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Abstract—Measuring the amount of dependency among mul-
tiple variables is an important task in pattern recognition. In the
last few years, many new dependency measures have been devel-
oped for the exploration of functional relationships. In this paper,
we develop a dependency measure between variables based on
an extreme-value theoretic treatment of intrinsic dimensionality.
Our measure identifies variables with low intrinsic dimension —
that is, those that support embeddings of the data within low-
dimensional manifolds. To build a dependency measure on strong
foundations, we theoretically prove a connection between infor-
mation theory and intrinsic dimensionality theory. This allows
us also to propose novel estimators of intrinsic dimensionality.
Finally, we show that our dependency measure enables to find
patterns that cannot be found by other state-of-the-art measures
on real and synthetic data.

I. INTRODUCTION

Exploring patterns of dependency among variables is one
of the first steps in gaining insights into a new data set. For
classic linear dependency between pairs of variables, measures
such as the Pearson correlation coefficient are very widely
used. For the more general case where the two variables
share a non-linear functional relationship, the dependency can
be identified according to the recently proposed Maximal
Information Coefficient (MIC) [1], where a MIC value of
1 indicates a noiseless functional relationship. A noiseless
functional dependency between two variables characterizes
their strong dependency. Some examples are: transcript levels
of a particular gene that functionally oscillate during the
cell cycle determines whether the expression of the gene is
dependent upon the cell cycle [1]; socio-economic factors for
different countries that are functionally related are clearly also
strongly dependent [2].

Over the last few years, several measures of the dependency
among multiple variables have been proposed in the literature.
Among these, a notable information-theoretic measure of
dependency is the Multivariate mAximal Correlation (MAC)
score [3]. Another recent measure is the Universal Dependency
Score (UDS) [4], which was introduced as a more com-
putationally efficient alternative to MAC. Nonetheless, such
measures target only relationships among variables that are
strictly functional: much in the same way as MIC does for
pairs of variables, MAC and UDS report a score of 1 whenever
one of the variables can be expressed as a strict function of
the remaining variables.

Despite their importance, functional relationships are not
the most general of the interesting relationships that can be
determined through dependency analysis — it is possible for
data to be embedded in low-dimensional manifolds without
exhibiting a functional relationship [5], [6]. As an example,
in Figure 1 we consider the dependency between two vari-
ables X1 and X2 derived from a publicly-available data set
consisting of traffic sensor measurements within the city of

Melbourne in Australia [7]. Every sensor counts the number of
vehicles passing by fixed locations within the road network of
Melbourne, binned in intervals of 15 minutes. The two sensors
X1 and X2 in Figure 1 are clearly strongly dependent: the
increase in traffic at sensor X1 is associated with an increase
in traffic at sensor X2, with the rate of increase depending on
the day of the week the measurement was taken. Given that
they are well-described by two 1-dimensional manifolds, X1

and X2 must be considered to be strongly dependent; however,
the relationship is not functional, and cannot be determined by
the current state-of-the-art dependency measures.

Number of cars counted with sensor X1
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Figure 1. Number of vehicles counted in 15-minute intervals by sensor X1,
plotted against the number of vehicles counted by sensor X2. The data plotted
was collected in Melbourne, Australia during the first ten days of January
2007. Despite the existence of two distinct patterns according to the day on
which measurements were made, there is clearly a strong dependency between
the two sensors. However, state-of-the-art dependency measures struggle to
identify non-functional dependencies of this kind.

For data distributions that can be modelled in terms of
low-dimensional manifolds, dependency measures that capture
the dimensional characteristics of the data may succeed even
when the variables do not admit a functional relationship. The
recently-proposed Mutual Information Dimension (MID) [8]
was introduced to identify dependency relationships between
pairs of variables. MID is efficient to compute, and it does
not require any additional parameters for its computation.
Nevertheless, the authors note that the performance of MID
may suffer when the data is subjected to additive noise [8].
Moreover, the MID formulation does not naturally extend to
the case of multiple variables.

