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Abstract 

Web Services are beginning to play a major role in 
future Web architectures and software applications.  
One of the most important research directions in the 
area of Web services is the development of techniques 
for automatically discovering collections of services 
that satisfy a set of interestingness constraints. 
Discovery of interesting collections of Web services is 
a challenging problem, however, due to the high 
complexity involved.  In this paper, we present a new 
method for discovery of interesting collections of Web 
services, according to user specified cost constraints. 
We show that this task is closely related to the well-
known problem of computing the transversals of a 
hypergraph. We experimentally evaluate our approach 
and show that pruning and partitioning techniques can 
significantly improve running time. 

 
 
1. Introduction 
 
Web Services offer an important role in future Web 
architectures and software applications [17]. A Web 
Service is a remotely invoke-able application that aims 
to provide some functionality or a set of functionalities 
over a network. One well-known example is credit card 
verification and processing for online purchasing. 

The World Wide Web is currently moving towards a 
service-oriented architecture, which goes beyond the 
standard user interaction of browsing and searching.  
Instead of visiting Web sites, carrying out searches and 
then manually downloading software, users can 
interact with a Web service. The Web service providers 
produce and publish their Web services. E.g. a cinema 
that provides a Web service for ticket bookings and 
inquiries for (possibly remote) users. The discovery 
entity provides discovery assistance both for providers 
to advertise their services and for consumers to obtain 
information about what services are available. Industry 
standards, such as UDDI, define the environment and 

the possible agreements between the various entities 
involved.  

Before a user requests and invokes a Web Service, 
mutual agreement on shared standards is required 
between the user and the provider. Users can then send 
their request through the service interface to the 
provider side or discovery entity. Once the 
provider/discovery entity gets the request, it will 
determine matching services. Users may then invoke 
the Web Service(s) appropriate for their application. 
One example is online virus detection, Without a Web 
service facility, the user has to visit the virus provider’s 
Website, choose the appropriate program, download it, 
install it and then finally run it. Using a remote Web 
service, they can send their request and accompanying 
parameters specifying what type of scan they require. 
The service can then perform a remote scan of the 
user’s computer.  Three industry-based building blocks 
form a foundation for Web Service applications. They 
are the Web Service Description Language, WSDL, 
specifying how to describe the capabilities of a Web 
Service; SOAP, a transport protocol; and UDDI, an 
XML-based registry schema for Web Service 
discovery that uses a classification catalogue  
characteristics, such as keywords, to indicate 
functionality. 

 
Web Services Discovery 
The Discovery entity plays an important role in the 
Web Service setting. Three components are an 
essential part of the discovery process: shared 
standards, request descriptions and discovery 
approaches. Queries containing a set of requested 
functionalities are the most popular method of 
specification from users. The precise form of these 
requests may vary dramatically across description 
languages [3,8]. Many discovery approaches have been 
proposed for dealing with a query that specifies just a 
single desired functionality. Much of this work focuses 
on techniques for semantic matching between the 
desired functionality and an index of Web service 
capabilities [13].  When a query specifies that a set of 



multiple functionalities are required, the discovery 
entity is required to return sets of relevant Web 
Services, since just a single Web service may not be 
able to provide all desired functionalities. This problem 
of discovery of combinations of Web services is in fact 
very similar to the data mining problem of finding 
interesting patterns in a dataset.  Users specify certain 
constraints on the collections they are interested in (via 
functionality descriptions and possibly cost 
constraints) and the discovery engine must determine 
all sets which satisfy the query.  

From the discovery engine’s procedure point of view, 
the discovery process involves three steps. The first 
step is to parse the user query. The second step is to 
match the descriptions in the query against a catalogue 
of known Web services. The third step is to find the 
combinations of matched Web Services that satisfy the 
cost constraints of the query. The first and second steps 
have been researched extensively and implemented in 
various approaches, such as the index method. Other 
methods include semantic technology approaches built 
upon languages such as DAML-S [1]. The third step is 
principally concerned with determining collections of 
Web services that satisfy the cost constraints. This is 
what we focus on in this paper, assuming that the 
functionality matching has already been performed. We 
now give an example. 
 
