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Efficient Mining of Contrast Patterns and Their
Applications to Classification

Kotagiri Ramamohanarao, James Bailey and Hongjian Fan

Abstract— Data mining is one of the most important areas
in the 21 century with many wide ranging applications. These
include medicine, finance, commerce and engineering. Pattern
mining is amongst the most important and challenging techniques
employed in data mining. Patterns are collections of items which
satisfy certain properties. Emerging Patterns are those whose fre-
quencies change significantly from one dataset to another. They
represent strong contrast knowledge and have been shown to be
very successful for constructing accurate and robust classifiers.
In this paper, we examine various kinds of contrast patterns. We
also investigate efficient pattern mining techniques and discuss
how to exploit patterns to construct effective classifiers.

I. I NTRODUCTION

Data mining is one of the most important areas in the
twenty-first century – the information age. Its applications
are wide ranging, including medicine, finance, commerce and
engineering, to name a few. Data mining aims to discover
interesting or useful patterns and relationships in a large
volume of data. Major tasks in data mining include concept
description, association, classification, prediction, clustering,
evolution analysis and outlier analysis. Among these, classi-
fication is one of the fundamental and most important task
and is our focus in this paper. Classification has been studied
extensively in statistics, machine learning, neural networks and
expert systems for many decades [32], [48]. The input is a set
of training records(training instances), where each record has
several attributes. Attributes with discrete domains are referred
to as categorical, while those with continuous domains are
referred to asnumerical. There is one distinguished attribute
called theclass label. In general, given a database of records,
each with a class label, a classifier generates a concise and
meaningful description (or model) for each class in terms of
the attributes. The model is then used to predict class labels of
unknown objects. Classification is also known assupervised
learning, as the learning of the model is “supervised”, that
is, each training instance is labelled indicating its class. In
contrast to supervised learning, there isunsupervised learn-
ing (sometimes calledclustering), which seeks to identify
homogeneous groups of objects based on the values of their
attributes, where no class labels denoting ana priori partition
of the objects are given. Classification has been successfully
applied to a wide range of application areas, such as scientific
experiments, medical diagnosis, weather prediction, credit
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approval, customer segmentation, target marketing, and fraud
detection [13], [27].

Classification based on patterns is a relatively new method-
ology. “A Patternis an expression in some language describing
a subset of the data” [49]. Let an item refer to an attribute-
value pair. A set of items (called an itemset) is a conjunction
of attribute values. An itemset is also called a pattern1. The
recently proposed Emerging Pattern (EP) is a new type of
knowledge pattern that describes significant changes (differ-
ences or trends) between two classes of data [20]. Emerging
Patterns are sets of items whose frequency changes signifi-
cantly from one dataset to another. Like other patterns or rules
composed of conjunctive combinations of elements, Emerging
Patterns can be easily understood and used directly by people.
EPs have been successfully used for predicting the likelihood
of diseases such as acute lymphoblastic leukemia [40] and
discovering knowledge in gene expression data [41], [45].

Example 1 Table I shows a small, hypothetical dataset taken
from [45] containing gene expression data, which records
expression levels of genes under specific experimental con-
ditions. There are 6 tissues samples in total: 3 normal and
3 cancerous tissues. Each tissue sample is described by the 4
gene expressions (namely, gene1, gene2, gene3 and gene4).

TABLE I

A SIMPLE GENE EXPRESSION DATASET

ID Cell type gene1 gene2 gene3 gene4
1 Normal 0.10 1.20 -0.70 3.25
2 Normal 0.20 1.10 -0.83 4.37
3 Normal 0.60 1.30 -0.75 5.21
4 Cancerous 0.40 1.40 -1.21 0.41
5 Cancerous 0.50 1.10 -0.78 0.75
6 Cancerous 0.30 1.00 -0.32 0.82

We call genej@[l, r] an item, meaning the values of expres-
sion of genej is limited inclusively betweenl andr. Inspecting
Table I, we find the following interesting patterns.

• The pattern{gene1@[0.3, 0.5], gene4@[0.41, 0.82]}
has a frequency of 0% in the sub-dataset with normal
cells but 100% with cancerous cells.

• The pattern{gene2@[1.1, 1.3], gene3@[-0.83, -0.7]}
appears three times in the sub-dataset with normal cells
but only once with cancerous cells.

