ωspd = 2, then there are three
union graphs for these sequence of snapshots: U1,2

1 = G1 ∪G2, U3,4
2 = G3 ∪G4,

and U5,5
3 = G5. If we want to compute the shortest path distance for snapshot

G1, then we use the union graph U1,2
1 . But if we want to compute the distance

over the subsequence W 1,3, then we compute the distance over U1,2
1 and U3,4

2 ,
then take an average. In the evaluation, we have evaluated the effect of varying
the union window size ωspd on the running time and accuracy of cSTAG.

Algorithm 2 provides an outline of our approach to estimating the shortest
path distances using a sequence of union graphs. Next, we describe the techniques
we have used to speed up the shortest path distance calculations for a single graph
snapshot.
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Algorithm 2 Spatial distance computation - function computeSpa().

1: Input: Ets,te
C - set of changed edges, UG - temporally ordered set of union

graphs
2: Output: Dts,te

spa - set of spatial distances
3:

4: // Find the earliest union graph with starting snapshot index s ≤ ts and
ending snapshot index t ≤ te

5: Us,t
i = find(UG, ts, te)

6: // Compute the shortest path distance for each pair of changed edges
7: for each ei ∈ Ets,te

C do
8: for each ej ∈ Ets,te

C , ej 6= ei do
9: d(ei, ej) = 0

10: num = 1
11: // Compute the shortest path distance on all union graphs whose con-

stituent snapshots have some overlap with window W ts,te.
12: while s ≤ te ≤ t do
13: d(ei, ej) += spd(ei, ej , U

s,t
i )

14: i++
15: num++
16: // Get union graph with index i

17: Us,t
i = UG[i]

18: end while
19: // Insert the average distance into Dts,te

spa

20: Dts,te
spa [ei, ej ] = d(ei,ej)

num
21: end for
22: end for

3.4.1. Computing the Shortest Path Distance for a Single Graph

For a pair of changed edges, the shortest path distance is defined as the smallest
number of vertices needed to traverse from one edge to the other. Hence, with
a slight, and simple modification, we can use existing algorithms for computing
shortest path distances between vertices for the distance between edges.

A fast and popular algorithm for finding the exact shortest path distance is
Dijkstra’s algorithm (Ahuja, Magnanti & Orlin 1993), which is the equivalent to
breadth-first search in unweighted graphs. This has a worst case complexity of
O(|E|) (Cook, Cunningham, Pulleyblank & Schrijver 1998). We have improved
upon breadth-first search by using the following two techniques.

Bi-directional search We can improve this search by using a bi-directional
search, starting at both the source and target edges. This is known (Kaindl &
Kainz 1997) to decrease the average number of vertices (edges) visited for each
distance computation, compared with a unidirectional search. From empirical
testing on synthetic and scale free graphs, this produces a speed improvement of
up to 70%.

Limiting search depth Let dlimit represent the maximum depth to which the
shortest path distance search expands. For bi-directional, it is the total depth of
both searches, i.e., the sum of the depths from each search. Another speed up
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technique is to limit the depth to which the search expands to dlimit. When the
depth limit is reached, the two edges in question are considered far apart and
given a maximum distance of 1. Obviously, when the distance of two edges is
actually more than dlimit, then this will incorrectly identify them as being far
apart, i.e., it will overestimate the actual distance. However, our experiments
have shown that setting a small dlimit does not have a large effect on accuracy.
This is particularly true when the regions themselves do not have a diameter
greater than dlimit.

3.5. Discovering Regions of Correlated Spatio-Temporal
Change for each Subsequence (regDiscovery)

The aim of this component of cSTAG is to discover the set of regions of cor-
related spatio-temporal change for each subsequence of graphs. Recall that we
seek sets of edges that have high temporal and spatial similarity, measured by
the set of pairwise temporal and spatial distances computed earlier. To find these
regions, we use clustering techniques to group the edges based on their temporal
and spatial distances. Each cluster of changed edges represents a region of corre-
lated spatio-temporal change with lifetime [ts, te]. The clustering methods used
define the temporal and spatial grouping criteria criteriatem and criteriaspa re-
spectively. The clustering methods used also determine the shape that the edges
in a region of correlated spatio-temporal change will form. For example, single
linkage (Duda, Hart & Stork 2000) generally produces elongated clusters, hence
the regions produced using single linkage clustering will tend to be elongated as
well.

However, many existing clustering methods (Jain & Dubes 1998)(Duda et al.
2000) cannot be directly used to find the regions of correlated spatio-temporal
change in a subsequence. The reason is that these existing methods are designed
to find clusters that satisfy some optimality measure on one distance measure.
However, the problem of finding regions of correlated change involves clustering
and optimising both criteriatem(Rr, dtem) and criteriaspa(Rr, dspa) simultane-
ously.

This problem has similarities to the co-clustering (also known as bi-clustering)
problem (Cheng & Church 2000)(Dhillon 2001). In co-clustering, two sets of
objects have one distance relation defined over them - e.g., document-term fre-
quency analysis in information retrieval (Dhillon 2001) - and the aim is to find co-
clusters (subsets of both object sets) that minimise or maximise some objective
measure. However, the problem of finding regions of correlated spatio-temporal
change is not exactly the same. There is only one object set (edge-edge), but
two distance relations (spatial and temporal). Therefore, co-clustering cannot be
used.

Hence, we propose a variety of clustering methods to solve this clustering
problem. Each of these methods implement the regDiscovery() function from
Algorithm 1 differently. These include (1) combining the two distance measures
into a single one, and (2) clustering using one set of relations, then further
refining the obtained clusters using the other set of relations (possibly using a
different clustering method). In the rest of the section, we detail each of these
multi-relation clustering methods. In addition, we describe a well-known single-
relation clustering method that we have used.
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3.5.1. Combining Distance Measures

One method to solve the multi-relation clustering problem is to combine the
two distance measures into one, then use an existing single-relation clustering
method to find the regions. We outline two proposals, one based on constrained
clustering, the other combining the two distances using a weighted linear sum.
After combining the two distance measures into one, the changed edges are clus-
tered using the combined distances. The process for both proposals is the same,
apart from the way the distance measures are combined. Algorithm 3 outlines
the overall process.

Algorithm 3 Outline of regDiscovery() function for Hard and Soft Modification
Methods.
1: Input: Ets,te

C - set of changed edges, Dts,te
tem - set of pairwise temporal dis-

tances, Dts,te
spa - set of pairwise spatial distances, γ - other parameters specific

to the single-relation clustering algorithm
2: Output: Rts,te - a set of regions for window W ts,te

3:

4: // Combine the temporal and spatial distances into a single distance measure
5: Dts,te

comb = combine(Dts,te
tem , Dts,te

spa )
6: // Cluster the changed edges using single-relation clustering on the combined

distances
7: Rts,te = cluster(Ets,te

C , Dts,te
comb, γ)

Hard Modification The hard modification multi-relation clustering method is
similar in principle to constrained clustering (Tung, Ng, Lakshmanan & Han
2001)(Wagstaff & Cardie 2000). One of the relations is chosen as the main re-
lational space (optimised space), while the other (constraint space) is used to
constrain and modify the optimised distance relation.