Web Service Discovery Example 
A Professor intends to travel to several places overseas 
at Christmas. He needs to arrange an airline ticket, 
accommodation and determine high quality restaurants 
serving the local cuisine. He hopes that he can book 
these tickets and places as soon as possible and wishes 
to minimize any time spent searching on the Web. A 
Web Service discovery engine can assist with this task.   
To use an individual Web Service, he must register and 
pay a registration fee. He would like to find the 
cheapest collection of Web Services that can fulfill all 
his requirements. 

There are six desired functionalities in the request. 
These are shown in the left part of Figure 2. Web 
Services that offer the desired functionality are shown 
on the right side. There are many possible 
combinations that satisfy all requested functionalities. 
E.g. {FlightCentre, HotelService, SmartTraveller, 
BookPlaces} or {BargainHunter, HotelService, 
Goumer, Travel&Stay, BookPlaces}. But which sets of 
Web Services are good choices ? Registration cost is 
an important factor that should be considered, since 
each collection of Web services will have an overall 
registration cost (which is the sum of the individual 
registration fees). 

    Desired functionalities  Matching  Web services
find f light ticket price   BargainHunter SmartTraveller

      FlightCenter
find accommodation       HotelService  Travel&Stay

     Acc omNe t
find restaurant information  SmartTraveller  Goumer
book and pay tickets       Travel&Stay  TicketWatcher

     FlightCentre
book acc omm odation      Acc omNe t  BookPlaces
book restaurant                BookPlace s

Figure 2: An Example of Web Service Discovery 

Determining the collections of Web services that offer 
all the desired functionalities and satisfy a maximum 
cost constraint is similar to a constrained set cover 
problem that aims to find all collections of Web service 
candidates (the cover) that can satisfy all the desired 
functionalities in the input. The set cover problem is 
equivalent to the hypergraph transversal problem [5]. 
 
Contributions 
In this paper, we make the following contributions 

• Show how the problem of computing cost 
constrained collections of Web services can 
be modeled as a constrained set 
cover/hypergraph transversal problem. 

• Provide an efficient algorithm for computing 
constrained hypergraph transversals. 

• Experimentally evaluate our approach and 
identify pruning and partitioning techniques 
which significantly affect running time. 

 
2. Background and Preliminaries 
 

 We now provide the necessary background on 
hypergraphs and then give a formal description of the 
problem  

Definition 1 A hypergraph H is a pair 
H = (E, V ) 

where V is a finite set of vertices V = { v1, v2,…,vm } 
and E is a family of (hyper) edges, E ={ e1, e2,…, et } 
where each ei is a subset of V, 1≤i≤t.  We assume V = 
{∪ei | ei∈E, 1≤i≤t }. 

Definition 2  A set T ⊆  V is a transversal of H if for 
each e∈E, T ∩e≠φ. A transversal T is minimal if no 
proper subset of it is also a transversal. The set of all 
transversals of a hypergraph H is represented as Tr_H. 

We now describe the reduction of the Web service 
discovery problem to one involving hypergraphs. Each 
Web Service is modeled as a vertex and W represents 



the set of all Web services. We will use w to represent 
a single vertex. Each edge corresponds to a set of 
vertices (Web services) which offer a particular 
functionality requested by the user. We use F to 
represent the set of all possible functionalities and f to 
represent a single functionality. Suppose for a given 
user query with t desired functionalities, there are a 
total of k Web services that can provide at least one of 
these functionalities. 

So we have |F|=|E| = t. The hypergraph can be 
rewritten as H = (W, F ) where W = { w1, w2,…, wk } and 
F = { f1, f2,…, ft }.  Each fi ∈ F and fi ⊆  W. 

A transversal of the Web service hypergraph now 
corresponds to a set of Web services that cover all the 
functionalities requested by the user. The 
correspondence between the Web service discovery 
process and hypergraphs is summarized in Figure 3.  

       one functionality                                            one edge
        one Web Service                                            one vertex
        cost of a set of Web Services                         cost of a set of vertices

one output set of Web Services                     one transversal satisfying cost
      functionality                    The matching Web Services
     find flight ticket price         BarginHunter  SmartTraveller  FlightCentre
     maps to:    edge1 = {BarginHunter, SmartTraveller, FlightCentre}
     find accommodation          HotelService  Travel&Stay  AccomNet
     maps to:              edge2 = {HotelService, Travel&Stay, AccomNet}

 Figure 3 Mapping Between Web Service Discovery 
and Hypergraphs 

As mentioned earlier, the process to find sets of Web 
Services satisfying the user query can be reduced to 
finding transversals of the Web service hypergraph. 
However, all transversals computed must satisfy 
certain cost constraints. 
 
