
Fast Discovery of Interesting Collections of Web Services

Zhou Zhu and James Bailey
NICTA VRL, University of Melbourne

jbailey@csse.unimelb.edu.au

Abstract

Web Services are beginning to play a major role in
future Web architectures and software applications.
One of the most important research directions in the
area of Web services is the development of techniques
for automatically discovering collections of services
that satisfy a set of interestingness constraints.
Discovery of interesting collections of Web services is
a challenging problem, however, due to the high
complexity involved. In this paper, we present a new
method for discovery of interesting collections of Web
services, according to user specified cost constraints.
We show that this task is closely related to the well-
known problem of computing the transversals of a
hypergraph. We experimentally evaluate our approach
and show that pruning and partitioning techniques can
significantly improve running time.

1. Introduction

Web Services offer an important role in future Web
architectures and software applications [17]. A Web
Service is a remotely invoke-able application that aims
to provide some functionality or a set of functionalities
over a network. One well-known example is credit card
verification and processing for online purchasing.

The World Wide Web is currently moving towards a
service-oriented architecture, which goes beyond the
standard user interaction of browsing and searching.
Instead of visiting Web sites, carrying out searches and
then manually downloading software, users can
interact with a Web service. The Web service providers
produce and publish their Web services. E.g. a cinema
that provides a Web service for ticket bookings and
inquiries for (possibly remote) users. The discovery
entity provides discovery assistance both for providers
to advertise their services and for consumers to obtain
information about what services are available. Industry
standards, such as UDDI, define the environment and

the possible agreements between the various entities
involved.

Before a user requests and invokes a Web Service,
mutual agreement on shared standards is required
between the user and the provider. Users can then send
their request through the service interface to the
provider side or discovery entity. Once the
provider/discovery entity gets the request, it will
determine matching services. Users may then invoke
the Web Service(s) appropriate for their application.
One example is online virus detection, Without a Web
service facility, the user has to visit the virus provider’s
Website, choose the appropriate program, download it,
install it and then finally run it. Using a remote Web
service, they can send their request and accompanying
parameters specifying what type of scan they require.
The service can then perform a remote scan of the
user’s computer. Three industry-based building blocks
form a foundation for Web Service applications. They
are the Web Service Description Language, WSDL,
specifying how to describe the capabilities of a Web
Service; SOAP, a transport protocol; and UDDI, an
XML-based registry schema for Web Service
discovery that uses a classification catalogue
characteristics, such as keywords, to indicate
functionality.

Web Services Discovery
The Discovery entity plays an important role in the
Web Service setting. Three components are an
essential part of the discovery process: shared
standards, request descriptions and discovery
approaches. Queries containing a set of requested
functionalities are the most popular method of
specification from users. The precise form of these
requests may vary dramatically across description
languages [3,8]. Many discovery approaches have been
proposed for dealing with a query that specifies just a
single desired functionality. Much of this work focuses
on techniques for semantic matching between the
desired functionality and an index of Web service
capabilities [13]. When a query specifies that a set of

multiple functionalities are required, the discovery
entity is required to return sets of relevant Web
Services, since just a single Web service may not be
able to provide all desired functionalities. This problem
of discovery of combinations of Web services is in fact
very similar to the data mining problem of finding
interesting patterns in a dataset. Users specify certain
constraints on the collections they are interested in (via
functionality descriptions and possibly cost
constraints) and the discovery engine must determine
all sets which satisfy the query.

From the discovery engine’s procedure point of view,
the discovery process involves three steps. The first
step is to parse the user query. The second step is to
match the descriptions in the query against a catalogue
of known Web services. The third step is to find the
combinations of matched Web Services that satisfy the
cost constraints of the query. The first and second steps
have been researched extensively and implemented in
various approaches, such as the index method. Other
methods include semantic technology approaches built
upon languages such as DAML-S [1]. The third step is
principally concerned with determining collections of
Web services that satisfy the cost constraints. This is
what we focus on in this paper, assuming that the
functionality matching has already been performed. We
now give an example.