In this paper, we introduce the Intrinsic Dimensional De-
pendency (IDD) measure for D continuous variables X =
(X1 . . . XD). IDD has the following features: (i) 0 ≤
IDD(X) ≤ 1; (ii) IDD(X) = 0 iff all variables are indepen-
dent; (iii) IDD(X) = 1 if the underlying distribution of X is
restricted to a constant number of 1-dimensional manifolds.
IDD is based on the local intrinsic dimensionality theory
proposed in [9], which allows us to overcome the challenges



preventing the extension of MID to handle multiple variables.
Our contributions include the following:
• identification of the connection between information the-

ory and local intrinsic dimensionality theory;
• novel global estimators of dimensionality, and an expla-

nation of their relationship to existing estimators;
• the Intrinsic Dimensional Dependency (IDD) measure for

finding variables that embed low dimensional manifolds;
• an experimental demonstration of the ability of IDD to

identify novel relationships on real and synthetic data.
The proofs of all theorems and propositions presented in this
paper are available in the supplement at https://sites.google.
com/site/iddpaper.

II. RELATED WORK

Table I summarizes the features of the dependency measures
presented in the introduction. The recently proposed depen-
dency measures capable of scoring functional relationships
are based on information theory. MIC [1] targets pairs of
variables, whereas MAC [3] and UDS [4] target functional
relationships among multiple variables. All these measures are
computed using the Shannon entropy obtained by discretizing
the continuous variables under analysis. In order to assure
that the maximum is achieved at 1 for the case when the
relationship is functional, a suitable upper bound is used as a
normalization factor. MID is also based on discretization and
Shannon entropy estimation for pairs of variables. However, its
foundations rely on the dimensionality theory of Rényi [10],
who in 1959 was the first to identify the connection between
information theory and dimensionality. This connection allows
MID to go one step further than functional relationships,
in targeting relationships defined by 1-dimensional manifolds
over two variables. Although there exist many applications
of dimensionality theory to the analysis of chaotic time
series [11], to the best of our knowledge, MID is the first
application to dependency analysis in pattern recognition.

To date there exist many different measures of dimen-
sionality — see [12] for a recent survey. One of the most
popular measures, the correlation dimension of Grassberger
and Procaccia [13], has been shown to be related to an en-
tropic measure, the α-Rényi entropy [14], within the research
literature on chaotic time series [11], [15]. In this paper,
we show that the correlation dimension and Rényi entropy
can be expressed in terms of the local measure of intrinsic
dimensionality introduced in [9]. This intriguing link allows
us to build a dependency measure among multiple variables
based on information theory and dimensionality theory.

Table I
FEATURES OF DEPENDENCY MEASURES: HANDLING FUNCTIONAL

RELATIONSHIPS, MANIFOLD RELATIONSHIPS, AND MULTIPLE VARIABLES.

Dependency Measure Func. Manifold Multiple

MIC Maximal Information Coefficient 3
MAC Multivariate mAximal Correlation 3 3
UDS Universal Dependency Score 3 3
MID Mutual Information Dimension 3 3
IDD Intrinsic Dimensional Dependency 3 3 3

III. INTRINSIC DIMENSIONALITY THEORY

Intrinsic dimensionality theory studies the expressibility of
high-dimensional data in terms of a small number of latent
variables, such as those needed to describe a manifold of
low dimension [9], [10], [12]. Let X = (X1 . . . XD) be D
continuous variables that represent a data set {xi}i=1...n of
n data points. We begin our discussion with the α-Rényi
dimension, defined as follows:

dimα(X) , lim
δ→0+

Hα(X, δ)

log 1/δ
, (1)

where Hα(X, δ) , 1
1−α log

(∑
δ−boxes p(x, δ)

α
)

is the α-
Rényi entropy [14]. Here, p(x, δ) is the estimated probability
mass function of the discretized variable X using boxes of
size δ. Intuitively, the α-Rényi entropy quantifies the space-
filling capacity of the data, and dimα(X) measures its growth
rate: the smaller the growth rate of the entropy, the smaller the
dimensionality of the manifold that embeds X . Interestingly,
if α is allowed to tend to 1, the α-Rényi entropy tends to the
Shannon entropy H(X, δ) = −

∑
p(x, δ) log p(x, δ), in which

case dimα(X) tends to the information dimension:

dim(X) , lim
α→1

dimα(X) = lim
δ→0+

H(X, δ)

log 1/δ
. (2)

For the case when α = 2, the α-Rényi dimension reduces to
another well-known measure of dimensionality, the correlation
dimension. For this case, it is convenient to use an alternative
definition of dimα(X) in terms of the generalized correlation
integral [15]:

dimα(X) , lim
r→0+

logCα(X, r)

log r
, (3)

where

Cα(X, r) ,

(∫ (∫
f(y)1̄(x, y, r) dy

)α−1

f(x) dx

) 1
α−1

.