Expressing Cost Constraints  
We allow the user to define a conjunction of two 
constraints for restricting collections of Web services, 
one a price constraint and one a cardinality constraint.  
The cost constraint has the form: 

size(S) < k1 and totalprice(S,F) < k2 
Where S is a set of Web services that will be returned, 
F is the set of functionalities requested, k1 and k2 are 
integers. The function size(S) returns the number of 
Web services in the set S and totalprice is: 
totalprice(S,F)=∑ ∈Ff

min({P s
f  | s ∈ S ∩ f}) 

where P s
f is the price charged by Web service s for 

using functionality f. i.e. the totalprice of a set of Web 
services is the sum of the minimum cost required for 
each functionality. To ease presentation, our examples 

assume that each Web service charges the same price 
for each functionality it provides. 

Our problem can thus be stated as follows. Given a 
Web service hypergraph H = (W, F) and a cost 
constraint (k1, k2), find all sets of Web Services R, 
R ⊆ W, such that R is a transversal of H and size(R) < 
k1 and totalprice(R,F)<k2.  It is a challenging 
problem, since the size of the output may in the worst 
case be exponential in the number of Web services. 

 
3. Finding Minimum Cost Transversals 
We now describe how to determine the set of 
transversals satisfying the cost constraints. We use the 
Web service hypergraph shown in Figure 5 as a 
running example.  Prices of individual functionalities 
are shown using superscripts.  Any transversals found 
must satisfy the constraints: size(S) <5 and 
totalprice(S)<14.  The core of our method for finding 
transversals is to perform a depth first enumeration of 
transversals of the hypergraph satisfying the cost 
constraint. We also use three different optimisation 
strategies, namely – edge pruning, horizontal 
partitioning and vertical partitioning, to help reduce the 
size of the search space. 

Input hypergraph H and user cost constraints;  
Output all Tr_H satisfying constraints   
 
1  HEP = Edge Prune (H) 
2  SHV = Horizontal_Partition(HEP); 
3   for each Hi ∈ SHV, Hi = (Vi, Ei) 

4    for each x∈Vi   
5      Hi

x = Vertical_Partition(Hi, x); 
6      Tr_Hi

x = Depth_first_enumerate(Hi
x); 

7      Tr_Hi = Tr_Hi
x ∪  Tr_Hi; 

8    end for  
9    If i=1  
10     then Tr_HEP=Tr_H1; 
11   else 
12     Tr_HEP= Tr_Hi ×  Tr_HEP; 
13  end for  
14  Tr_H = Tr_HEP; 
15  Return Tr_H 

Figure 4 Horizontal and Vertical Partitioning 

Figure 4 illustrates the basic outline of the algorithm.  
The hypergraph first has edge pruning applied, it is 
then decomposed into several connected 
subhypergraphs using horizontal partitioning. Vertical 
partitioning is applied to each subhypergraph and 
transversals are computed depth first within each 
vertical partition. The results of the vertical partitions 
are unioned together. Finally, once all horizontal 
partitions have had their transversals computed, cross 



products between all horizontal partitions are 
calculated to yield the final output.  The algorithm is 
guaranteed to compute all transversals satisfying the 
cost constraints (proof omitted). 

 
 
 

edge1: a0.5  c1.5  g4  h7  z10 

edge2: b0.6  d2.5  i6  w8.1 

edge3: c1.5  p1.6  m7.1  n8.4  k9 

edge4: d2.5  q2.6  m7.1  j8.2  l8.5 

edge5: e0.1  f3  r6 

edge6: f3  o3.1  s7.9  t8.9  z10 

Hypergraph H 

cardinality(S)<5 and totalprice(S)<14 
  

Figure 5 Hypergraph and Cost Parameters 
 

Edge Pruning using Cost Constraints 
Edge pruning aims to reduce the length of each edge of 
the input hypergraph, using the specified price 
constraint. Vertices which can’t be contained in any 
answer satisfying the price constraint may be deleted 
from the hypergraph. 