Web Service Discovery Example
A Professor intends to travel to several places overseas
at Christmas. He needs to arrange an airline ticket,
accommodation and determine high quality restaurants
serving the local cuisine. He hopes that he can book
these tickets and places as soon as possible and wishes
to minimize any time spent searching on the Web. A
Web Service discovery engine can assist with this task.
To use an individual Web Service, he must register and
pay a registration fee. He would like to find the
cheapest collection of Web Services that can fulfill all
his requirements.

There are six desired functionalities in the request.
These are shown in the left part of Figure 2. Web
Services that offer the desired functionality are shown
on the right side. There are many possible
combinations that satisfy all requested functionalities.
E.g. {FlightCentre, HotelService, SmartTraveller,
BookPlaces} or {BargainHunter, HotelService,
Goumer, Travel&Stay, BookPlaces}. But which sets of
Web Services are good choices ? Registration cost is
an important factor that should be considered, since
each collection of Web services will have an overall
registration cost (which is the sum of the individual
registration fees).

 Desired functionalities Matching Web services
find f light ticket price BargainHunter SmartTraveller

 FlightCenter
find accommodation HotelService Travel&Stay

 Acc omNe t
find restaurant information SmartTraveller Goumer
book and pay tickets Travel&Stay TicketWatcher

 FlightCentre
book acc omm odation Acc omNe t BookPlaces
book restaurant BookPlace s

Figure 2: An Example of Web Service Discovery

Determining the collections of Web services that offer
all the desired functionalities and satisfy a maximum
cost constraint is similar to a constrained set cover
problem that aims to find all collections of Web service
candidates (the cover) that can satisfy all the desired
functionalities in the input. The set cover problem is
equivalent to the hypergraph transversal problem [5].

Contributions
In this paper, we make the following contributions

• Show how the problem of computing cost
constrained collections of Web services can
be modeled as a constrained set
cover/hypergraph transversal problem.

• Provide an efficient algorithm for computing
constrained hypergraph transversals.

• Experimentally evaluate our approach and
identify pruning and partitioning techniques
which significantly affect running time.

2. Background and Preliminaries

 We now provide the necessary background on
hypergraphs and then give a formal description of the
problem

Definition 1 A hypergraph H is a pair
H = (E, V)

where V is a finite set of vertices V = { v1, v2,…,vm }
and E is a family of (hyper) edges, E ={ e1, e2,…, et }
where each ei is a subset of V, 1≤i≤t. We assume V =
{∪ei | ei∈E, 1≤i≤t }.

Definition 2 A set T ⊆ V is a transversal of H if for
each e∈E, T ∩e≠φ. A transversal T is minimal if no
proper subset of it is also a transversal. The set of all
transversals of a hypergraph H is represented as Tr_H.

We now describe the reduction of the Web service
discovery problem to one involving hypergraphs. Each
Web Service is modeled as a vertex and W represents

the set of all Web services. We will use w to represent
a single vertex. Each edge corresponds to a set of
vertices (Web services) which offer a particular
functionality requested by the user. We use F to
represent the set of all possible functionalities and f to
represent a single functionality. Suppose for a given
user query with t desired functionalities, there are a
total of k Web services that can provide at least one of
these functionalities.

So we have |F|=|E| = t. The hypergraph can be
rewritten as H = (W, F) where W = { w1, w2,…, wk } and
F = { f1, f2,…, ft }. Each fi ∈ F and fi ⊆ W.

A transversal of the Web service hypergraph now
corresponds to a set of Web services that cover all the
functionalities requested by the user. The
correspondence between the Web service discovery
process and hypergraphs is summarized in Figure 3.

 one functionality one edge
 one Web Service one vertex
 cost of a set of Web Services cost of a set of vertices

one output set of Web Services one transversal satisfying cost
 functionality The matching Web Services
 find flight ticket price BarginHunter SmartTraveller FlightCentre
 maps to: edge1 = {BarginHunter, SmartTraveller, FlightCentre}
 find accommodation HotelService Travel&Stay AccomNet
 maps to: edge2 = {HotelService, Travel&Stay, AccomNet}

 Figure 3 Mapping Between Web Service Discovery
and Hypergraphs

As mentioned earlier, the process to find sets of Web
Services satisfying the user query can be reduced to
finding transversals of the Web service hypergraph.
However, all transversals computed must satisfy
certain cost constraints.