These patterns represent a group of gene expressions that
have certain ranges of expression levelsfrequently in one
type of tissue butless frequentlyin another. Therefore, they

1In this paper, we use “pattern” and “itemset” interchangeably.
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are excellent discriminators to distinguish the normal and
cancer cells. Emerging Patterns are not only useful for medical
doctors to gain a deeper understanding of the problem, but
also for making reliable decisions on whether a patient has
cancer. For example, based on Emerging Patterns, work in
[45] proposes a personalized therapy which tries to modify
the expression of some specific genes to convert cancer cells
into normal ones.

The remaining of this paper is organized as follows. We
first in Section 2 present preliminaries of patterns. We then in
Section 3 survey a number of algorithms for efficient pattern
discovery. We next in Section 4 investigate how to use patterns
to build highly accurate classifiers. We conclude by discussing
related work.

II. PATTERNS

A. Notation

To help formally define Emerging Patterns, we first give
some preliminary definitions. Suppose that a datasetD is
defined upon a set of attributes{A1, A2, · · · , An}. For each
attribute Ai, there is a set of permitted values, called the
domain of that attribute, denoted asdomain(Ai). Attributes
can be either categorical or continuous. For a continuous
attribute, we assume that its value range is discretized2

into intervals. For example, attributesex is categorical and
domain(sex) = {male, female}; attributeageis continuous,
domain(age) = [0, 150], and it can be discretized into
intervals [0, 18], [18, 60] and [60, 150]. After discretization,
domain(age) = {[0, 18], [18, 60], [60, 150]}. We call each
(attribute, categorical-value) or (attribute, continuous-interval)
pair anitem. (sex, male) and(age, [18, 60]) are two examples
of items. By aggregating all the domain categorical-values and
continuous-intervals across all attributes, we obtain the set of
all items in D, denoted asI, where I = {domain(A1) ∪
domain(A2)∪ · · · ∪ domain(An)}. For convenience, we map
all items from I including (attribute, categorical-value) and
(attribute, continuous-interval) pairs to consecutive positive
integers, i.e., we use 1 to represent the first item inI, 2 to
the second item, and so on. By doing this, the original dataset
can be treated as a transaction database.

A setX of items is also called an itemset, which is defined
as a subset ofI. We say any instanceS contains an itemset
X, if X ⊆ S. The support of an itemsetX in a dataset
D, suppD(X), is countD(X)/|D|, wherecountD(X) is the
number of instances inD containingX.

A pattern is frequent is its support is no less than a
predefinedminimum support thresholdξ. A maximal frequent
pattern is a frequent pattern such that no proper super set is
also frequent.

A pattern isinfrequentis its support is less than a predefined
minimum support thresholdξ. A minimal infrequent patternis
a frequent pattern such that no proper subset is also infrequent.

An association rule is an implication of the formX ⇒
Y , whereX and Y are itemsets andX ∩ Y = ∅. The left-
hand side (LHS)X is called the antecedent of the rule, and

2Our method of choice for discretization is the entropy technique from [36].

the right-hand side (RHS)Y is called the consequent of the
rule. The support of the rule in a transaction databaseTDB is
sup(X ∪Y ); the confidence of the rule inTDB is sup(X∪Y )

sup(X) .

B. Emerging Patterns

Unlike frequent patterns, Emerging Patterns are concerned
with two classes of data. We first define the growth rate of an
itemset with respect to both classes.

Definition 1 Given two different classes of datasetsD1 and
D2, thegrowth rate of an itemsetX fromD1 toD2 is defined
asGrowthRate(X) = GR(X) =





0 if supp1(X) = 0 andsupp2(X) = 0
∞ if supp1(X) = 0 andsupp2(X) > 0
supp2(X)
supp1(X) otherwise

Emerging Patterns are those itemsets with large growth rates
from D1 to D2.

Definition 2 Given a growth rate thresholdρ > 1, an itemset
X is said to be aρ-Emerging Pattern (ρ-EP or simply
EP) from a background datasetD1 to a target datasetD2

if GrowthRate(X)≥ ρ.

WhenD1 is clear from context, an EPX from D1 to D2

is simply called an EP ofD2, and suppD2(X) is called the
support of the EP.

Specifically, a Jumping Emerging Pattern (JEP) is an EP
with infinite growth rate (i.e., it is present in one class and
absent in the other).

