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Abstract—Evaluation of the outcome (end-product) of surgical
procedures carried out in virtual reality environments is an
essential part of simulation-based surgical training. Automated
end-product assessment can be carried out by performance
classifiers built from a set of expert performances. When applied
to temporal bone surgery simulation, these classifiers can evaluate
performance on the bone specimen they were trained on, but
they cannot be extended to new specimens. Thus, new expert
performances need to be recorded for each new specimen,
requiring considerable time commitment from time-poor expert
surgeons. To eliminate this need, we propose a transfer learning
framework to adapt a classifier built on a single temporal bone
specimen to multiple specimens. Once a classifier is trained, we
translate each new specimens’ features to the original feature
space, which allows us to carry out performance evaluation on
different specimens using the same classifier.

In our experiment, we built a surgical end-product perfor-
mance classifier from 16 expert trials on a simulated temporal
bone specimen. We applied the transfer learning approach to 8
new specimens to obtain machine generated end-products. We
also collected end-products for these 8 specimens drilled by a
single expert. We then compared the machine generated end-
products to those drilled by the expert. The drilled regions
generated by transfer learning were similar to those drilled by
the expert.

Keywords—transfer learning, anatomy registration, automatic
evaluation

I. INTRODUCTION

Providing feedback based on the outcome (end-product) of
a surgical procedure is an essential part of surgical training,
which allows trainees to develop an understanding of what
constitutes good performance [1]. In the discipline of Oto-
laryngology, surgical trainees develop this understanding by
practising on cadavers or patients under the supervision of ex-
pert surgeons who evaluate their performance. However, there
are limitations to the current training practices, which include
a shortage of cadaveric temporal bones, limited availability
of expert supervision, and the subjective manner of surgical
skill assessment. These challenges have prompted increasing
interest in the use of computer-based virtual reality (VR)
simulators for surgical education [2]–[4].

VR simulators for surgery can offer repeated practice on
multiple surgical cases of varying difficulty at the convenience
of trainees. In such simulation systems, machine learning can

be used to build a reference model of expert performance
from sets of recorded expert surgeries. This reference model
can be used to provide unbiased, objective and automated
surgical performance evaluation. Sewell et al. and Kerwin et al.
achieved reliable results when using such models to evaluate
surgical performance in VR temporal bone simulators [5],
[6]. However, a limitation of these models is that they can
only be used to evaluate performance on the specimen (i.e.
surgical case) on which the training data was collected. In
order to train a reliable evaluation model for new specimens,
the classical machine learning approaches require a new set of
expert examples collected from each specimen. Given the fact
that expert surgeons have very full schedules, such data can be
difficult to obtain for a large number of specimens. To our best
knowledge, little work has been done to address the problem
of providing automated objective performance evaluation on
multiple specimens within surgical simulators.

When a human surgeon attains some knowledge by operat-
ing on a patient, they have the ability to adapt that knowledge
to other patients. Similarly, the knowledge represented in a
performance evaluation model learnt from one bone specimen
should be transferable to other temporal bones. The “transfer
learning” [7] approach from the field of machine learning is
a good way to deal with such problems. A popular transfer
learning method is to model the differences between domains
in order to transfer a model learnt from the source domain
to the target domain. In this work we apply this principle
to surgical simulation, by capturing the differences between
specimens and using them to extend our evaluation model from
the original specimen to new specimens.

Specifically we propose a transfer learning approach to
adapt a cochlear implantation surgery performance evaluation
model trained on a single temporal bone specimen to multiple
new specimens. First, we build a classifier using a set of
expert trials on the original specimen, which we refer to as
“specimen model”. Then for each new specimen, we register
each anatomical structure to the corresponding structure in the
specimen model. Third, we transform each bone voxel1 of the
new specimen to the specimen model position according to the
registration matrix of the nearest anatomical structure. This
transformation allows the classifier to be used in predicting

1Specimens are represented in volumetric 3D grids, where a voxel represents
a grid element in 3D space. This is analogous to a pixel in a 2D bitmap image.



the region that should be drilled in the new specimen. Since
anatomical registration is only approximate, it will introduce
some errors. To correct part of this error, the predicted drilled
region is adjusted by applying surgical domain knowledge. In
summary, this paper makes the following contributions:

• To the best of our knowledge, this is the first formal
study in the use of anatomical registration to adapt a
classifier to different specimens in a surgical simula-
tion environment.

