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Abstract

Sequential patterns are used to discover knowledge in
a wide range of applications. However, in many scenar-
ios pattern quality can be low, due to short lengths or low
supports. Furthermore, for dense datasets such as proteins,
most of the sequential pattern mining algorithms return a
tremendously large number of patterns, which are difficult
to process and analyze. However, by relaxing the defini-
tion of frequency and allowing some mismatches, it is pos-
sible to discover higher quality patterns. We call these pat-
terns Frequent Approximate Substrings or FAS-patterns and
we introduce an algorithm called FAS-Miner, to handle the
mining task efficiently. The experiments on real-world pro-
tein and DNA datasets show that FAS-Miner can discover
patterns of much longer lengths and higher supports than
standard sequential mining approaches.

1. Introduction

Much research has focused on mining of patterns from
collections of sequences. Two of the most popular types
of patterns in sequence data mining are frequent subse-
quence patterns [1] and frequent substring patterns [5]. The
first corresponds to subsequences that appear frequently and
may contain gaps between adjacent items. The second is a
special case of the first and corresponds to subsequences
that appear frequently and do not contain gaps between ad-
jacent items.

The quality of sequential patterns can be evaluated in
two principal ways: pattern length and pattern support. Al-
lowing a shorter pattern length can be undesirable, partic-
ularly when the sequences are long, since the meaning is
less specific. Patterns with low supports also are less desir-
able, since they can be trivial and may not describe general
phenomena. Often, and particularly in a biological context,
patterns should have long lengths and high supports. How-
ever, a main drawback of standard sequential pattern mining

approaches is that they tend to predominantly discover mas-
sive amounts of “low quality” patterns, i.e. patterns having
either short lengths or low supports. Consider the following
example.

Example 1 In a group of 1048 L1 capsid protein se-
quences, with a minimum support of 10%, the average
length of substring patterns found was 8 and the maximum
length was 33. Increasing the minimum support to 60% re-
sulted substring patterns with an average length of 1.4 and
a maximum length as 2. By allowing a maximum gap of
2, we still could only discover subsequence patterns with a
maximum length of 7 at a 60% minimum support.

From our experience, this kind of scenario can be very
common. Users try many different combinations of con-
straint thresholds, but it is very difficult or impossible to
find thresholds which yield long patterns with high sup-
ports. Consequently, users often fall back on using lower
support thresholds to find patterns. This in turn increases
the mining time and the number of patterns returned.

In this paper, we evaluate a new kind of sequential pat-
tern, which we call the Frequent Approximate Substring
Pattern (FAS-pattern). This is a substring which appears
frequently, but some mismatches are allowed during sup-
port counting. The benefit of such patterns is that they of-
ten possess much higher (approximate) supports and longer
lengths. An example is given as follows.

Example 2 Consider the dataset from Example 1. When
setting minimum support threshold as 10% and allowing up
to 10 mismatches between a pattern and its appearances,
we discovered 25310 FAS-patterns whose smallest length
was 50 and largest was 80. When setting minimum support
threshold as 60% and maximum number of mismatches as
5, we could still discover 1472 FAS-patterns, whose average
length was 11.5 and largest length was 14.

This example tells that by allowing some mismatches, it
is possible to discover valuable sequential patterns whose
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lengths are much longer and (approximate) supports are
much higher than normal frequent subsequence or substring
patterns. As a further benefit, due to their prevalence at high
supports, users can employ higher support thresholds when
mining FAS-patterns. This filters out the trivial ones and
reduces overall pattern volume.
Challenges. Several mining challenges arise. The first is
that although projection and prefix extension techniques [9]
can be used, considerably more space is needed to store
many projected databases. Indexing data structures can im-
prove memory and time usage, but special purpose algo-
rithms are required. The second challenge arises with re-
spect to checking mismatches. Every candidate string needs
to be compared against all others to find its approximate
support and fast incremental methods are vital. Thirdly,
FAS-patterns do not use exact minimum support threshold
and traditional support pruning is much weaker, necessitat-
ing the development of alternative pruning strategies.
Contributions. We devise an algorithm called FAS-Miner
(Frequent Approximate Substrings Miner) to efficiently
mine the complete FAS-pattern set. We employ a novel ap-
proach, which combines optimized suffix arrays with sev-
eral pruning techniques. Experimental analysis shows that
FAS-miner is able to efficiently mine high quality FAS-
patterns from some very dense real-world datasets.