First observe that the minimum cost of any transversal 
of the hypergraph is given by the following: 

MinCost FW = ∑ ∈Ff
min({ Pf w| w∈W∩f }) 

where the symbol Pf w  represents the price of Web 
Service w on functionality f. Furthermore, the 
minimum cost of a transversal containing a vertex wi 
from edge ei (ei = f) is given by 

MinCostfw
i =Pf w + MinCost F-fW 

Thus, if MinCostfwi is greater than the maximum value 
allowed for the price of a set of Web services, then we 
can conclude that w may be deleted from ei, since it 
cannot participate in any transversal whose cost is less 
than the maximum, no matter what other vertices are 
placed in the transversal. 

For the example in Figure 5, vertices ‘h’ and ‘z’ can be 
deleted from edge1, since the minimum cost of a 
transversal with ‘h’ would be 14.7 and the minimal 
cost of transversal with ‘z’ would be 17.7. These are 
both higher than 14. More pruning could be performed 
to remove vertices in other edges. Thus, the edge 
pruning process generates a smaller sized hypergraph 
HEP (shown in Figure 6 b) from the original input 
hypergraph H (Figure 6a). This is beneficial since the 
time taken to generate transversals is highly dependent 
on the hypergraph size.  

Hypergr ap h H                        Hypergr ap h H EP

edge  1: a  c  g  h  z                    a  c  g
edge  2: b  d  i  w                        b  d  i
edge  3: c  p  m   n  k                 c  p  m
edge  4: d  q  m  j  l                   d  q  m  j
edge  5: e  f  r                             e  f
edge  6: f  o  s  t  z                      f   o  s

Origina l Hypergr ap h            H A fte r e dge pruning
      (a )                                         (b)

Hypergra ph H1                Hypergra ph H1i
a  c  g                                 b  d      
b  d  i                                 a   c   g
c  p  m                                 c   
d  q  m  j                             d

Hypergra phH2                   Hypergra ph H1j
                                         d  q  m
e  f                                    a  c  g
f  o  s                                 b  d  i
                                          c  p  m

After h orizo nta l partitioning    A fter ve rtica l par itionin g
     (c)                                  (d)

 
Figure 6. Example of pruning strategies 

 
Horizontal Partitioning 
Horizontal partitioning decomposes an input 
hypergraph into its maximally connected 
subhypergraphs.  First we give some definitions that 
are needed to describe the process. 

Definition 3 Connected Edges 

An edge ei∈E is connected to an edge ej∈E if either 
ei∩ej≠φ , or there exists an ek∈E, such that ei is 
connected to ek  and ek  is connected to ej   

Definition 4 Maximally Connected Subhypergraph 

A hypergraph HS = (VS, ES), is a maximally connected 
subhypergraph of hypergraph H = (V, E) if ES is a 
subset of E, VS is a correponding appropriate subset of 
V, all pairs of edges in ES are connected and no edge in 
ES is connected to an edge in E-ES. 

Observe that the transversals of any two connected 
subhypergraphs have an empty intersection, since they 
cannot have any vertices in common. In figure 6 (c), 
horizontal partitioning finds edge 1 intersects with 
edge 3, edge 2 intersects with edge 4, edge 3 intersects 
edge 4, etc. These four edges form a maximally 
connected subhypergraph H1. Similarly, H2 is another 
maximally connected subhypergraph generated (also in 
Figure 6 (c)). Obviously H1 and H2 have no vertices in 
common. 

Horizontal partitioning is useful since the transversals 
of the maximally connected hypergraphs can be 
computed independently and then the transversals of 



the original hypergraph are just the cross product of the 
transversals of all the subhypergraphs. The more 
horizontal partitions that can be formed, the more 
effective this optimization can be, since the expensive 
depth first enumeration (described shortly) will be 
limited to the smaller subhypergraphs. Observe that in 
the original hypergraph, horizontal partitioning may be 
initially impossible, but it may become possible after 
edge pruning. Also, as we discuss later, for real 
applications, it is quite likely there may be many 
different subhypergraphs, due to edges having very 
small intersection sizes. 
Vertical Partitioning 
As its name suggests, instead of taking horizontal 
slices through the hypergraph, vertical partitioning 
partitions the hypergraph into a number of vertical 
slices, the union of which is equivalent to the input 
hypergraph. Given a hypergraph H, we begin by 
forming an ordering on the vertices in the hypergraph: 
w1<w2<…<wn, such that cost (w1)< cost(w2) < .. < cost 
(wn), where cost(wi) is the average cost of Web service 
wi across all functionalities it offers.  The first vertex in 
the ordering is associated with the lowest average cost 
and the final vertex in the ordering is the one with the 
highest average cost. 