• The proposed algorithms are designed to consider both
specimen alignment and surgical domain knowledge.

• Experimental evaluation shows that the proposed
adaptation generate a high quality end-product on a
set of different specimens.

Section II discusses related work. Section III explains the
concept of transfer learning in general and provides a high level
overview of how this can be applied to adapt a classifier for
use on multiple specimens. Section III-A gives an overview of
the proposed transfer learning framework, while sections III-B
and III-C explain the two major components of our solution:
using anatomical registration to align different specimens, and
adding surgical domain knowledge constraints to adjust the
decision model. Section IV describes our experiment and
results, and section V concludes the paper.

II. RELATED WORK

Automated performance evaluation within VR surgical
simulators has drawn increasing attention as a crucial com-
ponent of simulation-based training. Much of the existing
literature has focused on evaluating surgical motions, such as
hand movements, tool usage and applied force/torque [8]–[10].
In our previous work, we used surgical technique evaluation
to generate meaningful automated real-time feedback in a
temporal bone surgery simulator [11], [12]. The models are
used primarily in evaluating how a trainee performed the
surgery, but not whether they drilled the correct regions. While
technique evaluation is important, it is equally important to
evaluate the outcome of a surgical task. Therefore, other
types of automated evaluation such as surgical end-product
assessment need to be integrated into evaluation systems along
with motion-based evaluation.

Sewell et al. and Kerwin et al. have carried out some
work towards automated evaluation of simulated temporal bone
surgery end-products [5], [6]. Sewell et al. [5] used the 1000
most informative voxels from a virtual temporal bone in build-
ing a Naive Bayes model to evaluate expertise. On the other
hand, instead of using voxels as features, Kerwin et al. [6]
derived a set of distances from each anatomical structure and
used a decision tree to evaluate surgical performance. These
approaches achieved high accuracy, but one major drawback
is that such classifiers can only evaluate performance on a
specific specimen, since a major assumption in the classifier
algorithms is that the training and testing data should be in the
same feature space and have the same distribution.

One of the benefits of simulation-based training is that it
can - and should - expose novice surgeons to a variety of
different surgical cases in order to build a complete skill set.
Therefore, a need exists for surgical end-product assessment

algorithms that can be applied to multiple specimens. In view
of the limitations of the existing methods discussed above, we
propose the use of transfer learning [7] to adapt a classifier
trained from one specimen for use on multiple specimens.

Transfer learning [13], [14] has been studied widely in
recent years, since the assumption that training and testing
data have the same feature space and distribution does not hold
in many real-world applications. For example, a classifier that
was trained to distinguish between foxes and wolves is unlikely
to perform well in differentiating lions and tigers, since the two
domains are characterised by different features. To address this
problem, transfer learning transforms different domains into
a common feature space such that a classifier trained in one
domain can be used in another domain. This approach has been
used widely in solving text and image classification problems.
A detailed survey of transfer learning can be found in [7].

III. END-PRODUCT ADAPTATION

The principles of transfer learning can be applied to VR
surgical simulation. Let us treat each specimen as a domain.
If an end-product classifier built from one specimen could be
successfully transferred to other specimens, it would save a
lot of time and effort in collecting expert examples on other
specimens. Our approach was inspired by Blitzer et al. [13],
who found the correspondence between the vocabulary of two
different text corpora via pivot words that occur frequently
in both text corpora. Although this method works well for
transferring a text classification model, it cannot be applied
directly to surgical simulation due to several differences be-
tween the two fields. One specimen usually contains more
than a million unique voxel positions while a single document
usually contains less words. A particular word is likely to
have the same or similar meaning when it appears in different
texts, while a particular voxel position may represent different
anatomical structures in different specimens.