Definition 7. Let Tcon (0 ≤ Tcon ≤ 1) be a user defined constraint threshold,
and dopt(ei, ej) and dcon(ei, ej) be the optimised and constraint distance relations
over edges ei, ej ∈ EC . Then the constrained optimised distance dcomb(ei, ej) for
edges ei, ej is defined as:

dcomb(ei, ej) =
{

dopt(ei, ej) dcon(ei, ej) ≤ Tcon

1 otherwise

The advantage of this approach is that it is extremely simple to implement
and comparatively efficient - it can be partially precomputed during the distance
calculation step1. However, the disadvantages of this approach are that Tcon

needs to be tuned, and all object pairs with dcon(ei, ej) ≥ Tcon are set to the
same, maximum distance. This ignores the original distances, which may decrease
the accuracy of the clustering - if two objects are close in the optimisation space,
but their distance in the constraint space is just above the threshold, then this
is regarded as being just as dissimilar as two objects that are far in both spaces.
This motivates the next technique, which does not use hard cutoffs.

1 Compute dcon(ei, ej) first, using the distance values to avoid computing dopt(ei, ej) if
dcon(ei, ej) > Tcon
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Soft Modification The second distance modification approach combines the
two distances using a weighted linear sum.

Definition 8. Let α, 0 ≤ α ≤ 1 be a user defined parameter to determine the
relative weight of dcon and dopt in the combined distance measure. Then the
combined distance is defined by

dcomb(ei, ej) = (1− α) · dopt(ei, ej) + α · dcon(ei, ej)

Again, the advantage of this method is that it is simple and relatively efficient
to compute. However, there is a parameter α to tune again, and there is an
implicit assumption that the relationship between the two distance relations is
linear, which might not necessarily be the case.

3.5.2. Sequential Clustering

A disadvantage of the previous schemes was that one (modified) distance measure
and one clustering method was used to cluster objects in two different spaces.
Depending on the measures and the true distribution, clustering separately might
produce more accurate results. Hence, another relatively simple approach is to
cluster in one space first, then further partition each discovered cluster using the
other distance relation. The resulting sub-clusters are the final clusters. Again,
any clustering method can be used for clustering in both steps. The disadvantage
of this is the sensitivity of the choice of which distance relation to use first. Such
order dependence is less than in the distance modification approaches, but it
is still important, as the initial clustering in the first domain constrains which
sub-clusters can be found in the second clustering. Algorithm 4 outlines the
sequential clustering process. In our cSTAG implementation, we cluster using
the temporal distances first, then the spatial ones. We found that by using the
temporal distances first, we obtained better accuracy. This is because in general,
the temporal distances between two regions are more likely to be larger than
the spatial distances. Hence, separating by temporal distance first enables the
algorithm to make fewer mistakes in the first clustering step.

Algorithm 4 Outline of regDiscovery() function for Sequential Method.

1: Input: Ets,te
C - set of changed edges, Dts,te

tem - set of pairwise temporal dis-
tances, Dts,te

spa - set of pairwise spatial distances, γ - other parameters specific
to the initial single-relation clustering, η - other parameters specific to the
single-relation sub-clustering algorithm algorithm

2: Output: Rts,te - a set of regions for window W ts,te

3:

4: // Initially cluster using the temporal distance and method cluster1
5: R′ = cluster1(Ets,te

C , Dts,te
tem , γ)

6: // For each cluster Rr, perform further clustering using method cluster2 on
the spatial distances

7: for each Rr ∈ R′ do
8: Rsub = cluster2(Rr, D

ts,te
spa , η)

9: Rts,te = Rts,te ∪ {Rsub}
10: end for
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3.5.3. Single Relation Clustering

To group the changed edges into clusters using a single distance relation, we
require a single-relation clustering method. The number of clusters is not known
a priori, hence we require a clustering method that does not require knowing
the number of clusters beforehand. Therefore, we chose a partitional method,
leader-follower, which we describe below. For comparison, we also tested two
hierarchical methods - single and average linkage clustering. From our experi-
ments, we have found that these hierarchical methods are, at best, slightly more
accurate than using the leader-follower method. However, they run much slower,
particularly for larger graphs. Since the results of hierarchical clustering do not
show any significant difference from the results of using the leader-follower algo-
rithm, we do not present them in this paper.

Leader-Follower: Leader-Follower clustering describes a generic clustering ap-
proach, where a threshold is used to decide whether each point should be included
in an existing cluster, or a new cluster should be created to incorporate the point.
In Duda et al (Duda et al. 2000), a basic leader-follower clustering algorithm is
described. This algorithm assumes that a cluster centre can be computed and
updated. However, the “points” we are dealing with are edges, and all the dis-
tances defined over them are relational, hence there is no concept of a cluster
centre. Therefore, we modified the basic leader-follower algorithm described by
Duda et al. This modified version is outlined in Algorithm 5.

The algorithm considers each edge and compares the average distance with
existing clusters until it finds a cluster that has an average distance that is
less than a cluster (region) width threshold (regWidth). If an edge cannot be
incorporated into any of the existing clusters, a new singleton cluster, with the
edge as its member, is created.

3.6. Region Association (regAssoc)

The final step in the cSTAG algorithm is region association. Recall that the aim
of the region association step is to discover regions whose correlation is longer
than the sliding window length ω. This is achieved by associating and merging
similar regions that have been discovered in consecutive windows.

As described in the introduction to cSTAG in Section 3.1, the criteria for
merging two regions are:

1. Both regions share a significant number of edges (we do not require strict
set equality, as it is possible that one or two edges might lose correlation
throughout the lifetime of a region, but the majority of edges in the discovered
region remain correlated); and

2. The subsequences extracted from both regions for the common snapshot sub-
sequence Wcommon are highly similar, i.e., dtem is small.

More formally, we can express these criteria as two inter-region distance func-
tions, dS and dQ, and two user specified thresholds, πmerge (spatial) and λmerge

(temporal). dS measures the amount of overlap between the edges in the two re-
gions, while dQ measures the total weighted distance between the waveform sets
of the two regions. Hence, given two regions Rts,te

g (extracted from subsequence
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Algorithm 5 Modified Leader-Follower Algorithm.

1: Input: Ets,te
C , Dts,te

X - set of distances (X can be either temporal or spatial),
regWidth - width threshold of a cluster

2: Output: Rts,te - a set of regions for window W ts,te

3:

4: Rts,te = {}
5: for each ei ∈ Ets,te

C do
6: inserted = false
7: // Insert into existing cluster?
8: for each cluster Rr ∈ Rts,te do
9: // Average distance ≤ regWidth, so add ei to cluster Rr

10: if
P

ej∈Rr
d(ei,ej)

|Rr| ≤ regWidth then
11: Rr = Rr ∪ {ei}
12: inserted = true
13: break
14: end if
15: end for
16: if !inserted then
17: // ei was not inserted in existing regions, so create a new region
18: Rnew = {ej}
19: Rts,te = Rts,te ∪ {Rnew}
20: end if
21: end for

W ts,te) and Rts+1,te+1
h (extracted from subsequence W ts+1,te+1), we merge these

two regions if

dS(Rts,te
g , Rts+1,te+1

h ) = 1− |Rts,te
g ∩Rts+1,te+1

h |
max(|Rts,te

g |, |Rts+1,te+1
h |) ≤ πmerge (4)

and

dQ(Rts,te
g , Rts+1,te+1

h ) =
|Rts,te

g .Q|∑
a=1

|Rts+1,te+1
h .Q|∑

b=1

Qg.freqa ·Qh.freqb

· dtem(Qg.qa[2, ω − 1], Qh.qb[2, ω − 1]) ≤ λmerge

(5)

0 ≤ πmerge ≤ 1, 0 ≤ λmerge ≤ 1.
Recall that Rr.Q denotes the set of change waveforms of region Rr. Equa-

tion 5 compares each waveform in Rts,te
g .Q with each waveform in Rts+1,te+1

h .Q
over the common period Wcommon. The distance between the two waveforms is
weighted by the relative frequency of each waveform in their respective Q sets.

