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PROOFS OF PROPOSITIONS AND THEOREMS

Theorem 1. Let X be a set of D continuous variables, f(x)
the p.d.f. of the distribution from which X is drawn, and ID(x)
the local intrinsic dimension at the locality x. The α-Rényi
dimension can be expressed as:

dimα(X) =

∫
fα(x) ID(x) dx∫

fα(x) dx
.

Proof. We first note that the following holds true for the
generalized correlation integral in Equation (4):

Cα(X, r) =

(∫ (∫
f(y)1̄(x, y, r) dy

)α−1

f(x) dx

) 1
α−1

=

(∫
Fα−1
R (x, r)f(x) dx

) 1
α−1

,

where FR(x, r) =
∫
f(y)1̄(x, y, r) dy is the number of points

at distance smaller than r from x. Then, we use l’Hôpital’s
rule on the definition of dimα(X) in Equation (3):

dimα(X) = lim
r→0+

log
( ∫

Fα−1
R (x, r)f(x) dx

)
(α− 1) log r

H.
= lim
r→0+

r
∫

(α− 1)Fα−2
R (x, r)fR(x, r)f(x) dx

(α− 1)
∫
Fα−1
R (x, r)f(x) dx

= lim
r→0+

∫
Fα−1
R (x, r) rfR(x,r)

FR(x,r) f(x) dx∫
Fα−1
R (x, r)f(x) dx

= lim
r→0+

∫
Fα−1
R (x, r)ID(x, r)f(x) dx∫
Fα−1
R (x, r)f(x) dx

.

As r tends to 0+, FR(x, r) tends to f(x). Therefore:

dimα(X) =

∫
fα(x)ID(x) dx∫
fα(x) dx

Theorem 2. The kNN estimator of dimα(X) is:

d̂imα(X) =

∑n
i=1 ÎD(xi)(dk(xi)

−D)α−1∑n
i=1(dk(xi)−D)α−1

.

Proof. We first prove a more general result: if K(·) is a kernel
function with width h, then for α ≥ 1,

d̂imα(X) =

∑n
i=1 ÎD(xi)

(∑n
j=1K(‖xi − xj‖, h)

)α−1

∑n
i=1

(∑n
j=1K(‖xi − xj‖, h)

)α−1 .

(8)
To prove this, note that for α ≥ 1, dimα(X) =∫
f(x)f(x)α−1ID(x) dx∫
f(x)f(x)α−1 dx

. The p.d.f. f(x) of X can be es-

timated with kernel functions K(·) via summation over
all data points xi: f̂(x) = 1

n

∑n
j=1

1
hK(‖x − xj‖, h).

If we have a reliable sample of n i.i.d data points
from X , the expected value

∫
f(x)g(x) dx of any func-

tion g(x) over the p.d.f. f(x) can be estimated us-
ing the formula: 1

n

∑n
i=1 g(xi). Therefore the denominator

of dimα(X) can be estimated with 1
n

∑n
i=1 f̂(xi)

α−1 =
1
n

∑n
i=1( 1

n

∑n
j=1

1
hK(‖xi − xj‖, h))α−1. The numerator

is instead equal to 1
n

∑n
i=1 ÎD(xi)(

1
n

∑n
j=1

1
hK(‖xi −

xj‖, h))α−1. The formula in Eq. (8) can be easily obtained
with algebraic simplifications.

With regards to the kNN estimator, it is possible to prove
that K(‖xi − xj‖) =

1(‖xi−xj‖≤r)
VD(r) is a proper kernel, where

r is a given radius and VD(r) = πD/2

Γ(D/2+1)r
D is the volume

of a D-dimensional sphere with radius r. A valid choice
for the radius r is the distance dk(xi) from xi to its kth
nearest neighbor. Given that the number of data points at
distance less than or equal to dk(xi) from xi is exactly
k, we have 1

n

∑n
i=1

1(‖xi−xj‖≤dk(xj))
VD(dk(xj))

= 1
n

k
VD(dk(xj))

=

1
n
kΓ(D/2+1)dk(xi)

−D

πD/2
. The result follows from algebraic ma-

nipulations.

Proposition 1. Let X be a set of D continuous variables:

1) 0 ≤ IDD(X) ≤ 1;
2) IDD(X) = 0 iff all Xi are independent;
3) IDD(X) = 1 if there exist one or more manifolds of

dimension 1 whose union embeds X;
4) IDD(X) = 1 if there exists 1 ≤ i ≤ D such that for all

j 6= i, Xj is a a function or multivalued function of Xi.

Proof.
Point 1: By definition, dim(X) = limδ→0+

H(X,δ)
log 1/δ . Then

regarding the lower bound of IDD,
∑D
i=1 dim(Xi)−dim(X)

is equal to:

=

D∑
i=1

lim
δ→0+

H(Xi, δ)

log 1/δ
− lim
δ→0+

H(X, δ)

log 1/δ

= lim
δ→0+

1

log 1/δ

( D∑
i=1

H(Xi, δ)−H(X, δ)
)

= lim
δ→0+

1

log 1/δ
KL
(
pX(x, δ)‖pX1

(x1, δ) · · · pXD (xD, δ)

)
,

where KL is the Kullback-Leibler divergence, which is greater
or equal to 0 for any δ > 0. Regarding the upper bound of
IDD, we use the known fact that the Shannon entropy satisfies
H(X) ≥ maxiH(Xi) to prove the following inequalities for



∑D
i=1 dim(Xi)− dim(X):

=

D∑
i=1

lim
δ→0+

H(Xi, δ)

log 1/δ
− lim
δ→0+

H(X, δ)

log 1/δ

≤
D∑
i=1

lim
δ→0+

H(Xi, δ)

log 1/δ
− lim
δ→0+

maxiH(Xi, δ)

log 1/δ

=

D∑
i=1

lim
δ→0+

H(Xi, δ)

log 1/δ
−max

i
lim
δ→0+

H(Xi, δ)

log 1/δ

=

D∑
i=1

lim
δ→0+

H(Xi, δ)

log 1/δ
−max

i
dim(Xi).

Since the Shannon entropy is a continuous function, and since
X is continuous, it is possible to interchange the limit and
max operations.
Point 2: As shown for Point 1 above,

∑D
i=1 dim(Xi) −

IDD(X) is equal to

lim
δ→0+

1

log 1/δ
KL
(
pX(x, δ)‖pX1

(x1, δ) · · · pXD (xD, δ)

)
.

The result follows from the fact that for any δ > 0, the KL
divergence is equal to 0 iff all variables X are independent.
Point 3: If there exist at least a manifold of dimension 1
embedded in X , then ID(x) = 1 for any locality x. With
dim(X) = 1 being the expected ID over the p.d.f. of X , we
have that DID(X) = 1. According to Theorem 1 in [10] if
Xi is a continuous random variable, dim(Xi) = 1. Given
that we are considering continuous random variables Xi,
maxi dim(Xi) = 1, and therefore IDD(X) = 1.
Point 4: follows immediately from Point 3.