To apply the approach described in [13] to temporal bone
specimens, we needed to choose an appropriate set of features
to use as the “pivot component” in finding the correspondence
between two specimens. The anatomical landmarks of each
specimen were chosen as a suitable pivot component, since
they have the same meaning across specimens. This idea has
been widely used in the registration of MRI images [15].
First, we aligned the anatomical structures of the specimen
model with those of each new specimen using the iterative
closest points (ICP) algorithm [16]. Based on this alignment
of anatomical structures, we aligned each voxel of the new
specimen to that of the specimen model using the nearest
anatomical structures. This transfer enabled the classifier learnt
on the specimen model to predict the end-product on the
new specimens. Since this transfer is not globally optimal, we
added a post-processing step using surgical domain knowledge
constraints to refine the end-product.

A. Overview

Figure 1 provides an overview of the proposed transfer
learning framework. This framework is composed of two steps.

1) Training of a drilled region classifier: A drilled region
classifier is built from a set of expert simulator runs on the
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Fig. 1. Overview of the framework used to adapt a drilled region classifier
to different specimens using transfer learning

reference specimen, which is referred to as the specimen
model. The feature we use to train the classifier is the position
of each voxel in specimen coordinates.

2) Transfer of classifier to different specimens: Each new
specimen is registered with the specimen model using the ICP
algorithm and the classifier is used to predict the drilled region
on the new specimen. Then domain knowledge is applied to
adjust the predicted drill region.

Figure 2 illustrates the 9 anatomical landmarks that human
experts use to complete temporal bone surgery safely and ef-
fectively. In our study, the chosen surgical procedure consisted
of a cortical mastoidectomy (removal of bone surrounding
anatomical structures A to D shown in Figure 2), followed by
posterior tympanotomy (removal of most of the bone between
the facial nerve and the chorda tympani nerve denoted as D),
and cochleostomy (drilling a small hole next to the round
window (H) leading into the basal turn of the cochlea (G)).
This is a considered a complex procedure that is carried out
as part of cochlear implant surgery.

B. Anatomical Registration

As discussed in section II, directly applying a classifier
built from one specimen to new cases is unlikely to be
successful, since features differ between specimens. An in-
tuitive transfer learning approach to tackle this problem is
to align different specimens into a common feature space in
order to train a generalized classifier. However, each specimen
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Fig. 2. Major anatomical landmarks of the temporal bone used as the
specimen model. A: dura, B: sigmoid sinus, C: ossicles, D: facial nerve and
chorda tympani nerve, E: stapedius tendon, F: semi-circular canals, G: basilar
membrane H: round window membrane.

is quite distinct in terms of shape, scale and orientation,
therefore deriving a common feature space based on raw voxel
information is infeasible. On the other hand, we observe that
each specimen contains a set of anatomical structures used
by surgeons as landmarks to identify which regions of bone
should be removed. Therefore, a common feature space derived
from these landmark structures can be generalized to predict
the drilled regions on new temporal bones. So we chose one
specimen as our specimen model and aligned the anatomical
landmarks of the specimen model to the rest of the specimens
using the Iterative Closest Point(ICP) algorithm [16]. This al-
gorithm is one of the main tools used in 3D shape registration.
A detailed comparison of different improvements can be found
in [17]. In our case, we use the following objective function
to measure the alignment of two anatomical structures.

f(SM(a), S(a)) =

∑NS(a)
i=1 ||SM(a)i − TM(a)× S(a)||

NS(a)
(1)

SM(a) is the anatomical structure voxel set of the spec-
imen model, S(a) is the anatomical structure voxel set of a
new specimen, NS(a) denotes the number of voxels belonging
to anatomical structure a, TM is the transformation matrix
from the new specimen to the specimen model. An optimal
transformation matrix TM is derived by minimizing objective
function f . Figure 3 illustrates the accuracy of anatomical
registration using one of the new specimens as an example.