Expressing Cost Constraints
We allow the user to define a conjunction of two
constraints for restricting collections of Web services,
one a price constraint and one a cardinality constraint.
The cost constraint has the form:

size(S) < k1 and totalprice(S,F) < k2
Where S is a set of Web services that will be returned,
F is the set of functionalities requested, k1 and k2 are
integers. The function size(S) returns the number of
Web services in the set S and totalprice is:
totalprice(S,F)=∑ ∈Ff

min({P s
f | s ∈ S ∩ f})

where P s
f is the price charged by Web service s for

using functionality f. i.e. the totalprice of a set of Web
services is the sum of the minimum cost required for
each functionality. To ease presentation, our examples

assume that each Web service charges the same price
for each functionality it provides.

Our problem can thus be stated as follows. Given a
Web service hypergraph H = (W, F) and a cost
constraint (k1, k2), find all sets of Web Services R,
R ⊆ W, such that R is a transversal of H and size(R) <
k1 and totalprice(R,F)<k2. It is a challenging
problem, since the size of the output may in the worst
case be exponential in the number of Web services.

3. Finding Minimum Cost Transversals
We now describe how to determine the set of
transversals satisfying the cost constraints. We use the
Web service hypergraph shown in Figure 5 as a
running example. Prices of individual functionalities
are shown using superscripts. Any transversals found
must satisfy the constraints: size(S) <5 and
totalprice(S)<14. The core of our method for finding
transversals is to perform a depth first enumeration of
transversals of the hypergraph satisfying the cost
constraint. We also use three different optimisation
strategies, namely – edge pruning, horizontal
partitioning and vertical partitioning, to help reduce the
size of the search space.

Input hypergraph H and user cost constraints;
Output all Tr_H satisfying constraints

1 HEP = Edge Prune (H)
2 SHV = Horizontal_Partition(HEP);
3 for each Hi ∈ SHV, Hi = (Vi, Ei)

4 for each x∈Vi
5 Hi

x = Vertical_Partition(Hi, x);
6 Tr_Hi

x = Depth_first_enumerate(Hi
x);

7 Tr_Hi = Tr_Hi
x ∪ Tr_Hi;

8 end for
9 If i=1
10 then Tr_HEP=Tr_H1;
11 else
12 Tr_HEP= Tr_Hi × Tr_HEP;
13 end for
14 Tr_H = Tr_HEP;
15 Return Tr_H

Figure 4 Horizontal and Vertical Partitioning

Figure 4 illustrates the basic outline of the algorithm.
The hypergraph first has edge pruning applied, it is
then decomposed into several connected
subhypergraphs using horizontal partitioning. Vertical
partitioning is applied to each subhypergraph and
transversals are computed depth first within each
vertical partition. The results of the vertical partitions
are unioned together. Finally, once all horizontal
partitions have had their transversals computed, cross

products between all horizontal partitions are
calculated to yield the final output. The algorithm is
guaranteed to compute all transversals satisfying the
cost constraints (proof omitted).

edge1: a0.5 c1.5 g4 h7 z10

edge2: b0.6 d2.5 i6 w8.1

edge3: c1.5 p1.6 m7.1 n8.4 k9

edge4: d2.5 q2.6 m7.1 j8.2 l8.5

edge5: e0.1 f3 r6

edge6: f3 o3.1 s7.9 t8.9 z10

Hypergraph H

cardinality(S)<5 and totalprice(S)<14

Figure 5 Hypergraph and Cost Parameters

Edge Pruning using Cost Constraints
Edge pruning aims to reduce the length of each edge of
the input hypergraph, using the specified price
constraint. Vertices which can’t be contained in any
answer satisfying the price constraint may be deleted
from the hypergraph.