(4)
Here, f(x) is the p.d.f. of X , and 1̄(x, y, r) = 1(‖x − y‖ <
r) is the indicator function activated when the Euclidean
distance between x and y is smaller than the specified ra-
dius r. When α = 2, the correlation integral C2(X, r) =∫∫

f(y)f(x)1̄(x, y, r) dy dx [13] has an intuitive interpreta-
tion: C2(X, r) is the probability of finding two points at
distance less than r in the support of X .

We have just seen that a single generalized measure
the α-Rényi dimension, is capable of generalizing two
independently-proposed measures of dimensionality: the infor-
mation dimension and the correlation dimension. In the next
section, we will show that there exist also connections between
the α-Rényi dimension and other measures of dimensionality
recently proposed in the pattern recognition literature.

A. Local Intrinsic Dimensionality and the α-Rényi Dimension

The Local Intrinsic Dimensionality (Local ID, or LID)
measure [9], original proposed for applications in the data
mining community, has recently been shown to have deep
connections to the statistical theory of extreme values [5], [16].

https://sites.google.com/site/iddpaper
https://sites.google.com/site/iddpaper


Given a data point x, the local ID at x at distance r is defined
as:

ID(x, r) , lim
ε→0+

logFR
(
x, (1 + ε)r

)
− logFR(x, r)

log (1 + ε)
(5)

=
rfR(x, r)

FR(x, r)
,

where R ≥ 0 is a continuous random variable denoting the
distance from x to other data points, FR(x, r) is its c.d.f. and
fR(x, r) its p.d.f. The local intrinsic dimension at x is in turn
defined as the limit as the radius tends to zero:

ID(x) = lim
r→0+

ID(x, r).

ID(x) measures the dimensionality of the manifold embedded
in X at the locality x. Here we prove that this local measure
of dimensionality contributes to the global measure of dimen-
sionality dimα(X) according to the following relationship:

Theorem 1. Let X be a set of D continuous variables, f(x)
the p.d.f. of the distribution from which X is drawn, and ID(x)
the local intrinsic dimension at the locality x. The α-Rényi
dimension can be expressed as:

dimα(X) =

∫
fα(x) ID(x) dx∫

fα(x) dx
.

The result above leads to interesting characterizations of the
information dimension and correlation dimension:
• The information dimension, defined in Equation (2) in

terms of the Shannon entropy, can also be computed as
the expectation of the local ID. That is, dimα(X) for
α = 1 is equal to:

dim(X) =

∫
f(x) ID(x) dx;

• The correlation dimension dim2(X) is the expected local
ID with respect to a distribution whose p.d.f. is the
normalized square of the original p.d.f.:

dim2(X) =

∫
f(x)2ID(x) dx∫
f(x)2 dx

.

In addition to linking dimensionality theory, information
theory, and local intrinsic dimensionality theory, the equations
above allows us to propose novel estimators of dimensionality.

B. Estimation of Dimensionality using Local Estimators

In [5], several estimators of local ID have been proposed;
among these, the Maximum Likelihood Estimator (MLE)
exhibited a useful trade-off between statistical efficiency and
complexity. Given a locality x, the MLE estimator of ID makes
use of the distances between the first k-th nearest neighbors
and x: :

ÎD(x) = −
(

1

k

k∑
i=1

log
di(x)

dk(x)

)−1

, (6)

where di(x) denotes the Euclidean distance between x and its
i-th nearest neighbor (NN). The MLE estimator of ID can be
derived from the statistical theory of extreme values, wherein

the smallest kNN distances can be seen as extreme events of
the underline distribution of distances. The MLE estimator is
indeed equivalent to the established Hill estimator for power-
law distributions [17].