Once we derive transformation matrix TM for each
anatomical landmark, we assume that the bone voxels near
each landmark follow the same pattern of transformation;
therefore, we apply the TM of the nearest anatomical land-
mark to transfer each bone voxel from the new specimen into
the feature space of the specimen model. Finally, the original
drilled region classifier can be applied on the transferred bone
voxels to predict which voxels need to be removed. This
algorithm is described further in Figure 4.



Fig. 3. Anatomical registration example using specimen 6. The first graph
shows the anatomical structure of specimen 6. In each of following graph,
the two sets of magenta points represent the anatomical structure voxels in
the specimen model. The set of green points represent the corresponding
anatomical structure in specimen 6 before registration. The blue points
represent the anatomical structure from specimen 6 after registration.

Input: Trained Classifier c, Source Specimen ss, Target Spec-
imen ts

1: tm = [] {initialize transfer matrix list}
2: for lstructureID a in ss do
3: tm[a] = ICP(ss.structure[a], ts.structure[a])
4: end for
5: tts = [] {initialize transferred target specimen}
6: for bone voxel v in ts do
7: a = findClosestStructure(v, ts.structure)
8: tts[v] = tranferVoxel(v, tm[a])
9: end for

10: r = predictDrillRegion(c, tts)
11: return r

Fig. 4. Transfer learning of drilled bone region

C. Application of Domain Knowledge Constraints

Since we use anatomical structure registration to adapt a
drilled region classifier to new specimens, the geometric rela-
tionship between landmarks is being transferred approximately.
A drawback of this approximation is that the further a voxel
is from its closest anatomical landmark, the less accurate its
transfer will be. For example, the transfer of voxels deep inside
the bone is more reliable due to proximity to many anatomical
structures, compared to that of voxels on the surface of the
specimen which are far from any landmark. Therefore, it
may be necessary to apply post-processing based on surgical
domain knowledge to the bone voxels near the surface, to
improve upon the end-product approximation provided by
transfer learning. One simple but useful constraint is that if a
particular bone voxel is drilled, then all voxels covering it must
have also been drilled, because it is not possible to remove a
voxel that is not visible. Equation 2 shows how this constraint
is applied to a surgical end-product D(v).

D′(v) =

{
1 v.z ≥ u.z and ||v, u|| ≤ 1 and D(u) = 1
D(v) otherwise

(2)

v and u represent voxel absolute positions, D represents the
end-product derived by transfer learning while D′ is the end-
product after post-processing. The if condition checks whether
a voxel v is covering a drilled voxel u. If a voxel is assigned
a value of 1, it is considered drilled.

IV. EVALUATION

We evaluate the quality of the transfer models by com-
paring the results of the machine generated end-products to
those drilled by a human expert. To perform the comparison,
a quantity that measures the similarity between two drilled
regions should be defined. To this end, Sewell et al. [5] applied
information gain to select a set of “most significant voxels”
drilled by experts, and used the presence or absence of these
voxels in the drilled region to evaluate the quality of an end-
product. In our analysis, instead of considering the binary
presence of significant voxels, we use a weighted euclidean
distance to measure the difference between two end-products A
and B. We separate this weighted distance into two categories:
D1: the sum of weighted euclidean distance between voxels
that have only been drilled in A to the closest voxel drilled in
B; D2: the sum of weighted euclidean distance from voxels
drilled only in B to the closest voxel drilled in A.