First observe that the minimum cost of any transversal
of the hypergraph is given by the following:

MinCost FW = ∑ ∈Ff
min({ Pf w| w∈W∩f })

where the symbol Pf w represents the price of Web
Service w on functionality f. Furthermore, the
minimum cost of a transversal containing a vertex wi
from edge ei (ei = f) is given by

MinCostfw
i =Pf w + MinCost F-fW

Thus, if MinCostfwi is greater than the maximum value
allowed for the price of a set of Web services, then we
can conclude that w may be deleted from ei, since it
cannot participate in any transversal whose cost is less
than the maximum, no matter what other vertices are
placed in the transversal.

For the example in Figure 5, vertices ‘h’ and ‘z’ can be
deleted from edge1, since the minimum cost of a
transversal with ‘h’ would be 14.7 and the minimal
cost of transversal with ‘z’ would be 17.7. These are
both higher than 14. More pruning could be performed
to remove vertices in other edges. Thus, the edge
pruning process generates a smaller sized hypergraph
HEP (shown in Figure 6 b) from the original input
hypergraph H (Figure 6a). This is beneficial since the
time taken to generate transversals is highly dependent
on the hypergraph size.

Hypergr ap h H Hypergr ap h H EP

edge 1: a c g h z a c g
edge 2: b d i w b d i
edge 3: c p m n k c p m
edge 4: d q m j l d q m j
edge 5: e f r e f
edge 6: f o s t z f o s

Origina l Hypergr ap h H A fte r e dge pruning
 (a) (b)

Hypergra ph H1 Hypergra ph H1i
a c g b d
b d i a c g
c p m c
d q m j d

Hypergra phH2 Hypergra ph H1j
 d q m
e f a c g
f o s b d i
 c p m

After h orizo nta l partitioning A fter ve rtica l par itionin g
 (c) (d)

Figure 6. Example of pruning strategies

Horizontal Partitioning
Horizontal partitioning decomposes an input
hypergraph into its maximally connected
subhypergraphs. First we give some definitions that
are needed to describe the process.

Definition 3 Connected Edges

An edge ei∈E is connected to an edge ej∈E if either
ei∩ej≠φ , or there exists an ek∈E, such that ei is
connected to ek and ek is connected to ej

Definition 4 Maximally Connected Subhypergraph

A hypergraph HS = (VS, ES), is a maximally connected
subhypergraph of hypergraph H = (V, E) if ES is a
subset of E, VS is a correponding appropriate subset of
V, all pairs of edges in ES are connected and no edge in
ES is connected to an edge in E-ES.

Observe that the transversals of any two connected
subhypergraphs have an empty intersection, since they
cannot have any vertices in common. In figure 6 (c),
horizontal partitioning finds edge 1 intersects with
edge 3, edge 2 intersects with edge 4, edge 3 intersects
edge 4, etc. These four edges form a maximally
connected subhypergraph H1. Similarly, H2 is another
maximally connected subhypergraph generated (also in
Figure 6 (c)). Obviously H1 and H2 have no vertices in
common.

Horizontal partitioning is useful since the transversals
of the maximally connected hypergraphs can be
computed independently and then the transversals of

the original hypergraph are just the cross product of the
transversals of all the subhypergraphs. The more
horizontal partitions that can be formed, the more
effective this optimization can be, since the expensive
depth first enumeration (described shortly) will be
limited to the smaller subhypergraphs. Observe that in
the original hypergraph, horizontal partitioning may be
initially impossible, but it may become possible after
edge pruning. Also, as we discuss later, for real
applications, it is quite likely there may be many
different subhypergraphs, due to edges having very
small intersection sizes.
Vertical Partitioning
As its name suggests, instead of taking horizontal
slices through the hypergraph, vertical partitioning
partitions the hypergraph into a number of vertical
slices, the union of which is equivalent to the input
hypergraph. Given a hypergraph H, we begin by
forming an ordering on the vertices in the hypergraph:
w1<w2<…<wn, such that cost (w1)< cost(w2) < .. < cost
(wn), where cost(wi) is the average cost of Web service
wi across all functionalities it offers. The first vertex in
the ordering is associated with the lowest average cost
and the final vertex in the ordering is the one with the
highest average cost.