Using the MLE estimator of local ID, it is possible to obtain
estimates for dimα(X) as defined in Theorem 1.

Theorem 2. The kNN estimator of dimα(X) is:

d̂imα(X) =

∑n
i=1 ÎD(xi)(dk(xi)

−D)α−1∑n
i=1(dk(xi)−D)α−1

.

The formula allows the estimation of the information dimen-
sion dim(X) and the correlation dimension dim2(X) when
α = 1 and α = 2, respectively. Interestingly, the information
dimension can simply be computed as the average local ID
estimated over each of the n data samples:

d̂im(X) =
1

n

n∑
i=1

ÎD(xi) = − 1

n

n∑
i=1

(
1

k

k∑
i=1

ln
di(x)

dk(x)

)−1

.

(7)
It is intriguing to note that the formula above has already been
used as measure of global dimensionality [5], [6]. However,
in this paper we have demonstrated for the first time that
the average of local ID estimates across data samples is a
theoretically sound estimator of the information dimension.

IV. THE INTRINSIC DIMENSIONAL DEPENDENCY

In this section, we define a dependency measure for the vari-
ables X which is maximized when the intrinsic dimensionality
dim(X) is small. Intuitively, our measure can be interpreted
as a divergence between the data representational dimen-
sion

∑D
i=1 dim(Xi) and its intrinsic dimensionality dim(X).

Moreover, for the sake of interpretability, the measure is
normalized using a suitable upper bound in order to produce
values in the range [0, 1].

Definition 1. The Intrinsic Dimensional Dependency for X:

IDD(X) ,

∑D
i=1 dim(Xi)− dim(X)∑D

i=1 dim(Xi)−maxi dim(Xi)
.

IDD has the following properties:

Proposition 1. Let X be a set of D continuous variables:
1) 0 ≤ IDD(X) ≤ 1;
2) IDD(X) = 0 iff all Xi are independent;
3) IDD(X) = 1 if there exist one or more manifolds of

dimension 1 whose union embeds X;
4) IDD(X) = 1 if there exists 1 ≤ i ≤ D such that for all

j 6= i, Xj is a a function or multivalued function of Xi.

We choose to base IDD on the information dimension dim(X),
so as to exploit the useful properties of the Shannon entropy
which do not hold true for the α-Rényi entropy [18]. IDD can
also be seen as the normalized extension to multiple variables
of MID(X,Y ) = dim(X) + dim(Y )− dim(X,Y ).

In order to obtain an estimator for IDD, we make use the
Equation (7) for the estimation of dim(X). However, in order
to make IDD invariant to the distribution of the marginals in
X we carry out a copula transformation [19] in which for each



variable, the raw value of a data point is substituted with its
rank. In practice, to avoid numerical instability due to very
small distance values, we add a very small amount of noise
ε to X [20]. Furthermore, to decrease the computational time
when the number of variables is small, we build a KD-tree
for faster distance computation. These steps are summarized
in Algorithm 1. If D is small (for example, D < 10), the

Algorithm 1 Estimation of IDD(X) based on kNN sets.

IDD(X, k)

1 Copula transform X
2 X = X + ε, where ε = 10−6 Gaussian noise
3 Build KD-trees for X and Xi

4 Compute d̂im(X) and d̂im(Xi) according to Equation (7).
5 return IDD(X) as per Definition 1

average computational complexity of IDD is in O(Dn log n+
nk log n). On the other hand, as D increases the computational
cost tends to the worst-case complexity, O(Dn log n+ nkn).
For the applications of dependency that are of typical interest,
D is usually small — indeed, only for a small number of
variables can the relationships be explained and interpreted
by the user [21].

V. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate our estimators,
as well as the performance of IDD as a dependency measure.
In Section V-A we discuss the characteristics of our estima-
tors of dimensionality, and in Section V-B we evaluate the
performance of IDD on synthetic and real data sets. All code
is publicly available at https://sites.google.com/site/iddpaper.