We then vertically partition the hypergraph as follows: 
 
Hw1 = H with all vertices >= w1 deleted 
… 
Hwi = H with all vertices >= wi deleted 
… 
Hwn = H all vertices >= wn deleted. 

We require that any transversal found for Hwi must 
have the web service wi appended. In Figure 6c, 
hypergraph H1, it has the ordered set of {a, b, c, d, g, i, 
p, q, m, j} vertices. For the partition induced by vertex 
i, all vertices ordered after and including i are deleted. 
The resulting hypergraph H1i is shown in Figure 6(d). 

To understand why vertical partitioning is useful, 
consider the first and last partitions. The first partition 
Hw1 has the fewest vertices (only one) and thus this 
hypergraph is small. The last partition Hwn has all the 
original vertices, but any transversal discovered in it is 
required to also contain the highest average cost 
service wn. We therefore expect this partition to 
contain few transversals, since it will be harder to 
satisfy the price constraint. 
Depth First Enumeration 
After the pruning and partitioning steps have been 
performed, we need to enumerate all transversals 
satisfying the constraints from the resulting 
hypergraph. Vertices within each edge are now ordered 
from lowest price to highest price (left to right). 

Candidates are grown in a depth first manner, moving 
top down, left to right. Each candidate is tested against 
the cost constraints at each step. If it satisfies, then the 
candidate set is grown further (if possible) by moving 
downwards and if the last edge has been reached then 
the candidate set must be a transversal and the search 
moves to the right. If at any stage the candidate set 
does not satisfy the constraints, then the search moves 
to the next vertex to the right.  Once no more vertices 
exist to the right, the search backtracks one level.  With 
computer transversals of each hypergraph pruned 
through edge pruning, horizontal partitioning and 
vertical partitioning, partial results are then unioned 
together and combined using a cross product across 
subhypergraphs.  Space constraints prevent a full 
explanation.  For more details see [18]. 
 
4. Experimental Results 
We now give an experimental evaluation of our Web 
service discovery algorithm. We expect Web service 
hypergraphs may have the following characteristics: i) 
Relatively few edges (since the user will not ask for too 
many functionalities), ii) A much larger number of 
vertices than edges (since the Web contains many Web 
services), iii) The frequency of each vertex is low, 
because it is expensive for providers to offer many 
functionalities and hence the size of intersections 
between edges is small. We make the prices of the 
Web services follow a normal distribution and use the 
IBM Quest Data Generator to generate the hypergraphs 
having these characteristics [9]. 

Table 1 lists the characteristics of the datasets, giving 
number of edges (#edge), average length of edges 
(avL), number of vertices (#vert), cardinality constraint 
value (CC), price constraint value (OC), size of the 
output (number of transversals satisfying constraints, 
#output) and number of subhypergraphs (#sub) after 
edge pruning and horizontal partitioning. 

In Table 2, we compare the running times of 5 different 
algorithms, composed from the techniques discussed. 
Suppose E=edge pruning, V=vertical partitioning, 
H=horizontal partitioning, D=depth first enumeration 
and B=breadth first enumeration. Then versions 
compared are EHVD, EVD, ED, D and B (a naive 
breadth first transversal enumeration).  All algorithms 
were benchmarked on a 1GHz Intel PIII, with 2GB of 
memory.  All running times are in seconds. 

Looking at Table 2, we see that EHVD is always the 
most effective, though the differences in running time 
only become apparent when the input hypergraph is 
large.  The number of subhypergraphs has a strong 
impact on the algorithm running time, as can be seen 
from the vastly superior performance of EHVD over 



EVD. Pure depth first and pure breadth first are by far 
the slowest methods and edge pruning significantly 
improves pure depth first (ED versus D).  Vertical 
partitioning also has a significant improving effect 
(EVD versus ED).  As expected, the running time of all 
algorithms increases for situations where the 
constraints are not selective and as the input gets 
larger. 
 
5. Related Work 
We now briefly survey related work in the areas of 
Web service discovery and computation of hypergraph 
transversals. 