We then vertically partition the hypergraph as follows:

Hw1 = H with all vertices >= w1 deleted
…
Hwi = H with all vertices >= wi deleted
…
Hwn = H all vertices >= wn deleted.

We require that any transversal found for Hwi must
have the web service wi appended. In Figure 6c,
hypergraph H1, it has the ordered set of {a, b, c, d, g, i,
p, q, m, j} vertices. For the partition induced by vertex
i, all vertices ordered after and including i are deleted.
The resulting hypergraph H1i is shown in Figure 6(d).

To understand why vertical partitioning is useful,
consider the first and last partitions. The first partition
Hw1 has the fewest vertices (only one) and thus this
hypergraph is small. The last partition Hwn has all the
original vertices, but any transversal discovered in it is
required to also contain the highest average cost
service wn. We therefore expect this partition to
contain few transversals, since it will be harder to
satisfy the price constraint.
Depth First Enumeration
After the pruning and partitioning steps have been
performed, we need to enumerate all transversals
satisfying the constraints from the resulting
hypergraph. Vertices within each edge are now ordered
from lowest price to highest price (left to right).

Candidates are grown in a depth first manner, moving
top down, left to right. Each candidate is tested against
the cost constraints at each step. If it satisfies, then the
candidate set is grown further (if possible) by moving
downwards and if the last edge has been reached then
the candidate set must be a transversal and the search
moves to the right. If at any stage the candidate set
does not satisfy the constraints, then the search moves
to the next vertex to the right. Once no more vertices
exist to the right, the search backtracks one level. With
computer transversals of each hypergraph pruned
through edge pruning, horizontal partitioning and
vertical partitioning, partial results are then unioned
together and combined using a cross product across
subhypergraphs. Space constraints prevent a full
explanation. For more details see [18].

4. Experimental Results
We now give an experimental evaluation of our Web
service discovery algorithm. We expect Web service
hypergraphs may have the following characteristics: i)
Relatively few edges (since the user will not ask for too
many functionalities), ii) A much larger number of
vertices than edges (since the Web contains many Web
services), iii) The frequency of each vertex is low,
because it is expensive for providers to offer many
functionalities and hence the size of intersections
between edges is small. We make the prices of the
Web services follow a normal distribution and use the
IBM Quest Data Generator to generate the hypergraphs
having these characteristics [9].

Table 1 lists the characteristics of the datasets, giving
number of edges (#edge), average length of edges
(avL), number of vertices (#vert), cardinality constraint
value (CC), price constraint value (OC), size of the
output (number of transversals satisfying constraints,
#output) and number of subhypergraphs (#sub) after
edge pruning and horizontal partitioning.

In Table 2, we compare the running times of 5 different
algorithms, composed from the techniques discussed.
Suppose E=edge pruning, V=vertical partitioning,
H=horizontal partitioning, D=depth first enumeration
and B=breadth first enumeration. Then versions
compared are EHVD, EVD, ED, D and B (a naive
breadth first transversal enumeration). All algorithms
were benchmarked on a 1GHz Intel PIII, with 2GB of
memory. All running times are in seconds.

Looking at Table 2, we see that EHVD is always the
most effective, though the differences in running time
only become apparent when the input hypergraph is
large. The number of subhypergraphs has a strong
impact on the algorithm running time, as can be seen
from the vastly superior performance of EHVD over

EVD. Pure depth first and pure breadth first are by far
the slowest methods and edge pruning significantly
improves pure depth first (ED versus D). Vertical
partitioning also has a significant improving effect
(EVD versus ED). As expected, the running time of all
algorithms increases for situations where the
constraints are not selective and as the input gets
larger.

5. Related Work
We now briefly survey related work in the areas of
Web service discovery and computation of hypergraph
transversals.