A. Experiments about Estimation of Dimensionality

In this section, we compare the estimator of dimensionality
d̂imα against other previously proposed measures of dimen-
sionality. In particular, we compare it against the Grassberger-
Procaccia (GP) [13], Hein, and Takens estimators of dimen-
sionality [22]. Our target is to gain insights on the different
characteristics of d̂imα for different choices of the parameter
α. Indeed, in-depth studies of the performance of the estimator
of information dimension d̂im1 can be found in [5], [6].

1) Synthetic Data Sets: Measures of dimensionality are
usually tested on synthetic data sets for which the true di-
mension of the manifold embedded in X is known. Here we
use the same data sets proposed in [22]. We test our kNN
estimator for d̂imα(X), which is solely based on distance
computation, and hence can be computed efficiently using a
KD-Tree. This estimator must satisfy the usual extreme-value-
theoretic assumptions, in that the neighborhood size k should
be small relative to the total number of points n [5]; for these
sets, we therefore fix k = 100.

Table II shows the average value of the different estimators
of dimensionality for a collection of synthetic data sets of two
different sizes, n = 1000 and n = 10000. The performance
of d̂imα is comparable to those of other previously proposed
measures, and is particularly good when the data size is larger.

We also note a slight tendency for d̂imα to decrease as α
increases; however, the cause is not completely evident from
this list of synthetically crafted data sets. We next identify a
scenario for which α can significantly impact the estimation.

Table II
SYNTHETIC DATA SETS WITH KNOWN TRUE DIMENSIONALITY AND

ESTIMATORS. AS AN EXTREME-VALUE-THEORETIC ESTIMATOR, d̂imα IS
SEEN TO PERFORM BETTER ON LARGER DATA SETS, ALTHOUGH THERE IS

A SLIGHT TENDENCY FOR IT TO DECREASE AS α INCREASES.

n Data Set D Dim. Hein GP Tak. d̂im1 d̂im1.5 d̂im2

1
0
0
0

Sphere 11 10 9 8.83 9.19 8.18 8.18 8.18
Dense 6 4 4 3.61 3.63 3.6 3.54 3.49
Swiss roll 3 2 2 1.95 1.94 2.49 2.36 2.24
Moebius 3 2 2 1.98 1.99 2.52 2.46 2.42

1
0
0
0
0

Sphere 11 10 9.9 9.53 9.59 9.12 9.12 9.12
Dense 6 4 4 3.72 3.77 3.89 3.86 3.79
Swiss roll 3 2 2 2.01 2.01 1.98 1.99 1.99
Moebius 3 2 2 2 1.99 2.01 2.03 2.04

2) Bigger α Decreases the Contribution of Noise: For real
data, even when X is well described by a low-dimensional
manifold, there typically exist a substantial proportion of noise
points lying far from the manifold. If their neighborhood
includes many points in the vicinity of the manifold, noise
points can be expected to have very high estimated ID values.
The information dimension dim(X) estimated as per Equa-
tion 7 weights every local ID(x) contribution equally. On the
other hand, when we estimate d̂imα, the ID(x) contribution is
penalized by a factor proportional to 1

dk(x)D(α−1) ; in this case,
the larger the value α, the further the k-th nearest neighbor is
to x, and the more the contribution of ID(x) is penalized.

Figure 2 illustrates how d̂imα can decrease as α increases.
The noise points (those far from the elliptical manifold) have
high estimated ID, and their contributions are greatly penalized
when α is large. In this example, the estimated dimensionality

0 0.5 1
X1

-1

0

1

X
2

1 2 3
,

1

1.2

1.4
ddim,(X1;X2)

Figure 2. Estimates of d̂imα as α is varied: the larger the value of α, the
greater the penalty on the contributions of noise points.

of the ideal manifold is 1.
A larger choice of α therefore yields less sensitivity to noise.

When designing a dependency measure between variables, a
noiseless relationship should not achieve the same score as a
noisy relationship. For this reason, IDD is proposed in terms
of the information dimension d̂im1.