Without loss of generality, we can extend merging Rts,te
g and Rts+1,te+1

h ,
which are generated by a sliding window process with increment inc = 1, to
merging Rts,te

g and Rts+inc,te+inc
h where inc > 1.

Algorithm 6 provides an overview of the region association procedure. Ba-
sically, an evolution graph is constructed from the set of regions discovered for
each window. The vertices of the evolution graph are the regions discovered,
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and there exists an edge between two vertices if their corresponding regions are
discovered in adjacent windows and their spatial and temporal inter-region dis-
tances are below the respective thresholds. Then each connected component in
the constructed evolution graph will represent discovered regions that are sim-
ilar across windows. Hence, the final step in the region association step is to
find the connected components of the evolution graph, and merge these regions.
Merging two regions involves unioning the edges of the regions, and concatenat-
ing the waveforms. Concatenating the waveforms is non-trivial, as each region
can consist of a set of waveforms. However, we can use the same rationale as
used in computing dQ, i.e., if two waveforms have a high relative frequency in
their respective merged regions, then we should assign a high frequency to the
resulting concatenated waveform, as the parent waveforms were frequent in their
respective regions. Therefore the concatenated waveform should also be frequent
in the merged region.

If the two regions to be merged are Rg and Rh, then the merged region
Rgh has edge set Rg ∪ Rh, and its set of (waveform, frequency) pairs Rgh.Q is
{(concat(qa[1, dω

2 e], qb[dω
2 e+1, ω]), freqa·freqb) | (qa, freqa) ∈ Rg.Q, (qb, freqb) ∈

Rh.Q}.
At the end of the region association step, we have a set of merged regions, rep-

resenting the regions of correlated spatio-temporal change of different correlation
lengths.

4. Evaluation

In this section, we evaluate the performance of cSTAG using two types of datasets.
First, we use synthetic datasets to test the accuracy of cSTAG. In addition, we
demonstrate the practical benefits of using regions of correlated spatio-temporal
change to detect local routing events in the BGP connectivity graph from the
Internet, and also flash crowd events at the 1998 World Cup website. In each of
the evaluations, we first describe the dataset and then present the results.

4.1. Synthetic Dataset Evaluation

4.1.1. Accuracy Evaluation Measure

We require a quantitative measure to evaluate the sensitivity and accuracy of
cSTAG to its parameter settings. We have used a measure from cluster validation
(Halkidi, Batisakis & Vazirgiannis 2001). Cluster validation involves comparing
two sets of clusters - the reference clustering, and the actual clustering obtained
from the evaluated clustering method. Although there are many proposed mea-
sures, we present results using only the Jaccard coefficient (Halkidi et al. 2001).
We have considered other measures such as the Rand index (Halkidi et al. 2001)
and Minkowski measure (Halkidi et al. 2001), but found that they yielded the
same results as the Jaccard coefficient.

Let C = {C1, . . . , Cu} be the actual clustering results, and P = {P1, . . . , Pv}
be the reference clustering. If both clusterings partition a data set X, then for
each pair of objects, (xi, xj), xi 6= xj , xi, xj ∈ X, it is possible to classify them
as follows (Halkidi et al. 2001): SS, if both objects belong to the same cluster
in both clusterings; SD, if the objects belong in the same cluster for clustering
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Algorithm 6 Procedure for region association step - function regAssoc().

1: Input: R1,1+ω,R1+inc,1+ω+inc, . . . - sets of regions, one per window (there
should be winNum = dS−ω+1

inc e sets in total)
2: Output: R - the regions of correlated spatio-temporal change
3:

4: R = {}
5: // Construct the empty evolution graph Gevol

6: Gevol

7: // Loop through each pair of adjacent region sets
8: for g := 1; g ≤ winNum −inc; g += inc do
9: // Add vertices to Gevol for each region in the two adjacent region sets

Rg,g+ω and Rg+inc,g+inc+ω

10: for each R1 ∈ Rg,g+ω do
11: Gevol.addV ertex(R1)
12: end for
13: for each R2 ∈ Rg+inc,g+inc+ω do
14: Gevol.addV ertex(R2)
15: end for
16:

17: // Compute temporal and spatial merge similarities between all regions in
Rg,g+ω and Rg+inc,g+inc+ω

18: for each R1 ∈ Rg,g+ω do
19: for each R2 ∈ Rg+inc,g+inc+ω do
20: if dS(R1, R2) ≤ πmerge and dQ(R1, R2) ≤ λmerge then
21: // Add edge between the vertices corresponding to the regions
22: Gevol.addEdge(R1, R2)
23: end if
24: end for
25: end for
26: end for
27: // Find connected components among the vertices (i.e. regions) in Gevol

28: connComp = getConnectedComponents(Gevol)
29: // Merge the regions in each connected component to form merged region

RX

30: for each conni ∈ connComp do
31: RX = merge(conni)
32: R = R ∪{RX}
33: end for

C, but different clusters for clustering P ; DS, if the objects belong to different
clusters for clustering C, but in the same cluster for clustering P ; DD, if the
objects belong in different clusters for clustering C and P . Let nSS , nSD, nDS

and nDD denote the number of SS, SD, DS and DD pairs respectively. Then
the Jaccard coefficient is defined as (Halkidi et al. 2001):

JC =
nSS

nSS + nSD + nDS

The Jaccard Coefficient ranges from 0 to 1. It measures the similarity between
the clusterings. A score of 1 indicates a perfect match between the actual and
reference clusterings, while a score of 0 indicates a complete mismatch.
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Data set Vertices (Edges) Regions Comments

closeDiff
different 100 (400) 3 All different types of

change.
combo 100 (400) 4 Flapping type of changes.

farSameCloseDiff 100 (400) 3 Close regions have different
change, but distant regions
have the same change.

cross 100 (400) 5 Cross shaped region, with
four surrounding regions.

scale-free 339-5339 (1000-16000) 9 Graphs with scale-free
properties.

Table 5. Synthetic datasets. closeDiff, farSameCloseDiff, cross datasets consist of 10 snap-
shots each, while the scale-free datasets are each 30 snapshots long.

To evaluate cSTAG using cluster validation, we simulated several datasets
and manually introduced changes, so that we know the correct reference regions
of change. We then applied the Jaccard Coefficient to measure the accuracy of
cSTAG, using the discovered regions as the actual clustering to be evaluated,
and the introduced regions as the reference clustering.

4.1.2. Dataset Description

To create the reference clusters, we first constructed several synthetic graphs and
manually introduced changes into them. The results are the set of four synthetic
datasets in Table 52 (we shall call these the manual synthetic datasets). The
aim of the closeDiff datasets is to test the accuracy with respect to temporal
similarity. The first dataset, different, tests different sequences of changes, each
with their own unique transition sequences. The second dataset, combo, tests
multiple regions that have the same sequence of transitions, but where the timing
of the actual changes are different.

The farSameCloseDiff dataset has several regions that have different types
of change, but in close topological proximity. There are also pairs of regions that
are far apart, but have the same type of change. This tests any potential tradeoffs
between the spatial and temporal similarities.

There is the more challenging dataset cross. The cross dataset consists of a
region resembling a cross, with four other regions separated by the cross region.
The four regions have the same type of change. The cross dataset tests how well
the algorithm detects non-spherical regions.