An EP with high support in its home class and low support
in the contrasting class can be seen as a strong signal indicating
the class of a test instance containing it. The strength of such
a signal is expressed by its supports in both classes and its
growth rate.

Definition 3 The strength of an EP X is defined as
strength(X) =

GR(X)
GR(X) + 1

∗ supp2(X) =
supp2(X) ∗ supp2(X)
supp2(X) + supp1(X)

.

Note that whenGR(X) = ∞, strength(X) will be simply
equal tosupp2(X).

Generally, there can be a huge number of EPs. Therefore, a
number of interestingness measures are defined to reduce the
number of discovered EPs while not sacrificing their overall
impact. A Chi Emerging Pattern is one such example.

Definition 4 An itemsetX is called anChi Emerging Pattern
(Chi EP), if all the following conditions are true:

1) supp(X) ≥ ξ, whereξ is a minimum support threshold;
2) GR(X) ≥ ρ, where ρ is a minimum growth rate

threshold;
3) ¬∃Y (Y ⊂ X) ∧ (supp(Y ) ≥ ξ) ∧ (GR(Y ) ≥ ρ) ∧

(strength(Y ) ≥ strength(X));
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4) |X| = 1 ∨ |X| > 1 ∧ (∀Y (Y ⊂ X ∧ |Y | = |X| − 1) ⇒
chi(X,Y ) ≥ η), whereη = 3.84 is a minimum chi-
value threshold andchi(X, Y ) is computed using chi-
squared test [10].

An EP isminimal if no proper subset is also an EP; An EP
is maximalif no proper super set is also an EP. Strong Jumping
Emerging Patterns (SJEPs) [22], [26] are defined as minimal
JEPs that satisfy a minimum support threshold. The support
constraint of SJEP removes potentially less useful JEPs while
retaining those with high discriminating power.

Other variety of EPs can also be defined, by incorporation of
appropriate constraints, such as Constrained Emerging Patterns
[6], Maximal Emerging Patterns [56], Generalized Noise-
tolerant Emerging Patterns [26].

III. M INING ISSUES

The task of mining Emerging Patterns is computationally
expensive for large, dense and high-dimensional datasets,
because the number of patterns present can be exponential in
the number of attributes in the worst case. What is worse, the
Apriori anti-monotone property – every subset of a frequent
pattern must be frequent, or in other words, any superset of
an infrequent item set cannot be frequent – which would be
very effective for pruning the search space, does not apply to
mining Emerging Patterns. The reason is as follows. Suppose
a patternX with k items is not an EP. This means its growth
rate – the support ratio between two data classes – does not
satisfy the growth-rate threshold. ConsiderY , a super-pattern
of X with (k+1) or more items.Y will usually have decreased
support in both classes, but its growth rate (the support ratio)
is free to be any real value between 0 and∞. So a superset
of a non-EP may or may not be an EP.

In the border-based approach [20], borders are used to
represent candidates and subsets of EPs; the border differential
operation is used to discover EPs. Given a minimum growth
rate thresholdρ > 1, suppose we want to find EPs from
D1 to D2 with growth rates more thanρ. We first fix the
minimum support thresholdξ1 for D1, and use a border-
discovery algorithm such as Max-Miner [9] to find the border
for D1. We then obtain the minimum support thresholdξ2 for
D2, whereξ2 = ξ1 × ρ; we again use the border-discovery
algorithm to find the border forD2, which essentially consists
of the maximal frequent patterns with respect toξ2. After both
borders forD1 andD2 are available, the border of Emerging
Patterns can be efficiently derived by the border differential
procedure.

ConsEPMiner [57] follows level-wise, candidate generation-
and-test approach and mines EPs satisfying several constraints
including the growth-rate improvement constraint.