B. Experiments about Dependency between Variables

In this section we carry out experiments on IDD computed
as per Algorithm 1, on synthetic and real data sets.

https://sites.google.com/site/iddpaper


1) Choosing k for IDD: Here we discuss the sensitivity of
IDD with regards to its parameter k. In Figure 3 we show the
average value of IDD at the variation of k for one noiseless
(red) and one noisy (blue) relationship among n = 1000
points. For the noiseless relationship, the value of IDD is close

(X1; Y1) (X2; Y2)

0 100 200 300 400
k

0

0.5

1

Intrinsic Dimensional Dependency (IDD)

IDD(X1; Y1)

IDD(X2; Y2)

Figure 3. The performance of IDD as k is varied, for one noiseless (red)
and one noisy (blue) relationship among n = 1000 points. If k is chosen
too small, no relationship will be identified even if there exists only a small
amount of noise. In this work we chose k ≈ n/4.

to 1 for a wide range of values k. Nonetheless, IDD for the
noisy relationship is close to 0 if we choose k to be small. In
general, if the chosen locality size k is too small, the global
relationship between variables may not be detectable by IDD;
k should therefore be chosen with care. Even though the best
choice of k varies from data set to data set, in this work we
chose to fix k ≈ n/4, so as to avoid focusing on localities
that are too small. MID, the other dependency measure based
on dimensionality discussed in this paper, has the same issue
in that it focuses on very small localities. Nonetheless, this
issue cannot be solved straightforwardly because MID does
not allow for tuning of a neighborhood size parameter [8].

2) Synthetic Relationships: In this section we crafted differ-
ent relationships among the D variables X , in order to exper-
imentally demonstrate the properties of IDD in Proposition 1.
We tested IDD as well as the two other measures capable of
handling multiple variables, MAC and UDS — for these two
competitors, all parameters were set to their default values [3],
[4]. Figure 4 shows the average value of the analyzed measures
on the following relationships induced on n = 1000 points:
Rel. A: All variables are identical, and hence functionally
related. X1 is a uniform variable in [0, 1] and Xj = X1 for
all j = 2 . . . D. IDD and MAC show the desired behavior:
their score is always 1. On the other hand, the UDS value is
significantly below 1 and increases only slightly as the number
of variables D increases.
Rel. B: The relationship is multivalued functional. X1 is
uniform, X2 = {X1, 20X1}, and Xj = X2 for all j = 3 . . . D.
Such scenarios occur whenever there is a latent categorical
variable that determines the different trends (as in the example
in Figure 1). IDD consistently scores this relationship with the
value 1. MAC scores this dependency with 1 only when D is
sufficiently large, whereas UDS shows quite different values
for this type of relationship as D increases.

Rel. C: There is a functional relationship between one

variable and the remaining variables: X1 =
(

1
D−1

∑D
j=2Xj

)2

where Xj are uniform variables. We observe that as the total
number of variables D increases, the strength of the overall
dependency in X should decrease. In addition, when D = 2,
the relationship X1 = (X2)2 is functional, and should be
scored with value 1. This indeed is the behavior of IDD. On the
other hand, MAC does not always decrease when D increases,
although it is equal to 1 when D = 2. The performance of
UDS is not too good either, as it is equal to 0 when D > 2.
Rel. D: All variables are independent. In this case all
measures should be equal to 0. IDD in this case shows a
slightly increasing baseline value that can be explained by the
estimation bias in d̂im(X). Nonetheless, its increasing trend is
much weaker than that of MAC trend. Furthermore, IDD could
be possibly adjusted for better performance using techniques
recently proposed in the literature [2]. UDS is the best in this
scenario: it is identically equal to 0 for any choice of D.