In addition, we generated a set of scale-free graphs, based on the Barabasi
model (Barabasi & Albert 1999), and randomly introduced regions of change into
them. Each region generally forms a connected component, though this is not
guaranteed. We generated scale-free graphs to test the effect of ωspd, the union
window size, and dlimit, the maximum depth limit used when calculating the
shortest path distance, on the running time and accuracy. We found that ωspd

had little effect on the accuracy for the four other synthetic datasets. We also
tried generating graphs where we randomly generated regions, then added paths
between them - again ωspd did not affect the accuracy. In addition, we needed
larger graphs to test the effect of dlimit and the scalability of cSTAG, which the
Barabasi model allows us to easily do. Hence, we used scale-free graphs, which
have been found to accurately model many real life graphs.

2 Available at www.csse.unimelb.edu.au/∼jkcchan/
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(a) Graph. (b) Corresponding waveforms.

Fig. 4. Different dataset.

(a) Graph. (b) Corresponding waveforms.

Fig. 5. Combo dataset.

4.1.3. Manually Constructed Synthetic Datasets

To evaluate the accuracy of our approach, we applied cSTAG to the first four
datasets in Table 5, i.e., different, combo, farSameCloseDiff and cross. In each
case, we tested the three different clustering techniques that we proposed in
Section 3.5.1 and 3.5.2 for combining temporal and spatial distance measures,
i.e., hard modification, soft modification and sequential clustering, combined
with the leaderFollower algorithm. For each clustering method, we measured
how the accuracy of the results varied as we changed the parameter settings in
each algorithm. Note that in the hard and soft modification clustering techniques,
temporal distance is used as the optimised criterion dopt, and spatial distance is
used as the constraint criterion dcon. Similarly, in sequential clustering, we first
cluster using temporal distance, and then further partition each cluster based on
spatial distance.

We do not report the timing results for these four datasets because their
running time was in the tens of milli-seconds, which is too small to make any
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(a) Graph. (b) Corresponding waveforms.

Fig. 6. FarSameCloseDiff dataset.

(a) Graph. (b) Corresponding waveforms.

Fig. 7. Cross dataset.

meaningful comparisons. We examine the effect of the significant parameters
(dlimit and ωspd) on the timing in the next subsection, using the scale-free graphs.

The accuracy results for each synthetic dataset are shown in Figures 8 to
10. For the hard modification method (Figure 8a to 8d), the results of varying
Tcon and regWidth on the accuracy are shown. For the soft modification method
(Figure 9a to 9d), the results of varying α and regWidth on the accuracy are
shown. For the sequential method (Figure 10a to 10d), we show the results of
varying the sliding window size ω and regWidth on the accuracy. Varying the
window size ω tests the accuracy of the merging portion of cSTAG. Note that we
have also evaluated the effect of varying ω on the other two clustering methods,
but obtained similar trends as the results for sequential clustering, hence we
do not present those results. In addition, we found that varying λmerge and
πmerge from 0.05 to 0.50 did not affect the accuracy over all window sizes ω and
all combining methods. Hence, to avoid over reporting, we do not present the
accuracy graphs when varying the two merging thresholds.

In each figure, we show the clustering accuracy for each clustering technique
based on the Jaccard measure. Let us first consider each set of results in detail.
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(a) different dataset.
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(b) combo dataset.
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(c) farSameCloseDiff dataset.
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(d) cross dataset.

Fig. 8. Accuracy vs. regWidth results for the hard modification method on the manual syn-
thetic datasets. The effect of varying the constraint threshold Tcon is also presented.

Hard modification - When hard modification is used, if the threshold
on distance in the constraint space is zero (Tcon = 0), then spatial distance is
not considered by the clustering algorithm, and the results only depend on the
temporal similarity of the change waveforms. Otherwise, the clustering results
are highly sensitive to the choice of Tcon. As shown in Figures 8c and 8d, if
Tcon is too low, then the spatial distance is too tightly constrained, and the true
regions are fragmented into smaller regions. Conversely, if Tcon is too high, then
the discovered regions can contain excessive variation in spatial distance, and
distant regions with the same temporal change are incorrectly merged.

Soft modification - When soft modification is used, the accuracy of the
discovered regions is highly sensitive to the choice of values for the cluster width
parameter regWidth in the Leader Follower clustering algorithm, as well as the
choice of value for α, which determines the relative importance of the constraint
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(b) combo dataset.
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(c) farSameCloseDiff dataset.
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(d) cross dataset.

Fig. 9. Accuracy vs. regWidth results for the soft modification method on the manual synthetic
datasets. The effect of varying the weighting parameter α is also presented.

distance, i.e., spatial distance. When α = 0 for the different and combo datasets
(see Figure 9a, 9b), 100% accuracy can be achieved, since only temporal dis-
tances are considered. Otherwise, in all datasets, the maximum accuracy that
can be achieved depends on how the settings of α and regWidth are fine-tuned.
If regWidth is too small, then regions become fragmented. However, if regWidth
is too large then distant regions can be erroneously merged together.

Sequential clustering - In comparison to hard and soft modification,
sequential clustering is able achieve high accuracy, with little sensitivity to the
choice of parameters. In sequential clustering, edges are first grouped based on
their temporal similarity. Thus, dissimilar changes are kept separate, e.g., in the
combo dataset (see Figure 10b). Each temporally coherent region is then further
partitioned based on spatial distance. Thus, distant regions with similar change
waveforms are separated, e.g., in the farSameCloseDiff and cross datasets (see
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(b) combo dataset.
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(c) farSameCloseDiff dataset.
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(d) cross dataset.

Fig. 10. Accuracy vs. regWidth results for the sequential method on the manual synthetic
datasets. The effect of varying the sliding window size ω is also presented.

Figure 10c, 10d). Note that some errors can occur if the sliding window size is
too small, e.g., when winSize = 6 for the farSameCloseDiff dataset (see Figure
10c). In this case, there are time windows when the change waveforms appear
similar, and hence regions can be erroneously merged. However, in most cases
high accuracy can be achieved.

In summary, of the three clustering methods, sequential clustering generally
provides the most accurate and robust results across all our synthetic datasets.
While hard and soft modification can achieve good results, they are much more
sensitive to the choice of parameter settings.
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(a) Accuracy vs. union window size, ωspd.
This is for the hard modification method,
with leaderFollower clustering.
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(b) Total running time vs. union window
size, ωspd. This is for the hard modification
method, with leaderFollower clustering.
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(c) Accuracy vs. union window size, ωspd.
This is for the soft modification method,
with leaderFollower clustering.
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This is for the sequential method, with lead-
erFollower clustering methods for both do-
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Fig. 11. Accuracy and timing results vs. union window size ωspd for the scale-free graphs of
1,000 edges. 30% of the edges in the graphs experienced change. The depth limit dlimit is also
varied, from 2-10. The results are for the hard and soft modification, and sequential methods,
with leader-follower clustering.

4.1.4. Scale-free Graphs

We have found the shortest path distance calculations dominate the running
time as the graphs increase in size. As the union window size ωspd and the depth
limit dlimit are the main factors that determine the running time of the shortest
path distances, our aim is to test the specific effects of these parameters. In this
section, we test the effect of ωspd and dlimit on accuracy and running time using
scale-free graphs.
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We varied the size of the scale-free graphs from 1,000 to 16,000 edges, gener-
ating three different graphs for each size. We then introduced a different set of
changes to each graph, and averaged the accuracy and timing results. The total
percentage of edges in each graph that experienced change was 30%. We also
tried varying 10%-60% of the edges in each graph, but the results exhibited the
same trends as the 30% case, hence they are not presented. Figure 11 shows the
effect of varying ωspd and dlimit on accuracy and timing for the scale-free graphs
of 1,000 edges.