Depending on the description language capability, the
service discovery process can be categorized as being
either semantic level discovery or non-semantic
(syntactic) level discovery. UDDI is an example of
non-semantic level discovery that is based on keyword
matching. A number of ontology languages have been
developed for describing properties and capabilities of
Web services [15] and DAML-S [1] is one well-known
example. Many semantic level discovery approaches
have been developed, e.g. [13, 16] for matching
between the provided capabilities of services and
service requestors’ needs. The discovery space of
available candidates (Web Services) can also be
categorised as being either a centralized registry
approach like UDDI or a distributed approach such as
a grid environment or peer to peer. The tradeoffs
between the two lie in the Web Service Architecture.
In this paper we have followed the centralized
approach. A major difference of this work from ours is
that we aim to discover combinations of services that
can satisfy multiple functionalities, rather than
discovering just a single Web service providing a
single functionality.

As we have shown, the Web service discovery problem
can be viewed as a generalized case of hypergraph
transversal computation, where the output must satisfy
a collection of cost constraints. There is a considerable
amount of work on hypergraph transversals, which
principally concentrates on the case of generating
either the set of all minimal transversals or generating
only a single transversal (or a single covering set)
having minimal cardinality [5,12]. Although the
precise complexity of the former problem is still an
open problem, there exists an algorithm taking quasi-
exponential time in the combined size of the input and
output [6]. It is NP-complete to compute just a single
transversal [5,12]. In contrast, in our work we are not
focusing on computing either the minimal transversals
or a single transversal, but rather the set of transversals
satisfying the specified cost constraints.

Nevertheless, the techniques our approach uses do
have similarities with other previous work on
computing minimal transversals. Vertical partitioning
based on frequency is discussed in [2], as a means of
speeding up the computation of minimal transversals.
Work in [10] describes a depth first algorithm for
computing the minimal transversals. Horizontal
partitioning for general hypergraphs is discussed in
[14]. Hacid et al [7] also make a connection between
hypergraphs and Web services. The difference from
our work is i) that they only aim to find a single
transversal having minimal cost, ii) the query is
specified using Description Logic and the cost measure
depends on the number of extra concepts contained in
the transversal and not in the query; our cost
constraints consider prices of Web services, iii) Their
algorithm is based on breadth first enumeration, an
improved version of the classical minimal transversal
method.

6. Conclusion and Future Work
In conclusion, we have shown how the problem of
computing all cost constrained collections of Web
services that provide a given set of functionalities can
be modeled as a hypergraph transversal problem. We
presented a number of partitioning and pruning
techniques for discovering cost constrained
transversals and showed they have a significant effect
on running time. An interesting direction for future
work is to consider the incorporation of relationships
between groups of Web services in the cost model [11]
or the facility to specify other kinds of constraints such
as degrees of interoperability.

Acknowledgments: This work is partially sponsored by
National ICT Australia. National ICT Australia is funded by
the Australian Government’s Backing Australia’s Ability
Initiative, in part through the Australian Research Council.

No. #edges avL #vert CC OC #output #sub
1 6 10 50 6 6790 9887 1
2 5 10 35 5 106028 10214 1
3 6 12 60 5 12621 13449 2
4 7 11 70 5 16473 8975 3
5 8 10 70 7 20483 15343 3
6 10 8 70 9 24562 16523 3
7 9 9 75 8 24332 45739 3
8 11 14 143 8 27057 12786 4
9 11 15 130 11 27057 13534 4
10 13 10 120 10 27900 29687 4
11 14 18 237 13 32500 39730 6
12 12 10 109 10 33500 55780 4

13 15 20 278 6 34837 44576 6

Table 1: Character of Data Sets

No. EHVD EVD ED D B
1 0.71 0.74 0.82 0.82 0.95
2 0.74 0.76 0.82 0.85 1.01
3 0.8 0.83 2.11 2.15 1.97
4 0.64 6.0 10.9 13.90 24.30
5 0.67 6.21 49.76 67.340 129.37
6 0.7 12.51 97.59 155.47 278.56
7 0.73 37.22 149.73 208.6 412.01
8 0.82 4.24 9.4 22.40 57.49
9 0.69 4.55 9.82 20.10 60.55

10 0.79 17.08 21.87 40.01 88.27
11 0.71 27.1 43.43 81.55 159.11
12 0.76 29.09 119.93 328.86 897.54
13 0.76 83.45 160.8 840.33 2239.45

Table 2 Running Time (seconds)

7. References

[1] Ankolekar, A., Burstein, M. and Hobbs, J.R., et al.