Let us suppose that end-product A was drilled by a human
expert while end-product B was obtained from a transferred
model. We calculate the weight for each voxel drilled by the
human expert in A based on the time at which it was removed.
Voxels drilled at the end of the procedure are assumed to be
more important than those closer to the start, as they define the
path for the insertion of the cochlear implant. However, when
calculating weights for D2, our model is unable to predict
when a voxel should be drilled. Therefore, we find the nearest
voxel v′ drilled by the human expert in A and use its time
stamp to compute the weight for D2.

D1 and D2 are defined in Equations 3 and 4. ||∗ || denotes
the euclidean distance between two voxels, v is a voxel of a
drilled specimen, the nearest voxel v′ drilled by the human
expert in A, and time(∗) is the time at which a voxel was
drilled by the human expert. The similarity measure between
end products A and B is defined as the sum of D1 and D2.
A good prediction model should result in a lower weighted
distance, meaning the end-product derived by the model is
similar to that drilled by a human expert.

D1(A,B) =
∑
v

time(A[v])×min(||A[v], B||)
max(time(A))

(3)

D2(A,B) =
∑
v

time(A[v′])×min(||B[v], A||)
max(time(A))

(4)

A. Data Collection

We collected 16 simulation trials conducted by 7 expert
otologists performing the surgical procedure on a left ear



specimen (referred to here as the specimen model). From this
dataset, we trained different classifiers (Logistic Regression,
Naive Bayes, Decision Trees) to predict the region drilled by
experts on the specimen model. Decision trees achieved the
best cross validation accuracy with 93.95%. This shows that
drilled voxels are an accurate predictor of expertise in this
surgical procedure.

To evaluate the performance of our transfer learning
method, we used 8 new specimens (3 left ears and 5 right
ears). These differed to the specimen model in many ways,
such as orientation, size, the extent to which each anatomical
landmark was segmented, and the distance between landmarks.
We obtained a surgical end-product conducted by an expert
on each of these new specimens, to serve as our standard
reference.

B. Baseline

As discussed above, a human expert provided an end-
product on each of the new specimens to be used as a standard
for comparison. We then evaluated the accuracy of the transfer
models with respect to this standard. We used three models
in this comparison: 1) A classifier model without transfer
learning where the original decision tree model was used to
generate an end-product for a new specimen (referred to here
as ‘D: Direct decision tree model’), 2) a classifier built on the
absolute positions of the voxels (x, y, z coordinates) of each
anatomical structure (referred to here as ‘T: Transfer learning
model using absolute positions’), and 3) a classifier built on the
distances to anatomical structures as features (referred to here
as ‘R: Transfer learning model using relative distances’), where
the distances of each bone voxel to anatomical landmarks
rather than its absolute position are used as features for the
decision tree model. To be more specific, for each bone voxel
of a specimen, we derived the closest distance to each of the
11 anatomical landmarks. Since these distances are relative
features, they should be intrinsically transferable between
different specimens.

In addition to baselines D and R, we derived a lower
bound corresponding to the weighted distances between the 16
expert performances on the specimen model to illustrate the
amount of variation in the end-product produced by different
experts due to different surgical styles, even when operating
on the same specimen. From each expert performance, we
computed the weighted distances according to equations 3
and 4 to the other 15 performances. We derived the mean
value and standard deviation of these weighted distances. The
lower bound of the weighted distance mean plus two standard
deviations is illustrated as a dashed line in Figure 5.

C. Experiment Results

As shown in Figure 5, methods D and R performed worse
than the proposed method T for the majority of specimens.
The proposed transfer learning method T achieved the best
end-product and was significantly better than baseline D
[t(7)=3.314, p=0.013]. It was also significantly better than the
relative distance method R [t(7)=2.646, p=0.033].