A. Algorithms Based on the Contrast Pattern Tree Structure

Inspired by the FP-tree [33], the CP-tree data structure
is used for EP mining for the first time [22]. A CP-tree
registers the counts in both the positive and negative class.
An example CP-tree is illustrated in Figure 1. Because every
training instance is sorted by its support ratio (the order is

TABLE II

AN EXAMPLE DATASET WITH TWO CLASSES

ID Class Instances itemsets
Label (Itemsets) ordered by≺

1 D1 {a,c,d,e} [e,a,c,d]
2 D1 {a} [a]
3 D1 {b,e} [e,b]
4 D1 {b,c,d,e} [e,b,c,d]

5 D2 {a,b} [a,b]
6 D2 {c,e} [e,c]
7 D2 {a,b,c,d} [a,b,c,d]
8 D2 {d,e} [e,d]
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Fig. 1. The original CP-tree of the example dataset

denoted as≺) between both classes when inserting into the
CP-tree, items with high ratio, which are more likely to appear
in an SJEP, are closer to the root. The map from a path in
the CP-tree to an itemset is a one-to-one mapping. Using
the predefined order≺, we can produce the complete set of
paths (itemsets) systematically through depth-first searches of
the CP-tree. Unlike the FP-growth algorithm that performs
frequent pattern mining from leaf to root and must create
many conditional FP-trees during the process, the CP-tree
based algorithm searches the CP-tree depth first from root
and performs a powerful technique, node merge, along with
the search. The CP-tree based algorithm can discover SJEPs
of both D1 and D2 from the CP-tree at the same time - a
“single-scan” algorithm. Previous EP mining methods such as
the border-based algorithms [20] and consEPMiner [57] have
to call the corresponding algorithm twice usingD1 andD2 as
target dataset separately. Unlike those two approaches, we do
not need to construct one CP-tree for mining SJEPs ofD1,
and construct another CP-tree for mining SJEPs ofD2.

In [5], a fast algorithm for mining Jumping Emerging
Patterns (JEPs) is proposed, which is typically 5-10 times
faster than the earlier border-based approach. The algorithm
constructs tree structures to target the likely distribution of
JEPs.
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B. Computing Hypergraph Transversals

Analysis of hypergraphs is a well established field of
discrete mathematics which has many applications in computer
science, ranging from minimal diagnosis and propositional
circumscription, to learning boolean formulae and boolean
switching theory.

Hypergraphs are defined by a set of verticesV =
{v1, v2, · · · , vn} and a set of edgesE, where each edge is
some subset ofV . A transveralof a hypergraph is any set of
vertices that contains at least one element of every edge. A
minimal transversalis a transveral such that no proper subset
is also a transversal.

The hypergraph minimal transversal problem is particularly
significant from a data mining perspective. Indeed, the algo-
rithmic complexity of mining maximal frequent pattern and
minimal infrequent pattern is closely linked to the complexity
of computing minimal hypergraph transversals [29]. The hy-
pergraph minimal transversal problem has close connection to
the mining of Emerging Patterns. This is further highlighted
in [7].

A new algorithm for computing hypergraph transversals
is developed in [7]. It is based on the idea of paritioning,
which is fundamentally designed to prevent situations in which
prohibitively large (with respect to cardinality) edges have
their cross-product computed. The algorithm uses a divide
and conquer approach to iterate through specific subsets of
edges. Candidate subsets are identified such that cross-product
expansion/minimization is more tightly controlled. The pro-
cess of partitioning is recursive. Experiments on a number of
large datasets show that the algorithm outperforms previous
approaches (such as Berge’s algorithm) by a factor of 9-29
times.

C. Incremental Mining Techniques

The space of JEPs is convex, so it is possible to incremen-
tally modify and maintain the concise boundary descriptions
of the JEP space when small changes occur to the data. An
incremental algorithm is proposed in [42], [43] to handle four
types of changes: insertion of new data, deletion of old data,
addition of new attributions and deletion of old attributes.
The algorithm computes the borders of the new EP space by
using the boundary patterns from the old space, instead of
recomputing from scratch. Experimental results show that it is
much faster than the From-Scratch method. Its high efficiency
is largely due to the border operations that manipulate only the
boundary patterns but do not need to enumerate all contained
EPs.

D. Contrasts for Sequence Data

Contrast patterns can also be developed for data formats that
are more complex than relational tables. In [34], techniques
for the discovery of minimal distinguishing subsequences are
presented. A distinguishing subsequence is a subsequence that
appears frequently in one class of sequences, yet infrequently
in another. A distinguishing subsequence is minimal if none of
its subsequences is distinguishing. A key property of a minimal
distinguishing subsequence is that its items do not have to

appear consecutively, there may be gaps between them. Such
sequences are useful in the comparison of sequence data, such
as DNA, proteins or text.