2. Preliminaries

Let Σ denote the alphabet set containing distinct items.
A sequence is an ordered list of (possibly duplicated) items.
For example, DNA sequences are sequences over Σ =
{A,C,G,T}. The i-th item of a sequence S is denoted as
S[i].

It is necessary to distinguish subsequences and sub-
strings. A sequence S1 = a1a2a3. . .an is called a subse-
quence of S2 = b1b2b3. . .bm and denoted as S1 ⊆seq S2 if
n ≤ m and there exist integers 1 ≤ i1 < i2 < ... < in ≤ m
such that a j = bi j for 1 ≤ j ≤ n. For example, ab ⊆seq acb
but ba �⊆seq acb. If there exists a set of positions {i1i2...in}
such that ik+1 = ik + 1 for 1 ≤ k < n, then S1 is a substring
of S2 and denoted as S1 ⊆str S2. For example, ab ⊆str abc
but ac �⊆str abc. There can be more than one such set of
positions, which means that S1 can appear more than once
in S2. Each position set is called an appearance of S1 in S2.
For example, ab appears twice as a substring in abcab at
positions {1,2} and {4,5}. An appearance of a substring in
S can also be denoted by its starting and ending positions,
S[i1..in]. As a special case, S[1..m] is called the m-th prefix
of S.

Given a sequence database SDB and a minimum support
threshold α, a sequence P is a frequent subsequence pat-

tern in SDB if |{S∈SDB|P⊆seqS}|
|SDB| ≥ α holds and is a frequent

substring pattern if |{S∈SDB|P⊆strS}|
|SDB| ≥ α holds.

The distance or dissimilarity between two items in Σ is
defined in distance matrix.

Definition 1 (Distance Matrix) The distance matrix M is
an |Σ|× |Σ| symmetric matrix where M[i][ j] ≥ 0 defines the
distance (or dissimilarity) between the i-th and j-th items of
Σ.

We will assume that higher values for distance between
a pair of items mean higher dissimilarity. Distance matri-
ces are commonly used in bioinformatics, such as BLO-
SUM series matrices. The distance between two sequences
is measured by (weighted) hamming distance.

Definition 2 (Weighted Hamming Distance) The weighted
hamming distance of two length-n sequences S1 and S2, de-
noted as dist(S1,S2), is the pairwise summation of distances
between items at the same positions.

dist(S1,S2) =
n

∑
i=1

M[S1[i]][S2[i]]

The larger the hamming distance is, the more dissimilar the
two sequences are.

3. FAS-Patterns

The relevant definitions of FAS-Patterns are given as fol-
lows.

Definition 3 (Approximate Containment ⊆ε) A substring
P is approximately contained in a sequence S according to
the maximum distance threshold ε (denoted as P ⊆ε S) if
∃S′ ⊆str S s.t. |S′| = |P| ∧dist(P,S′) ≤ ε.

Definition 4 (Approximate frequency and support) Given
a distance matrix M and a maximum distance threshold
ε, a substring P’s approximate frequency is the number
of sequences from SDB it is approximately contained in,
that is, freqε(P,SDB) = |{S ∈ SDB|P ⊆ε S}|. The ratio
of the approximate frequency and the total number of se-
quences in SDB is called the approximate support, that is,

suppε(P,SDB) = freqε(P,SDB)
|SDB| .

Definition 5 (Frequent Approximate Substring Patterns)
Given a user-defined distance matrix M, maximum distance
ε, minimum approximate support α and minimum length l,
a sequence P is called a FAS-pattern if and only if it satisfies
the following constraints:

• Non-virtual constraint: freq0(P,SDB) ≥ 1

• Minimum frequency constraint:
suppε(P,SDB) ≥ α
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Table 1. An example SDB.
ID SEQUENCE
1 aabac
2 bbacc
3 cacbb
4 bcbca
5 acbab

Figure 1. sa, lcp and iid for SDB in Table 1.

• Minimum length constraint: |P| ≥ l

We use a minimum length constraint to prohibit trivial pat-
terns. The definition concentrates on non-virtual patterns,
i.e. patterns appear at least once in SDB. Given M, SDB,
α,ε and l, FAS-pattern mining problem is to discover all
the FAS-patterns from SDB.