3) Real Data Sets: Here we explore the relationships
between different traffic sensors (variables) in the city of
Melbourne using data from [7]: each of the 1084 sensors
disseminated in the city counts the number of vehicles passing
by in 15 minute intervals. We focus on the first 10 days of
the year 2007, which yields a total of n = 960 data points for
each sensor. Moreover given that our focus is on continuous
variables, we consider only sensors for which at least half
the produced values were unique. IDD allows us to identify
multivalued functional relationships where the trend depends
on the particular day of the week considered. An example of
such a relationship is given in Figure 1. In order to compare
dependency measures for pairs of variables, such as MIC and
MID, we perform the following experiment: we identify the
top 100 dependent pairs of sensors according to the given
dependency measure. Due to the nature of traffic flow, the top
100 pairs identified by the dependency measure should consist
of sensors that are geographically close. Table III shows the
average distance in kilometers between the top 100 sensor
pairs, according to each of the dependency measures tested.
As it is able to identify multivalued functional relationships,

Table III
DISTANCE IN KM FOR THE TOP 100 PAIRS OF DEPENDENT SENSORS:

SENSORS CLOSE TO EACH OTHERS ARE DEPENDENT AND IDD IDENTIFIES
MORE OF SUCH SENSORS.

IDD MID MIC MAC UDS

6.6 ± 5.5 7.1 ± 5.0 7.1 ± 5.5 7.4 ± 5.6 7.5 ± 5.4

the distance between the top 100 sensors according to IDD is
smaller than the distance computed according other measures.

We also collected data on the daily energy consumption for
12 different buildings at the University of Melbourne over the
year 2013. We paired each daily value with the maximum and
minimum temperatures registered in Melbourne, as retrieved
from http://www.bom.gov.au/. Some buildings show a higher
energy consumption when the outdoor temperature is high.
Our target is to identify the building which is most dependent
on the outdoor temperature. Figure 5 shows the top depen-

http://www.bom.gov.au/
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Figure 5. Energy consumption in MWh for the buildings at the University of Melbourne that are most dependent on outdoor temperature (C◦). The top
building is the one whose consumption ranked highest in terms of its dependency on temperature, according to the given dependency measure. IDD identifies
the double trend of the ‘Parkville Building’ due to the two different regimes of the cooling system. The other measures see this double trend as noise.

dent building according to different dependency measures.
IDD scores the ‘Parkville Building’ as the most dependent
on temperature, even though the relationship is multivalued
functional. There indeed exist two sharp increasing trends
with regards to temperature, corresponding to two different
functioning regimes of the cooling system. The other measures
do not identify this situation as a multivalued trend — they
simply reject it as noise. UDS shares the same top scoring
relationship with IDD; however this behavior is not to be
expected in general, given that UDS targets only relationships
that are strictly functional.

VI. CONCLUSION

In this paper, we presented a new dependency measure be-
tween multiple continuous variables based on dimensionality
theory, the Intrinsic Dimensional Dependency (IDD). IDD is
computed on top of novel estimators of dimensionality that
we presented and experimentally validated in this paper. IDD
is capable of identifying variables that are well-described by
low-dimensional manifolds. This type of dependency between
variables is not targeted by previously existing methods. IDD
thus has the potential to become a useful tool for analysts to
explore patterns of relationships in data.
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[10] A. Rényi, “On the dimension and entropy of probability distributions,”
Acta Mathematica Academiae Scientiarum Hungarica, vol. 10, no. 1-2,
pp. 193–215, 1959.

[11] D. Prichard and J. Theiler, “Generalized redundancies for time series
analysis,” Physica D: Nonlinear Phenomena, vol. 84, no. 3, pp. 476–
493, 1995.

[12] F. Camastra and A. Staiano, “Intrinsic dimension estimation: Advances
and open problems,” Information Sciences, vol. 328, pp. 26–41, 2016.

[13] P. Grassberger and I. Procaccia, “Characterization of strange attractors,”
Physical review letters, vol. 50, no. 5, p. 346, 1983.

[14] A. Renyi, “On measures of entropy and information,” 1961.
[15] C. Diks and S. Manzan, “Tests for serial independence and linearity

based on correlation integrals,” Studies in Nonlinear Dynamics &
Econometrics, vol. 6, no. 2, 2002.

[16] M. E. Houle, “Inlierness, outlierness, hubness and discriminability: an
extreme-value-theoretic foundation,” NII, Technical Report NII-2015-
002E, Mar 2015.

[17] B. M. Hill et al., “A simple general approach to inference about the tail
of a distribution,” The annals of statistics, vol. 3, pp. 1163–1174, 1975.

[18] A. Teixeira, A. Matos, and L. Antunes, “Conditional rényi entropies,”
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