Mining minimal distinguishing subsequence patterns is a
challenging task and is significantly different from mining
contrasts between relational data. The order in which items
occur is important and items may occur multiple times.
Another challenge which arises is due to consideration of
gap constraints. Items in a minimal distinguishing subsequence
do not have to appear immediately next to each other in the
original sequences. However, subsequences in which items are
far away from each other are less likely to be meaningful
than those whose items are close in the original sequence.
It is necessary, therefore, to set a maximum gap constraint
during mining. This restricts the distance between neighboring
elements of the subsequence. Additional benefits are that the
mining output is smaller and the mining process can be
faster. Work in [34] describes the ConSGapMiner algorithm,
which is able to mine all minimal distinguishing subsequences
according to a maximum gap constraint. It employs highly
efficient bitset and boolean operations for powerful gap based
pruning within a prefix growth framework. A performance
evaluation shows that it is able to mine patterns from high
dimensional datasets at low supports.

IV. CLASSIFICATION

In this section we investigate how to use a set of Emerging
Patterns for classification.

A. A General Framework of EP-based Classifiers

Algorithm 1 : Training the EP-based Classifier
input : a set of training instancesD (contaningn

classes of data, i.e.D = D1 + D2 + · · ·+ Dn)
output: the EP-based classifier
foreach 1 ≤ i ≤ n do1

mine the setEi of EPs from(
⋃n

j=1 Dj −Di) to Di

end
post-process the discovered EPs;2

output the classification model made up of EPs;3

Algorithm 2 : Classification by EP-based Classifier
input : the EP-based classifier and a testing instanceT
output: the classification forT
foreach class ido1

compute a scoreS(i, t) based on
Scoring-Function using EPs’ supports and
growth rates

end
assign the class with the highest score toT ;2

Since an EP has high support in its home class and low
support in the contrasting class, it can be seen as a strong
signal indicating the class of a test instance containing it.
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We can use EPs as an effective means for classification.
Examples of EP-based classifiers include CAEP [21] and the
JEP-Classifier [38].

The training stage of the EP-based classifier is shown in
Algorithm 1. EP-based classifier can handle datasets contain-
ing more than two classes by partitioning the training datasets
according to the class label. The training phase consists
of discovery of EPs and post-processing of these EPs. EP-
discovery algorithms include border-based approach [20] and
recent tree-based methods [24]. A classification model is built
from the training data, which is represented byn sets of EPs,
one set per class.

For a testing instanceT , we deriven scores for it, one score
per class, by feeding the EPs of each class into a scoring func-
tion, as shown in Algorithm 2. Usually the scoring function
is carefully designed to make good use of the characteristics
of different kinds of EPs. The class with the highest score is
assigned toT as its class label. Ties are broken in favor of
the class with more instances in the training dataset. When
the scores are exactly same or very close (i.e., the absolute
difference is less than a given threshold), it will predict the
majority class.

B. Aggregation of Support

It is natural to aggregate the discriminating power of those
EPs that are contained in a test instance to determine the class
label of the test.

CAEP (Classification byAggregatingEmerging Patterns)
is the first application of EPs for classification. It uses the
following scoring function. Usually, the EPs used in CAEP
satisfy a minimum support of 1% and a minimum growth rate
of 5.

Definition 5 Given a test instanceT and a setE(Ci) of EPs
of data classCi, the aggregate score (or score)of T for the
classCi is defined asscore(T, Ci) =

∑

X⊆T,X∈E(Ci)

growth rate(X)
growth rate(X) + 1

∗ suppCi(X),

where suppCi(X) is the support ofX in class Ci, and
growth rate(X) is suppCi(X) divided by theX ’s support
in non-Ci class.

The JEP-Classifier uses only JEPs, that is, EPs with
infinite growth rates. Therefore,score(T, Ci) becomes∑

X⊆T,X∈E(Ci)
suppCi(X).

C. BCEP: a Bayesian Approach to Use Emerging Patterns for
Classification

It is relatively easy to implement the scoring function using
simple aggregation of EPs. However, this method of score
calculation does not have any solid statistical foundation. Work
in [23] proposes a classifier called “BayesianClassification
by Emerging Patterns” (BCEP), whose scoring function is
based on Bayes theorem. BCEP is a hybrid of the EP-based
classifier and Naive Bayes (NB) classifier and it provides

several advantages. First, it is based on theoretically well-
founded mathematical models (Bayes theorem) to predict an
unseen case given a training sample. Second, it extends NB by
using essential emerging patterns to relax the strong attribute
independence assumption. Lastly, it is easy to interpret, as
many unnecessary EPs are pruned based on data class cover-
age. The detail of the BCEP classifier can be found in [23].
An empirical study carried out on benchmark datasets shows
that BCEP is superior to other state-of-the-art classification
methods such as C5.0, NB, CAEP and LB in terms of overall
predictive accuracy.