From Figure 11, we can make the following observations:

1. As the union window size (ωspd) approaches the length of the whole sequence
of snapshots, the running time improves by up to a factor of two. Moreover
the accuracy does not degrade, and in some cases actually improves. This
shows that the short path distances on scale-free graphs are invariant to a
significant number of random introduced changes (the introduced changes),
hence having a large union window size does not affect accuracy. The results
also demonstrate that using a large union window size can reduce the running
time without decreasing the overall accuracy.

2. A small depth limit (dlimit) results in a slightly increased running time. This is
because on average more regions are found per window, and hence the region
association step requires more time to merge regions, even though less time is
needed for the shortest path calculation when dlimit is small. However, as we
shall discuss shortly, when the size of the graphs increases, the running time
of the region association step becomes insignificant when compared to the
running time of the shortest path calculations. In those larger graphs, having
a smaller dlimit results in smaller total running times.

In order to measure the scalability of cSTAG in terms of running time on large
networks, we varied 20% of the edges on each of the generated scale-free graphs
and measured the time required for cSTAG to find the regions therein. We tested
the leader-follower algorithm with hard modification, soft modification and se-
quential methods, and found they required similar running times. Hence, we only
present the timing results for hard modification with leader-follower clustering
as shown in Figure 12. In Figure 12 we separate the total running time into three
components: (1) the time required to compute the temporal and shortest path
distances (distance), (2) the time required for clustering (clustering), and (3) the
time required for region association (association).

Figure 12 shows that the distance calculations, particularly the shortest path
distance calculations, dominate the running time. The clustering and association
steps constitute an insignificant portion of the running time. In future work, we
plan to try and decrease the time taken for shortest path distance calculations by
coarsening the graph into a smaller, approximate version (Wu, Garland & Han
2004), and using zones to measure the shortest path distances in the coarsened
graph (Rattigan, Majer & Jensen 2006).

4.2. BGP Dataset Evaluation

In this section, we demonstrate the effectiveness of cSTAG on a practical problem
by analysing the effect of the 2005 Hurricane Katrina on the US portion of the
Border Gateway Protocol (BGP) connectivity graph. This analysis has partly
been presented in (Chan et al. 2006). The BGP connectivity graph represents
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Fig. 12. Effect of graph size on total computation time of cSTAG, using scale-free graphs
where 20% of edges have experience a change. Also shown is the portion of time spent on
distance calculation, clustering and region association.

the top-level routing topology of the Internet. In this analysis, we compare the
output of cSTAG on the BGP graph with known events of affected locations
(Cowie et al. 2005). We also highlight the difficulty in identifying meaningful
regions if cSTAG is restricted to using only spatial distances alone or temporal
distances alone.

4.2.1. BGP Data Source

BGP is a routing protocol used to establish the forwarding tables between the
routers of organisations, known as Autonomous Systems (ASs), on the Internet.
The vertices in the BGP connectivity graph represent the ASs, and the edges rep-
resent the existence of a routing path between the ASs. An important challenge
in managing the Internet is how to detect problems in the BGP routing topol-
ogy and diagnose the event that caused each problem (Feamster, Balakrishnan
& Rexford 2004).

In order to understand how the BGP graphs were built from routing tables,
we briefly introduce how paths are stored in the tables. Each BGP routing table
entry can be summarized as a network prefix and its AS PATH attribute. AS
PATH lists the path of ASs that was used by the original announcement in
reaching the current router and its AS. For example, AS1-AS2-AS3 means the
prefix originated from AS3, and the announcement propagated from AS3 to AS2
to AS1, before reaching the current AS.

The RouteViews project (of Oregan n.d.) collects BGP routing information
by passively peering with a number of distributed ASs. From each table obtained
from RouteViews, we built a snapshot of the BGP connectivity graph using the
AS PATH path entries. By using multiple path entries it is possible to construct
an approximation of the true BGP connectivity graph.

4.2.2. Hurricane Katrina

We examine the Katrina event because it has been reported that its effect on the
Internet was mostly localised around Louisiana and several other southern states.
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Fig. 13. Number of changed edges and vertices during each time window in the US portion
of the BGP graph during the period 28 August to 31 August 2005. The dotted line signifies
the landfall of Hurricane Katrina.

We concentrate on the ability of cSTAG to clearly show significant activity in
the ASs around that region. We also compare the results found using an analysis
reported in (Cowie et al. 2005), which is based solely on an analysis of global
statistics of the network as a whole.

We concentrate on the US portion of the BGP graph, as this was large enough
to hide very localised events, like the Hurricane Katrina event. In August 2005,
the US BGP graph consisted of around 9,000-10,000 vertices and 45,000 edges.
We analysed three and half days of snapshots, from 29 August, 13:19 to 31
August, 22:32. This period included the landfall of Hurricane Katrina (around
29 August, 10:00). This corresponds to the period between snapshots 11 and
12. As the synthetic dataset evaluation showed, sequential clustering was most
stable and accurate, hence we use it for our BGP analysis. In addition, we found
a regWidth of 0.25, window size ω of 10, window increment inc of 1, and πmerge

and λmerge of 0.2 produced the clearest results. In fact, window sizes from 6 to
10 produced very similar results, again highlighting the accuracy of the merging
part of cSTAG.

Event Separation To demonstrate the difficulty of analysing the changes using
only global statistics of the graph as a whole, we first consider how the total
number of individual changes for each window fluctuated during the landfall of
Katrina. We then compare and demonstrate the ability of cSTAG to separate
specific events among this global set of changes.

Consider Figure 13, which shows the number of edges and vertices that have
experienced a change in each window. It shows there is a significant number of
changing edges and vertices that need to be analysed, even before the landfall
of Katrina. This is partly due to general background changes, and Katrina’s
earlier effects on the Florida part of the network. So even before major events
like the landfall of Katrina, there are 50-100 individual edge changes that need
to be examined by users. During the window immediately after the landfall of
Katrina, the number of changed edges rises to nearly 300. Given that the only
knowledge available for each individual changed edge is whether it appeared or
disappeared between adjacent snapshots, it is difficult to determine any pattern
from the individual changes.

Contrast this with the regions of correlated spatio-temporal change discov-
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Region No. of Edges Change Waveform Comments

A 41

11 12

Main failure region around
Louisiana.

B 13

11 12

Recovery region spatially ad-
jacent to region A.

C 12

11 12

DoD centred failure tempo-
rally similar to region A.

D 11

16 1715

Failure and recovery event in
a major ISP.

Table 6. Significant regions discovered by cSTAG in the US portion of the BGP graph during
the period 28 August to 31 August, 2005, when Hurricane Katrina made landfall. Numbers in
change waveforms indicate the snapshot number.

ered by cSTAG, displayed in Table 6. As the results demonstrate, the discovered
regions correspond either to different events, or different local subgraphs affected
by the same cause. For example, the merged region labelled A represents a large
failure region. It has been reported (Cowie et al. 2005) that a significant percent-
age of the Louisiana (and Mississippi) network was knocked out by Katrina. To
check if region A corresponds to this failure event, we obtained the registered,
geographic states of each AS that are connected to the edges of region A, via
the whois service of the American Registry for Internet Numbers (Ari n.d.). We
found that of the 41 unique changed edges that are in region A, 32 of them are
connected to an AS registered in Louisiana or Mississippi and seven to the ISPs
Sprint and MCI, which experienced some connectivity problems due to Katrina.
Therefore it is likely that region A corresponds to this reported disruption.