(2002): DAML-S: Web Service Description for the
Semantic Web. Proc International Semantic Web
Conference. (ISWC), Sardinia, Italy, LNCS 2342.

[2] Bailey, J. Manoukian, T. and Ramamohanarao, K. (2003):
A Fast Algorithm for Computing Hypergraph Transversals
and its Application in Mining Emerging Patterns. 3rd IEEE
International Conference on Data Mining (ICDM) 2003.

[3] Balke, W.-T. and Wagner, M. (2003): Cooperative
Discovery for User-centered Web Service Provisioning.
Proc. First International Conference on Web Services.

[4] Eiter, T. and Gottlob, G. (1995): Identifying the Minimal
Trasnversals of a Hypergraph and Related Problems. SIAM
Journal on Computing, 24(6): 1278-1304

[5] Eiter, T. and Gottlob, G. (2002): Hypergraph Transversal
Computation and Related Problems in Logic and AI. Proc.
8th European Conference on Logics in Artificial
Intelligence (JELIA 2002), pages 549--564. Springer.

[6] Fredman, M.L. and Khachiyan, L. (1996): On the
Complexity of Dualization of Monotone Disjuctive
Normal Forms. Journal of Algorithms, 21(3): 618-628.

[7] Hacid, M.-S., Leger, A., Rey, C. and Toumani, F. (2002)
Dynamic Discovery of E-Services in a Knowledge

Representation and Reasoning Context. 18èmes Journées
Bases de Données Avancées, Evry, France.

[8] Hoschek, W. (2003): Peer-to-Peer Grid Databases for
Web Service Discovery. Grid Computing: Making the
Global Infrastructure a Reality”, Wiley Press.

[9] IBM Quest,
http://www.almaden.ibm.com/software/quest/.

[10] Kavvadias, D and Stavropoulos, E.C. (1999): Evaluation
of an Algorithm for the Transversal Hypergraph Problem.
Algorithm Engineering, Third International Workshop,
pages 72–84.

[11] Limthanmaphon, B. and Zhang. Y. (2003): Web Service
Composition with Case-Based Reasoning. Database
Technologies 2003, Proc. 14th Australasian Database
Conference (ADC), Adelaide, Australia.

[12] Luigi Palopoli, F. Pirri, C. Pizzuti: Algorithms for
Selective Enumeration of Prime Implicants. Artif. Intell
111(1-2): 41-72 (1999)

[13] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K.
(2002): Semantic Matching of Web Services Capabilities.
Proc. International Semantic Web Conference (ISWC02),
Sardinia Italy.

[14] Rymon, R. (1994): An SE-tree-based Prime Implicant
720 Generation Algorithm. In Annals of Mathematics and
Artificial Intelligence, special issue on Model-Based
Dagnosis, vol. 11.

[15] Sheth, A. and Ramakrishnan, C. (2003): Semantic Web
Technology In Action: Ontology Driven Information
Systems for Search, Integration and Analysis. IEEE Data
Engineering Bulletin, Special issue on MAKING THE
Semantic Web Real.

[16] Sivashanmugam, K., Verma, K., Sheth, A. and Miller, J.
(2003): Adding Semantics to Web Services Standards.
Proc. International Conference on Web Services
(ICWS'03), page 395-401.

[17] Terziyan, V. and Kononenko, O. (2003): Semantic Web
Enabled Web Services: State-of-Art an Industrial
Challenges. In: Jeckle, M. and Zhang, L.J. (eds.): Web
Services. ICWS-Europe, LNCS Vol. 2853, 183-197.

[18] Zhu, Z. (2005). Fast Computation of Interesting
Collections of Web Services. Master of Computer Science
Thesis, Department of Computer Science and Software
Engineering, University of Melbourne.