D. Using EPs for Rare-class Classification

The classification of rarely occurring cases is a challenging
problem in many real life applications, such as the identifica-
tion of responders in large surveys or marketing campaigns and
the identification of intruders in security networking systems.
It implies processing an imbalanced data set to distinguish
rarely-occurring cases from other overwhelming cases. In the
case of network security, the number of intrusion sessions
(e.g., by guessing passwords) can be very low (5% – 10%)
compared to the overall number of legal sessions. The scarcity
of the rare cases makes it difficult for traditional classifiers
to classify them correctly. For example, although popular and
powerful, C4.5 decision tree fails to perform well in rare-class
classification because the scarcity of the rare class biases most
of the decisions in the tree toward the major class.

Work in [2] proposes to use EPs in rare-class classification
for the first time. EPs are improved through three stages:
(1) generating new undiscovered EPs for the rare class; (2)
pruning bad EPs; and (3) increasing the supports of the rare-
class EPs. In the first stage, the new EPs are generated by
replacing different attribute values (in the original rare-class
EPs) with the highest-growth-rate values. In the second stage,
bad EPs are pruned for both the major and rare classes, where
bad EPs refer to those whose average growth rates are less
than the given threshold. At the last step, we increase the
support of rare-class EPs by a given percentage, in order
to compensate the effect of the large number of major-class
EPs (i.e., overwhelming major-class EPs make many rare-
class instances classified as major class). The new approach
outperforms many other classifiers including PNrule [35],
which is reported to be the best rare-class classifier.

Later work in [3] combines EPs and decision trees in rare-
class classification. It employs the power of EPs to improve the
quality of rare-class classification in two ways: (1) generating
new non-existing rare-class instances; and (2) over-sampling
the most important rare-class instances. In the first approach,
the new rare-class instances are created by combining EPs.
If a value for an attribute is missing, it is substituted by the
value that has the highest growth rate for the same attribute
(which is the best single-attribute itemset that represents the
rare class). The newly generated rare-class instances are very
similar to the original rare-class instances and can support the
classification of rare cases effectively. In the second approach,
we over-sample the most important rare-class instances only,
rather than over-sampling randomly, since it may affect the
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performance negatively due to the possibility of noise ampli-
fication. The most important instances are those that contain
rare-class EPs – they have the most important information that
can aid the classification process and do not introduce noise in
the space of rare-class instances. The experimental evaluation
shows this method improves the previous one further and
outperforms other classifiers such as PNrule, C4.5, Metacost
and over-sampling.

E. DeEPs: an Instance-based Lazy Discovery and Classifica-
tion System

Lazy learning [1] is sometimes called instance-based learn-
ing. In contrast to lazy learning is eager learning, where a
model (a group of rules or a set of patterns) is first induced
from the training data, and then it is repeatedly applied
to new instances for classification. The EP-based classifiers
discussed so far are all eager. In lazy learning, we use the
new instance as a constraint to extract knowledge useful only
for the classification of this instance. A typical lazy classifier
is k-nearest neighbor (k-NN) [18]. The intuition behind it is
that the class of a test instance is most likely to be the majority
class among thek nearest training instances to the test in a
certain distance measure.

DeEPs is an instance-based lazy discovery and classification
system [37], [39], [44]. Its fundamental idea is an effective
data reduction technique. When classifying a new instance,
DeEPs uses that instance as a filter to remove irrelevant
training values, making the original training data sparse in
terms of both dimensionality (number of attributes) and vol-
ume (number of instances). The reduced training instances
are further compressed along the volume direction by select-
ing only those maximal ones. DeEPs can handle continuous
valued attributes very well. It targets discretization towards
the test instance using the technique of neighborhood-based
intersection. Unlikek-NN which only locates “raw” training
instances without extraction of high level patterns, DeEPs can
provide comparative knowledge patterns and rules for people
to understand a new instance. DeEPs is accurate and reliable:
its performance is comparable to and often better than other
instance-based classifiers such ask-NN. Due to the lazy-
learning style, DeEPs is very useful for practical applications
where the data is frequently updated.

