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CLASSIFICATION ACCURACY ON UCI DATA

We also tested different regularizers on a number of data
sets from the UCI repository [1]. These data sets vary in the
number of samples and features, as detailed in Table I. The
network structure consists of 2 hidden layers of {1024−1024}
nodes. Rectified linear units were used. For each data set,
we rescale the input to [−1, 1]. The learning rate was set
to either 0.1 or 0.01 for different data sets (but fixed to the
same value for all different regularizers), and momentum set to
0.9. The regularizers being tested are L2 (weight decay) with
weight 1e-2, 1e-3 and 1e-4, Random Projection with k = 10
and 20 projections, dropout and a combination of dropout
and Random Projection. As a reference, we also provide the
performance of an RBF-kernel SVM of which the parameters
were fine-tuned using 5-fold cross validation. Note that as
opposed to SVM, for all neural network models, no effort
was put into fine-tuning the hyper parameters, e.g., number of
layers and nodes, learning rate and momentum. As our primary
goal is to compare the effectiveness of different regularizers
for NNs, this setting suffices.

From Table I, it can be observed that amongst all the
different regularizers for NNs, while there is no absolute
clear winner, the Random Projection regularizers perform
competitively overall, either as a stand-alone regularizer or
in conjunction with dropout. Furthermore, it is worth noting
that these regularizers do not exclude the use of each other,
and therefore can be used in tandem. From this experimental
evidence, we promote the Random Projection regularizer as a
new tool to add into existing NN toolkits.

MODEL CAPACITY VS. NUMBER OF RPS

The Random Projection regularizer admits one tuneable
parameter: the number of random projections k. This param-
eter plays a role similar to the penalty weight in L1 or L2
regularizers. Given a NN with fixed architecture, increasing
the number of random projections increases the amount of
perturbation and variety in the augmented data set, mak-
ing it increasingly harder to learn a precise (but potentially
overfitted) decision boundary for any individual projection.
We carry out an experiment on the MNIST data set as
follows. Three small networks of two hidden layers of sizes
{100−100}, {300−300} and {500−500} were tested with the
number of projections k ranging from 1 (i.e., no augmentation)
to 100. The networks were trained with hyper-parameters as

per the previous section for 200 epochs, without any other
form of regularization. The results of this experiment are
presented in Fig. 1(b). It can be observed that, on the smallest
{100−100} network, the RP regularizers with k = 50 and 100
created an overly strong regularization effect, with error rates
higher than the baseline vanilla network. This indicates that the
network does not have sufficient learning capacity to capture
all the variety within the large augmented data sets. On the
other hand, the RP regularizers with k = 5, 10 and 20 perform
well. When increasing the network size, we observed that the
RP regularizers with k = 50 and 100 gradually perform better
and eventually outperform the baseline on the {500 − 500}
network.
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Table I
5-FOLD CROSS VALIDATION ERROR RATE ON UCI DATA (%)

Datasets n d Neural networks of {1024-1024} hidden nodes SVM
No Reg. L2 (1e-2) L2(1e-3) L2(1e-4) Ensemble(10) RP(10) RP(20) Dropout Dropout+RP(10)

Arrythmia 430 257 24.7±4.8 23.5±2.8 24.9±4.5 24.7±3.1 22.8±4.5 23.0±3.6 20.7±3.0 23.5±1.5 23.0±1.9 24.0±3.7
SRBCT 84 2308 2.4±5.3 3.5±5.3 2.4±5.3 2.4±5.3 1.2±2.6 1.2±2.6 0.0±0.0 3.5±5.3 2.4±3.2 0.0±0.0
Colon 62 2000 19.8±15.4 16.4±13.6 19.8±15.4 19.8±15.4 17.7±10.7 19.8±15.4 23.1±19.7 19.8±15.4 19.8±15.4 19.8±19.0
Lung 73 325 35.4±21.5 35.4±21.5 35.4±21.5 34.1±20.9 38.5±6.8 23.2±12.9 23.0±15.1 37.0±18.0 21.8±15.4 17.5±18.6
Optdigits 3823 64 1.6±0.3 3.0±0.6 1.6±0.3 1.5±0.3 1.5±0.4 1.1±0.4 1.3±0.4 1.3±0.5 1.1±0.6 0.9±0.4
Waveform 5000 21 16.5±1.2 12.8±1.2 14.4±1.3 15.9±1.1 14.5±0.8 15.1±0.9 14.6±1.6 14.7±0.6 14.2±1.3 13.3±1.3
HDR 2000 649 2.0±0.4 2.1±0.3 2.0±0.3 2.0±0.4 1.8±0.6 2.0±0.5 1.8±0.4 1.6±0.5 1.6±0.5 1.7±0.9
Lymphoma 96 4026 11.2±12.2 12.2±12.5 13.2±12.7 12.2±12.5 14.6±11.5 8.2±11.6 9.3±11.7 12.2±12.5 10.2±10.8 3.0±6.7
Leukemia 73 7129 4.2±6.3 2.9±6.4 4.2±6.3 4.2±6.3 4.2±6.3 5.5±5.9 1.4±3.2 2.8±3.8 2.9±6.4 2.9±6.4
Advertisement 3279 1558 2.7±0.9 2.5±0.9 2.5±0.8 2.6±0.9 2.7±0.7 2.4±0.8 2.3±0.8 2.5±0.9 2.1±0.7 2.7±0.9
Promoter 106 57 20.8±7.3 20.7±7.1 19.8±6.3 19.8±6.3 18.9±7.6 20.8±10.0 22.6±5.2 21.7±7.2 19.8±9.1 18.9±3.4
Musk2 6598 166 0.4±0.2 2.3±0.6 0.4±0.2 0.4±0.2 0.2±0.2 0.6±0.2 0.7±0.3 0.4±0.2 0.7±0.2 0.3±0.2
Spambase 4601 57 6.5±1.0 8.7±1.2 6.7±1.2 6.4±1.1 6.8±0.7 6.0±1.0 6.3±1.0 6.2±1.0 7.0±0.9 6.1±0.6
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Figure 1. Experiments on the MNIST data set: Model capacity vs. number of RPs. Model capacity needs to be increased to accommodate the extra data
complexity introduced by RPs.
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