Region B is a recovery region. All the edges are centred around AS 701 (MCI),
and this region appears to represent a recovery from failure problems that oc-
curred before the start of our analysis - hence we only see the appearance of the
edges. An important point to note is that the edges in region B are adjacent to
region A (via AS 701) but are not incorrectly merged with them, due to the dif-
ference in temporal behaviour. This demonstrates the benefit of considering the
temporal dimension as well as the spatial dimension, and highlights the ability
of cSTAG to discriminate different events that are spatially close. In addition,
only five of the edges are in reported connectivity blackout areas (Florida and
Texas).

Region C is another failure region, with the time of failure transition also
centred around snapshot 12. However, it is identified as a separate region from
region A because the majority of the ASs in this region are associated with the
Department of Defense and the military, and are spatially separate from each
other. The cause of these failures could be due to Katrina, and hence could be
merged with region A. However, we argue that it is more useful and interesting
to separate the failure of the military network from the civilian organisations
represented in region A, as they represent generally different types of organisa-
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Region No. of Edges Change Waveform Comments

TA 77

11 12

This region subsumes region
A and B of Table 6.

Table 7. A significant region discovered by using temporal distances only (the tem-only strat-
egy) in the US portion of the BGP graph during the period 28 August to 31 August, 2005,
when Hurricane Katrina made landfall. Numbers in change waveforms indicate the snapshot
number.

Region No. of Edges Change Waveform Comments
SA 243 61 Different change waveforms This region almost con-

tains all the unique changed
edges. It subsumes regions
A, B, C and D from Table
6.

Table 8. A significant region discovered by using spatial distances only (the spa-only strategy)
in the US portion of the BGP graph during the period 28 August to 31 August, 2005, when
Hurricane Katrina made landfall.

tions and networks. Again we highlight the point that without considering the
spatial dimension, regions A and C would have been merged together.

The changed edges in Region D, representing a failure followed by a recovery,
are centred around AS 3356, another major ISP (Level 3). This is clearly a
separate event from the other three, and again demonstrates the effectiveness of
cSTAG at discriminating multiple simultaneous events.

To further illustrate why we use both temporal and spatial distances for
region discovery, we also evaluated two naive strategies that used either temporal
distances only (tem-only) or spatial distances only (spa-only).

Consider the tem-only strategy first. We applied this strategy using the same
parameters as cSTAG (except that there are no spatial distance considerations).
A significant region discovered by the tem-only strategy is highlighted in Table
7. As Table 7 shows, we have region TA, which has the same change waveform as
the regions A and C discovered by cSTAG (Table 6). Therefore, due to its lack
of spatial knowledge, the tem-only strategy has incorrectly grouped the edges of
regions A and C as region TA.

Now consider the spa-only scheme. The results of analysing the Katrina data
are shown in Table 8. As the table shows, region SA consists of many edges and
a large number of different change waveforms. It has incorrectly grouped most
of the changed edges together, including all the regions of Table 6. Hence, this
mega-region SA is not very interesting or useful. Therefore, as these two naive
schemes show, both temporal and spatial distances must be considered when
trying to obtain interesting and meaningful results.

In summary, this analysis demonstrates cSTAG is able to separate events and
their impact on the dynamic graph, even if the events, represented by regions, are
either topologically adjacent or temporally similar to each other. In comparison
to the high level temporal analysis of changes in Figure 13, cSTAG provides
much greater insight into the underlying events that have caused the changes.
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Sun 7/6 Mon 8/6 Tue 9/6 Wed 10/6 Thu 11/6 Fri 12/6 Sat 13/6 Sun 14/6
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1998 World Cup
begins

PAR−BGR
KSA−DEN
FRA−RSA

ESP−NGA
KOR−MEX
HOL−BEL

Fig. 14. Hourly Traffic Volume to the 1998 World Cup Website over the period Sunday, June
7 to Saturday, June 13. The matches that the regions in Table 9 correspond to are in bold.
Based on Figure 2 (Arlitt & Jin, 1999).

4.3. 1998 World Cup Web Site Evaluation

In 1998, the 16th FIFA World Cup was held in France. To study the workload
characteristics of the official web site, www.france98.com3, access logs4 of the
web site was analysed by Arlitt and Jin (Arlitt & Jin 1999).

It was reported by Arlitt and Jin that the website experienced flash crowds
- sudden, large increases in the number of unique, legitimate clients accessing
the website. This coincided with the time of weekday matches. Arlitt and Jin
suggested that during weekdays most people are at work or school and cannot
watch the matches on television. The 1998 World Cup was the first world cup
where live scores were available online. Therefore, a significant number of fans,
who cannot watch the matches on television, monitored the live scores via the
website during the matches, producing the flash crowds. Figure 14, which shows
the number of requests per hour over the period from June 7 to June 13, il-
lustrates the aforementioned flash crowd effect coinciding with the times of the
matches.

We wish to construct a dynamic graph of the website accesses and find regions
of correlated change that correspond to the flash crowd events. By studying the
change waveforms of the regions, we can corroborate which regions are most
likely to be associated with each of the flash crowd events, and determine the
set of affected web pages. This demonstrates another application where regions
of correlated change can be used to infer underlying events.

4.3.1. Dataset

The access logs consist of a list of website accesses. Each access has a timestamp,
client ID (corresponding to the IP address of computer accessing the website),
object ID (where an object is any individual file requested by the clients, such as
HTML, image, java files for example), and various other (irrelevant) information.

3 As of August 2007, the address is still valid, but links to a general soccer promotion website.
4 Available at (wc9 n.d.).
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Each flash crowd should to have a set of objects that are uniquely associated
with the flash crowd, i.e., objects associated with the team that was playing at the
time of the flash crowd. This set of objects should have a sudden, large number
of unique clients accessing them over the period of the associated matches, and
after the match, this set of objects are no longer frequently accessed at the same
time. For example, if Paraguay was playing, then we expect objects relating
to Paraguay to be accessed by a large number of the same clients during that
period.

Therefore, to infer the flash crowds/matches from the web logs, we construct
snapshots of the object-object graph and find regions in the snapshot sequence.
Each vertex in the object-object graph represents an object, and a (weighted)
edge exists between a pair of objects if one or more clients accessed both ob-
jects during the period over which the snapshot is defined. The weights count
the number of unique clients accessing the two incident objects. The regions
of correlated change discovered over the snapshots represent groups of objects
that have been accessed by the same set of clients. These clients should be pre-
dominately the fans of the teams playing, hence each flash crowd/match should
produce a unique region.

To build the snapshots, we divide the list of accesses into a sequence of
two hour snapshots, which roughly correspond to the length of a match, in-
cluding half-time and regular extra-time. From each two hour bin, we build the
object-object snapshots. We then convert the weighted snapshots to unweighted
snapshots by setting a filter threshold - edges with weights less than the filter
threshold are deleted, and all remaining edges are turned into unweighted edges.
As Figure 14 shows, there is a high level of background activity and traffic which
is not of interest. We plotted the number of edges with weight x vs. the weight
x, and found that the distribution was heavy tailed. The objects involved in the
flash crowds predominately have large edge weights between them. This suggests
that there are many irrelevant edges with small weights that can be considered
as noise and therefore should be filtered out. We set the threshold for filtering
irrelevant edges to 500.