F. A Weighting Scheme Based on Emerging Patterns for
Weighted Support Vector Machines

Support Vector Machines (SVMs) were introduced in the
early 1990s and the topic on the entire family of kernel-
based learning methods has developed into a very active field
of Machine Learning research [15], [55]. SVMs are based
on statistical learning theory developed by Vapnik and their
formulations embody the structural risk minimization (SRM)
principle. Due to their good generalization ability for a wide
range of applications, SVMs have been powerful tools for
solving classification problems, delivering state of the art
performance in applications from analysis of DNA microarray
data to text categorization, from handwritten digits recognition
to protein homology detection.

SVMs combine two key ideas. The first is the concept of
an optimum margin classifier. An optimum margin classifier
is a linear classifier; it constructs a separating hyperplane
which maximizes the distance to the training points. The
important point is maximization of the margin, which turns the
under-specified learning problem into an optimization problem
(without local optima) and has been shown to give very good
generalization performance. In general, the optimum margin
hyperplane will be a linear combination of the input vectors;
support vectorsare those training instances which obtain
a non-zero coefficient, i.e., the ones that lie closest to the
separating hyperplane. The second key concept underlying
SVMs is akernel. In its simplest form, a kernel is a function
which calculates the dot product of two training vectors.
Intuitively, this dot product expresses the similarity of the
two training instances in terms of the given attributes. If we
use feature transformation techniques to reformulate the input
vectors in terms of new features and find a way to calculate
dot products in this feature space, we can leave the linear
classifier unaffected. Generally, the kernel can be thought of as
a non-linear similarity measure and kernel functions are inner
products in some feature space (potentially very complex).

Because the optimal hyperplane obtained by a SVM de-
pends on only a small part of the data points (support vectors),
it may become sensitive to noise or outliers in the training set.
To address this problem, Weighted Support Vector Machines
(weighted SVMs) are proposed in [46], which associate a
weight with each data point such that different points can have
different impacts on the learning of the optimal separating
hyperplane. Weighted SVMs try to maximize the margin like
the classical SVMs, but use weights to prevent some points
(i.e., noise or outliers) from making narrower margin. If
the data points are already associated with the weights, it
is straightforward to use this information to train weighted
SVMs. If a noise distribution model of the data is given, we
can set the weight as the probability of the point that is not
a noise, or as a function of it. However, almost all real world
applications lack the weight information and it is very hard
to know the true noise distribution. It is an open issue how
to generate a good and reliable weighting model from data
without any domain knowledge.

Work in [25] uses EPs to construct a reliable and robust
weighting model to reflect the true noise distribution in the
training data, i.e., noise and outliers should have low weights.
The intuition behind the idea is that a representative instance
of a class should contain strong EPs of the same class,
while noise and outliers should contain no EPs or EPs of
contradicting classes. The overall procedure of the EP-based
weighting model is shown in Figure 2. The experimental
results show that the EP-based weighting scheme often im-
proves the performance of weighted Support Vector Machines
and is consistently better than SVM. This demonstrates that
our EP-based weighting model has the ability to reduce the
effects of noise and outliers. Experiments also show that the
EP-based scheme is often superior to the previous distance
based weighting model. This supports the hypothesis that
the EP model can deal with high dimensional data (where
distance does not work) and cope with arbitrary class shape
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Original training dataset

No

yes

Discretize continuous 
attributes

Does it contain continuous 
attributes?

Now the  dataset contains 
discrete attributes only

EP-miner

A set of EPs for each class 
of data is discovered 

A score for each training instance is computed 
based on the scoring function, using the strength of 

EPs (i.e., supports, growth rates)

Scoring function

Mapping from scores to weights

Weights for every instance, reflecting the 
relative importance for classification 

The training dataset containing 
instances with original feature values  

+  their corresponding weights

Weighted Support Vector Machines 

Fig. 2. Overall procedure of the EP-based weighting model

(no assumption about class centers).