It is unsurprising that D performed worse, as there were
significant differences between the test specimens and the

(a) (b)

(c) (d)

Fig. 6. End-products for specimen 6 produced by different machine learning
approaches and a human expert. The green square indicates the facial recess
triangle which must be drilled during the procedure. This region is magnified
at the top right corner at each sub-figure. The purple/blue round window is not
exposed in (a) and (b) but is exposed in (c) and (d). The red circle indicates a
major error in each machine-generated end product, either drilling too much or
not enough. (a): Directly applied decision tree trained from original specimen.
(b): Transfer learning model using relative distances. (c): Transfer learning
model using anatomical registration. (d): Human expert.

specimen model on which the decision tree was built. The rela-
tive distance method R did not achieve significant improvement
compared to D, especially for specimens 1, 6, and 8, where it
performed considerably worse than method D. There are two
possible reasons for this: 1) The relative distance features did
not model the expert end-product precisely, as two voxels at
different locations can have the same closest distance to an
anatomical landmark. In such a case, a systemic mistake is
introduced. 2) Due to segmentation limitations, different spec-
imens may have different portions of the anatomical structures
segmented. For example, specimen 6 only has the bottom part
of the sigmoid sinus while the specimen model has more of
this structure. This introduces an error when calculating the
relative distance of a voxel to anatomical structures.

To illustrate the benefits of the anatomical registration
transfer learning approach, the end-products for specimen 6
using the methods discussed above approaches are shown in
Figure 6. The end-product generated by the directly applied
decision tree(D) did not remove the bone (rendered in yel-
low) between the facial nerve and chorda tympani, which
is necessary to expose the round window and complete the
cochleostomy. Therefore from a surgical point of view, this
end-product failed to complete the procedure. The end product
generated by the transfer learning model using relative dis-
tances(R) revealed a small part of the round window (rendered
in purple/blue), which is not large enough to perform the next
step of cochlear implantation. In addition, this model removed
many areas of bone which did not need to be drilled, such
as that on top of the sigmoid sinus and the areas on the
left boundary of the sigmoid. The end-product produced by
the transfer learning model using anatomical registration(T)
successfully exposed the round window, and was most similar
to the end-product conducted by a human expert in the latter
parts of the procedure. The only drawback is that bone regions
drilled in the early stages of procedure were not opened as
widely as the human end-product.



1 2 3 4 5 6 7 8
0

2

4

6

8

10

12
x 10

6

specimen

d
is

ta
n

c
e

Total Distance

 

 
D

T

R
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In order to analyse the errors of the machine-generated end-
products, we consider the two types of weighted distances D1
and D2 separately. A large D1 implies that the model is too
aggressive and has drilled too many voxels when compared
to regions drilled by the human expert. In contrast, a large
D2 occurs when the model has drilled too few voxels. The
most significant error observed in the transfer learning model
using anatomical registration was D2. Part of this error could
be attributed to the fact that not all experts opened up the
specimen model in the same way as the human expert who
provided the reference data for the new specimens. Hence, the
decision tree model, when transferred to the test specimens
is concentrated around the central regions which were drilled
by most experts. Despite this, the drilled regions derived from
the proposed anatomical registration transfer learning method
provide a good guideline for where the drilling should be
done in different specimens, particularly in later parts of the
procedure.

V. CONCLUSION

Automatic surgical end product evaluation has been ex-
tensively studied in different types of open surgery. However,
the adaptation of classifiers trained on a single specimen to
different specimens has not been widely researched. In this
work we introduced a simple algorithm for classifier adap-
tation based on anatomical structure alignment and domain
knowledge constraints. We combined anatomical registration
with a nearest neighbour technique to transfer new specimens
to the feature space of the original specimen. Then we applied
domain knowledge constraints by adjusting the transferred
classifier gradually moving from the deepest layer to the
surface. It was observed in an experimental evaluation that the
proposed method was able to identify the drilled regions in
different specimens accurately and the end-products produced
were similar to those drilled by a human expert. One limitation
of the proposed method is that regions of bone drilled in the
early stages of the procedure were not opened as widely as the
human end-product. This surgical principle should be encoded
as domain knowledge constraints to improve the quality of the
end-product in the future.
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