4.3.2. Findings on the 1998 World Cup Dataset

In this section, we present and discuss some of the regions of correlated change
discovered by cSTAG, over the two day period from 0000 Friday, June 12th
to 2359 Saturday, June 13th. This period included several matches/flash crowd
events.

We shall discuss five of the discovered regions - three correspond to each of
the matches on Friday, one corresponds to one of the matches on Saturday, and
finally one corresponds to fans that are interested in multiple matches on Friday.
The characteristics of the regions are presented in Table 9.

To obtain a better understanding what the regions represent, we extracted
the list of incident objects in each region and obtained the actual files to which
these objects correspond. As there are several hundred unique objects in total,
we truncated the list of objects in each to the most interesting ones. These lists
are presented in Tables 10 to 14.

As the website is no longer available, we do not know the content of the actual
webpages or objects, but we can still distinguish the different regions and identify
some interesting features of those regions. For example, we can infer that the files
matchprogXXXX.htm refer to the webpages that display the live scores of
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Region No. of Edges Change Waveform Comments

Fri-1 160

6 7 8 9
Region corresponding to
fans that monitored the live
scores of match 8893 only,
most likely to be the
Paraguay vs. Bulgaria
match (PAR-BGR).

6 7 109

Fri-2 42

108 9

Region corresponding to
fans that monitored the
live scores of match 8891,
most likely to be the South
Korea vs. Denmark match
(KSA-DEN).

Fri-3 60

9 10 11 12

Region corresponding to
fans that monitored the live
scores of match 8892, most
likely to be the France vs.
South Africa match
(FRA-RSA).

10 11 12

9 10 1312

Sat-1 31

19 20 21 22

Region corresponding to
fans that monitored the live
scores of match 8895, most
likely to be the Holland vs.
Belgium match
(HOL-BEL).

20 21 22

Fri-C 131

87 109

Region corresponding to
fans that monitored
multiple matches on Friday.7 8 9

Table 9. Characteristics of some of the discovered regions of correlated change over the period
0000, June 12th to 2359, June 13th.
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Object/File Name
/eng/teams/teambio128.htm
/eng/teams/teambio136.htm
/eng/competition/groupstandings163 76.htm
/eng/competition/matchstat8893.htm
/eng/competition/matchprog8893.htm
/fra/competition/matchstat8893.htm
/fra/competition/matchprog8893.htm
/fra/competition/groupstandings163 76.htm

Table 10. List of objects/files for region Fri-1.

Object/File Name
/eng/teams/teambio35.htm
/eng/teams/teambio141.htm
/eng/competition/groupstandings163 75.htm
/eng/competition/matchstat8891.htm
/eng/competition/matchprog8891.htm
/fra/competition/matchprog8891.htm
/fra/competition/matchstat8891.htm

Table 11. List of objects/files for region Fri-2.

match XXXX, and matchstatXXXX.htm refer to the webpages that display
the statistics of the match. In addition, files of the form teambioYYY.htm
probably refers to the biography of team YYY, and groupstandings163 77.htm
refers to the group standings of group 164 77.

The four regions labelled Fri-1, Fri-2, Fri-3 and Sat-1 (Tables 10 to 14) are
regions that we hypothesise refer to a unique match/flash crowd. Each of these
regions have a unique matchprog88XX.htm object. In addition, most of them
also have a unique matchstat88XX.htm object. Furthermore, the timing of the
changes for all four regions does not coincide. For example, Fri-1, which appears
in snapshot 7, is different from region Fri-2 (snapshot 9) and Fri-3 (snapshot 10).
This coincides with the timing of each of the three matches on Friday. The fact
that the numbering of the team biographies (and group standings) generally do
not overlap between regions strengthens this hypothesis. There are some cases
where the matchstat objects of other matches are in a region, but these are
limited, and are likely to be fans checking the results of earlier matches in the
day.

The region Fri-C (Table 13) is interesting. It is defined over the same period
as regions Fri-1 and Fri-2 and consists of objects that belong to at least one of
the regions. This region most likely represents fans that are interested in both
the matches. This suggests that hierarchical relationships may exist between the
regions.

In summary, we have used the synthetic datasets to show that cSTAG can ac-
curately find regions of correlated spatio-temporal change. In addition, we have
shown how the parameters settings in cSTAG affect accuracy and running time.
Furthermore, we have analysed two real datasets. We found that the discovered
regions for the BGP routing graph correlates with reported routing events dur-
ing the landfall period of Hurricane Katrina. Finally, we have managed to find
different user access patterns to the 1998 World Cup website based on the group
of files that were accessed frequently together over time.
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Object/File Name
/eng/teams/teambio121.htm
/eng/teams/teambio146.htm
/eng/teams/teambio83.htm
/eng/competition/matchstat8892.htm
/fra/competition/matchstat8892.htm
/eng/competition/groupstandings163 75.htm
/eng/competition/matchstat8891.htm
/eng/competition/matchprog8892.htm
/fra/competition/matchprog8892.htm

Table 12. List of objects/files for region Fri-3.

Object/File Name
/eng/teams/teambio35.htm
/eng/teams/teambio142.htm
/eng/teams/teambio141.htm
/fra/teams/teambio136.htm
/eng/teams/teambio128.htm
/eng/teams/teambio136.htm
/fra/teams/teambio146.htm
/eng/competition/matchstat8890.htm
/eng/competition/groupstandings163 76.htm
/eng/competition/groupstandings163 75.htm
/eng/competition/matchstat8893.htm
/eng/competition/matchprog8893.htm
/fra/competition/matchstat8893.htm
/eng/competition/matchstat8891.htm
/eng/competition/matchprog8891.htm
/fra/competition/matchprog8891.htm
/fra/competition/matchstat8891.htm

Table 13. List of objects/files for region Fri-C.

5. Related Work

The problem of analysing evolving graphs has been studied from a range of dif-
ferent perspectives. Desikan et al (Desikan & Srivastava 2004b) have proposed a
framework to classify different approaches to this problem, in terms of whether
we are analysing properties of (1) the whole graph, (2) specific subgraphs or
(3) individual nodes. Whole graph analysis examines changes to global proper-
ties, like the diameter of the graph. Subgraph analysis investigates graph dy-
namics at the resolution of subgraphs. Single node analysis involves analysing
the changes in node information. We consider our work to be in the subgraph
analysis category. Although Desikan et al have not proposed any algorithm to
perform subgraph analysis, recently they have used evolving graphs as a model

1 Object/File Name
1 /eng/teams/teambio76.htm
/eng/teams/teambio111.htm
/eng/teams/teambio22.htm
/eng/competition/matchstat8896.htm
/eng/competition/groupstandings163 77.htm
/eng/competition/matchstat8895.htm
/eng/competition/matchprog8895.htm
1

Table 14. List of objects/files for region Sat-1.
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in computing an incremental page rank algorithm and in spam email detection
(Desikan et al. 2005)(Desikan & Srivastava 2004a). In this section, we outline re-
lated work, using the framework of Desikan et al as a guide. We also summarise
spatio-temporal approaches to clustering and pattern mining, and contrast work
in data stream clustering with our own.

In terms of whole graph analysis, Leskovec et al (Leskovec et al. 2005) recently
investigated how global properties of graphs, like node degree and the diameter of
a graph, evolve with time. Using four large, real dynamic graphs, they found the
average out-degree and number of edges to follow a power law distribution, as well
as the diameter of graphs decreasing with time. Based on these observations, they
proposed two probabilistic graph models to explain and generate the observed
distributions. Using Desikan’s framework, this can be regarded as global analysis,
thus having a different focus to our work.