G. Expanding the Training Data Space Using Emerging Pat-
terns and Genetic Methods

The performance of traditional classifiers is proportional to
the knowledge obtained from the training data. As a result,
they cannot perform very well when the training data space
is very limited (i.e., only a proportion of all the data points
is available). Work in [4] combines the power of EPs (strong
discriminating power) and genetic methods (great reproduction
ability) to expand the training data space. Genetic meth-
ods incorporate evolutionary and computational techniques
inspired by biology. The expansion process is performed by
generating more training instances using four techniques: (1)
generating by superimposing EPs; (2) generation by crossover;
(3) generation by mutation; (4) generation by mutation and
EPs. Technique (1) generates new instances by assembling
attribute values from several EPs. Technique (2) switches the
values of two instances before a randomly chosen breaking
point. Technique (3) mutates an instance with the highest-
growth-rate values. Techniques (4) mutates an instance with

an EP, where all values in the instance are replaced with
their matched values in the EP. A number of constraints are
used to generate a reasonable number of high quality training
instances. (1) Instead of using the whole set of EPs, a certain
percentage of the best quality EPs is used; (2) Instead of using
the whole set of training data, a certain percentage of the
best quality instances is used; (3) We keep the best-quality
generated instances while discarding those with bad quality;
(4) We stop the generation process after a certain number
of instances are generated. Note that the quality of EPs is
measured by their growth rates, and the quality of a data
instance is measured by the average support of the attribute
values in the instance.

The generated instances are proved to contain necessary
information that supports classification. The experimental eval-
uation shows that the method has a great impact on improving
the results of other classification method such as C4.5, C4.5
Boosting and SVM.

H. Experimental Evaluation

TABLE III

ACCURACY COMPARISON. “CLEAN” MEANS NO NOISE ADDED.

“ATTRIBUTE”, “L ABEL” AND “M IX ” REFER TO40% ATTRIBUTE NOISE,

40% LABEL NOISE AND 40% MIX (ATTRIBUTE + LABEL ) NOISE,

RESPECTIVELY

Noise type NB C4.5 SVM BCEP
Clean 80.18 84.68 85.99 87.30

Attribute 76.94 78.42 76.71 82.29
Label 76.78 77.18 81.66 82.27
Mix 74.86 70.88 73.02 76.62

Average 77.19 77.79 79.35 82.12

We now provide a very small set of experimental results
to demonstrate the superior power of EP-based classifiers. In
table III, we compare the BCEP classifier against well-known
classifiers such as Naive Bayes (NB), decision tree C4.5 and
Support Vector Machines (SVM). Experiments are performed
on a number of benchmark datasets from the UCI Machine
Learning Repository [12]. We can see that the accuracy of
BCEP is extremely competitive and it is also very robust in
terms of noise. Detailed comparisons can be found in work
[6], [21]–[23], [38], [39], [56].

V. RELATED WORK

Concepts related to Emerging Patterns include version
spaces [47], disjunctive version spaces [54], discriminant rules
[30], [31] and contrast sets [8].

Many classification models have been proposed in the
literature: Neural networks [11], [52], genetic algorithms [28],
Bayesian methods [16], log-linear models and other statistical
methods [17], instance-based learning algorithms [1] (such as
nearest neighbor classifiers described in [19]) and decision
trees or classification trees [14], [50], [51], [53]. EP-based
classifiers are very different from the above models. EP
classifier models use a set of multi-attribute tests (EPs) for
decision making, while decision trees consider only one test on
one attribute at a time and Bayesian models uses probabilities.
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Compared to a neural network and a SVM classifier that act
as a black box, EP-based classifiers are relatively easy to
understand, similar to decision trees.

VI. CONCLUSION

In this paper we have discussed several kinds of patterns
(Emerging Patterns in particular), efficient pattern mining
techniques and effective classifiers based on patterns.

Mining of interesting patterns is an important field of
knowledge discovery and data mining. As we have seen in
the last few years, classifiers built using Emerging Patterns
are extremely reliable, accurate and noise tolerant. However,
there are still interesting questions, such as finding more
generalized patterns (e.g., contrast graph patterns and contrast
sequence patterns) and defining richer language expressions
for patterns (e.g., in addition to conjunctions of attribute
values, disjunction and negation are used). Efficient mining
of these complex patterns is also an open question. Already
researcher are applying Emerging Patterns in the biological
domain with substantial successes [40], [45]. We believe that
Emerging Patterns can be applied in much wider domain of
problems such as e-commerce, network intrusion detection,
anti-spam Email, image data, semi-structured texts (e.g., XML
documents) and unstructured texts (e.g., World Wide Web
documents).
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