Depending on the description language capability, the 
service discovery process can be categorized as being 
either semantic level discovery or non-semantic 
(syntactic) level discovery. UDDI is an example of 
non-semantic level discovery that is based on keyword 
matching.  A number of ontology languages have been 
developed for describing properties and capabilities of 
Web services [15] and DAML-S [1] is one well-known 
example. Many semantic level discovery approaches 
have been developed, e.g. [13, 16] for matching 
between the provided capabilities of services and 
service requestors’ needs. The discovery space of 
available candidates (Web Services) can also be 
categorised as being either a centralized registry 
approach like UDDI  or a distributed approach such as 
a grid environment or peer to peer. The tradeoffs 
between the two lie in the Web Service Architecture. 
In this paper we have followed the centralized 
approach. A major difference of this work from ours is 
that we aim to discover combinations of services that 
can satisfy multiple functionalities, rather than 
discovering just a single Web service providing a 
single functionality. 

As we have shown, the Web service discovery problem 
can be viewed as a generalized case of hypergraph 
transversal computation, where the output must satisfy 
a collection of cost constraints. There is a considerable 
amount of work on hypergraph transversals, which 
principally concentrates on the case of generating 
either the set of all minimal transversals or generating 
only a single transversal (or a single covering set) 
having minimal cardinality [5,12]. Although the 
precise complexity of the former problem is still an 
open problem, there exists an algorithm taking quasi-
exponential time in the combined size of the input and 
output [6]. It is NP-complete to compute just a single 
transversal [5,12]. In contrast, in our work we are not 
focusing on computing either the minimal transversals 
or a single transversal, but rather the set of transversals 
satisfying the specified cost constraints. 

Nevertheless, the techniques our approach uses do 
have similarities with other previous work on 
computing minimal transversals. Vertical partitioning 
based on frequency is discussed in [2], as a means of 
speeding up the computation of minimal transversals. 
Work in [10] describes a depth first algorithm for 
computing the minimal transversals. Horizontal 
partitioning for general hypergraphs is discussed in 
[14]. Hacid et al [7] also make a connection between 
hypergraphs and Web services. The difference from 
our work is i) that they only aim to find a single 
transversal having minimal cost, ii) the query is 
specified using Description Logic and the cost measure 
depends on the number of extra concepts contained in 
the transversal and not in the query; our cost 
constraints consider prices of Web services, iii) Their 
algorithm is based on breadth first enumeration, an 
improved version of the classical minimal transversal 
method. 
 
6. Conclusion and Future Work 
In conclusion, we have shown how the problem of 
computing all cost constrained collections of Web 
services that provide a given set of functionalities can 
be modeled as a hypergraph transversal problem. We 
presented a number of partitioning and pruning 
techniques for discovering cost constrained 
transversals and showed they have a significant effect 
on running time.  An interesting direction for future 
work is to consider the incorporation of relationships 
between groups of Web services in the cost model [11] 
or the facility to specify other kinds of constraints such 
as degrees of interoperability. 
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No. #edges avL #vert CC OC #output #sub 
1 6 10 50 6 6790 9887 1 
2 5 10 35 5 106028 10214 1 
3 6 12 60 5 12621 13449 2 
4 7 11 70 5 16473 8975 3 
5 8 10 70 7 20483 15343 3 
6 10 8 70 9 24562 16523 3 
7 9 9 75 8 24332 45739 3 
8 11 14 143 8 27057 12786 4 
9 11 15 130 11 27057 13534 4 
10 13 10 120 10 27900 29687 4 
11 14 18 237 13 32500 39730 6 
12 12 10 109 10 33500 55780 4 



13 15 20 278 6 34837 44576 6 

Table 1: Character of Data Sets 

 
No. EHVD EVD ED D B 
1 0.71 0.74 0.82 0.82 0.95 
2 0.74 0.76 0.82 0.85 1.01 
3 0.8 0.83 2.11 2.15 1.97 
4 0.64 6.0 10.9 13.90 24.30 
5 0.67 6.21 49.76 67.340 129.37 
6 0.7 12.51 97.59 155.47 278.56 
7 0.73 37.22 149.73 208.6 412.01 
8 0.82 4.24 9.4 22.40 57.49 
9 0.69 4.55 9.82 20.10 60.55 

10 0.79 17.08 21.87 40.01 88.27 
11 0.71 27.1 43.43 81.55 159.11 
12 0.76 29.09 119.93 328.86 897.54 
13 0.76 83.45 160.8 840.33 2239.45 

Table 2 Running Time (seconds) 
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