Similar to our work, Gaetler and Patrignani (Gaertler & Patrignani 2004)
focused on summarising the temporal evolution of the BGP connectivity graph.
They used spectral graph clustering to reduce the size of the BGP graph they
analysed. However, they did not make simultaneous use of the topological and
temporal information of the evolving BGP graph.

In terms of subgraph analysis, Kraetzl et al (Shoubridge et al. 2002) sur-
veyed various techniques to detect abnormal changes, including two techniques
for identifying the regions of greatest change between two snapshots. One tech-
nique was to construct and permute a change matrix. The other technique was
to construct k-neighbourhoods for each vertex, and compare the neighbourhood
graphs using a graph distance measure.

Recently, Borgwardt et al (Borgwardt et al. 2006) defined the novel prob-
lem of finding frequent subgraphs in dynamic graphs. In addition to the tra-
ditional definition of being topologically frequent, these subgraphs must also
exhibit similar temporal evolution synchronously (over the same period of time),
and asynchronously (can be over different periods of time). Although similar to
our work, the frequent subgraphs sought by Borgwardt do not have any topo-
logical/spatial constraints, whilst in our work, we require changed edges to be
topologically close.

Related to finding dynamic frequent subgraphs is mining minimal contrast
subgraphs (Ting & Bailey 2006). Minimal contrast subgraphs are subgraphs that
appear in one class of graphs, but not in another set, and are minimal, i.e., there
are no proper subgraphs that are also contrast subgraphs. It can be applied to
mining dynamic graphs if we consider a snapshot as one class, and the next
snapshot as the other class. When applied in this context, the discovered set of
minimal contrast subgraphs are the smallest subgraphs that explain the changes
between the snapshots. In contrast to regions of correlated change, the edges and
vertices in a minimal contrast subgraph do not have to be temporally correlated,
or even topologically near each other, hence mining contrast subgraphs cannot
be used as a solution to our problem.

In (Kumar, Novak, Raghavan & Tomkins 2003), Kumar et al explored the
evolution of community structure and behaviour in several collections of we-
blogs. They introduced the notion of a time graph to model the evolution of a
collection of weblogs and the links between them. Edges in the time graph are
labelled with their creation time. Using these time graphs, they extracted the
weblog communities and analysed the degree distribution, evolution of node dis-
tributions in communities, and burstiness of communities. In (Kumar, Novak &
Tomkins 2006), they performed a similar analysis on the structure and evolution



Discovering Correlated Spatio-Temporal Changes in Evolving Graphs 43

of two online social networks, namely Flickr and Yahoo! 360. Similar to Leskovec
et al (Leskovec et al. 2005), their focus is on how local structures evolve with
time, rather than finding correlation in changes.

In (Ali, Mokbel, Aref & Kamel 2005), Ali et al introduced the idea of phenom-
ena detection and tracking (PDT) in sensor networks. PDT involves detecting
sensors that are geographically near to each other and have similar readings over
a certain time period. The motivating example was to track oil spills from a
sensor network deployed at sea. Although similar in aim to our work, the PDT
algorithm involves optimising SQL queries in sensor network databases, and only
uses single linkage to define a spatially close neighbourhood.

Lauw et al (Lauw, Lim, Tan & Pang 2005) used spatio-temporal co-occurring
patterns to construct affiliation networks. The idea is that people or entities who
are co-located frequently are mostly likely to be affiliated to each other. In an
affiliation network, an affiliation is represented as an edge between two vertices
(representing people or entities). Like spatio-temporal mining, which we survey
next, our work uses graphical data, as opposed to time-stamped locations of
different entities. In addition, our work seeks temporal correlation over longer
periods than Lauw et al.

In spatio-temporal clustering and pattern mining, the main objective is to
find objects or incidents that are in close spatial (usually geographical) proximity,
and either occur at the same time (clustering), or occur frequently together
(pattern mining). An example of spatio-temporal pattern mining is given in
(Celik et al. 2006), where Celik et al define the problem of mining mixed-drove
spatio-temporal co-occurrence patterns. These patterns are objects in spatio-
temporal databases that are spatially near each other for many time instances.
In spatio-temporal clustering (Hoebe, de Melker, Spanjaard, Dankert & Nlkerke
2004)(Neill, Moore, Sabhnani & Daniel 2005), clusters of disease, crime and
other incidents of interest are grouped according to their geographical proximity
and their temporal occurrence. Although both types of spatio-temporal mining
are similar to our work, we are concerned with spatial distances that are based
on topological distance in graphs, while in spatio-temporal mining, the spatial
distance is geographically based. Furthermore, in spatio-temporal clustering, the
focus is to seek dense groups of points, whereas density is not defined in relational
data (i.e., graphs) - the closest definitions of density are vertex degree, and the
number of triangles among triplets of vertices. Finally, spatio-temporal mining is
concerned with clusters of incidents or objects that co-occur or are more frequent
than normal, while our work is concerned with groups of entities that report
strong temporal correlation over a window of time.

In the related area of data stream clustering (Aggarwal, Han, Wang & Yu
2003)(Zhou, Cao, Qian & Jin 2007), the aim is to cluster objects/points that
arrive continuously. The emphasis of data stream clustering is to perform the
clustering online, while keeping memory consumption within reasonable limits.
Aggregate statistics of the objects are updated online, and clusters can be pro-
duced anytime from these aggregates. This is different from the region discovery
problem, as there is no identifying how any particular object evolve with time,
nor tracking of how the relationships between individual objects change with
time. Hence, current stream clustering algorithms (Aggarwal et al. 2003)(Zhou
et al. 2007) cannot be used to solve the region discovery problem.
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6. Conclusion

In this paper, we have defined a novel problem in data mining, namely, how to
find regions of correlated spatio-temporal change in evolving graphs. The prob-
lem of finding correlated regions of change arises in a variety of contexts, such
as fault diagnosis and event discovery in computer networks. To address this
problem, we have developed an algorithm called cSTAG, which can find clusters
that simultaneously maximise both the temporal and spatial similarity of the re-
gions of change. Using a quantitative analysis on a simulated dataset, we showed
that cSTAG can accurately characterise a variety of different patterns of spatio-
temporal change in networks. Furthermore, we have applied cSTAG to finding
patterns in the Internet connectivity graph from the Border Gateway Protocol,
and shown that it was able to identify reported failures and simultaneous events
during the 2005 Hurricane Katrina disaster in an accurate and scalable manner.
In addition, we have grouped different sets of accesses to the 1998 World Cup
website based on the groups of files requested frequently together, and we were
also able to corroborate the discovered regions with known flash crowd events.

Our research has stimulated a number of promising directions for future re-
search. So far, we have used an incremental approach to merge regions of change
from different time windows. A future challenge is to develop a more global
approach to simultaneously combine related regions from consecutive time win-
dows. In addition, one of the important post-processing steps in clustering is
to use an measure to rank the obtained clusters. We currently use the size of
regions as an indication of their interest to users, but there are other potential
measures that could be extended and modified upon. For example, Bar-yossef et
al (Bar-Yossef, Guy, Lempel, Maarek & Soroka 2007) recently proposed a cohe-
sion based measure that ranks how good partitions of a graph are. Finally, there
are many other types of application domains where cSTAG can be applied. We
are currently investigating how cSTAG can be used to detect spatio-temporal
regions of correlated activity in Magnetic Resonance Imaging snapshots of brain
activity during different types of cognitive activity.
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