4. The Algorithm of FAS-Miner.

FAS-Miner uses a suffix array to store and organize the
search space; a prefix extension approach to generate can-
didates and an incremental way of checking distance and
counting frequencies. It also uses techniques for space
pruning and other optimizations.
The suffix array. FAS-Miner uses a suffix array (abbrevi-
ated sa) to store all suffixes of sequences from SDB, sorted
in lexicographic order. Only suffixes whose lengths are
greater than minimum length l are stored. We use suffix
array rather than suffix tree, since it consumes less memory
and it is easier to implement pruning techniques.

Example 3 For SDB given in Table 1, the suffix array sa,
when l = 3, is given in the first column1 in the table of Fig-
ure 1. We use a character # �∈ Σ, to indicate the end of each
suffix. sa does not contain suffixes such as ac#, because
their lengths are smaller than l.

The suffixes are not stored literally, only the starting po-
sitions of the suffixes are stored in sa. Thus, the size of sa
grows linearly with total length of sequences in SDB.

1The meanings of other columns will be introduced later.

Enumerating candidates by prefix extension. Starting
from the first suffix of sa, prefixes are incrementally ex-
tend. Each prefix is a candidate and it is compared with
prefixes of the same length of all the other suffixes in the ar-
ray, to count the approximate support. Candidate generation
is performed for all suffixes in the array. The distance in-
formation is kept in another array called the distance array
(abbreviated da) for each candidate. da has the same dimen-
sion as sa and da[i] holds the distance between the current
candidate and the same-length prefix of the i-th suffix.

Example 4 Consider sa in Figure 1, can-
didates are generated in the order as
“a”→“aa”→. . .→“aabac”→. . .→“aba”→. . . . da
for the first candidate “a”, which is the first prefix of
the first suffix, is {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1}. The
first five 0s mean that this candidate is identical with the
length-1 prefixes of the first five suffixes. The middle six
1s mean that this candidate is one item different from
the length-1 prefixes of the middle six suffixes (which
are “b”s). Similarly, da of candidate “aab” will be
{0,2,1,1,2,1,2,2,3,3,2,2,3,2,3}.

Each candidate C is extended by (|C|+ 1)-th item within
the suffix (if there is any). As the candidate is extended, its
da needs to be updated. If da[i] > ε holds, it is unneces-
sary to compare candidates from the current suffix with any
prefix of the i-th suffix anymore. When updating da for a
newly-extended candidate, the distances between the candi-
date and all other prefixes are not computed from scratch.
Suppose the current candidate is the n-th prefix of suffix S,
we only need to increase each da[i] of the (n− 1)-th prefix
of S by M[S[n][sa[i][n]], to get each da[i] of the n-th prefix.
Frequency counting. After da is updated for the newly-
extended candidate, the candidate’s approximate frequency
can be counted by examining how many elements in da have
a value no larger than ε. For the i-th element, if da[i] ≤ ε,
then the distance between the candidate and the same length
prefix of the i-th suffix in sa is smaller than or equal to ε and
vice versa. In order to compute approximate frequencies,
suffixes needs to be mapped to sequences of SDB contain-
ing them. Another array called iid (instance ID array) with
the same length as sa, is used to record IDs of sequences
containing each suffix. The iid values of sa built from SDB
of Table 1 are given in the third column in Figure 1. Fre-
quency counting of candidate prefixes from the same suffix
can be done incrementally.
Pruning the candidate space within a suffix. The n-th pre-
fix of suffix S is only examined when (n−1)-th prefix is ap-
proximately frequent. If this prefix is frequent and is longer
than l, it is output as a FAS-pattern. A prefix candidate C is
not extended any more if and only if it meets one of the two
stopping conditions: (1) C is not approximately frequent
(monotonicity) or (2) C is equal to the whole suffix, that is,
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Table 2. Experimental datasets.
Data set |Σ| # Seq. max. seq. len. avg. seq. len.

snake 20 174 121 67
PF00500 22 1048 523 209
PF03880 22 330 95 86

DNA 4 1000 301 258

n = |S|.
Reusing da for candidates within suffixes. Recall that da
has the same dimensionality as sa. The updating of da can
nevertheless be time-consuming. So, for a candidate being
extended from its prefix, its da is updated from the da of its
prefix, rather than recalculated from scratch. This is only
possible when candidates are extended from their prefixes
within the same suffix. When moved to generate candidates
for a new suffix, a basic strategy would need to start extend-
ing the prefix again from empty and also calculate da from
scratch. We next discuss how to optimize the reuse of da
when moving to a different suffix.
Reusing da for candidates crossing suffixes. The longest
common prefix array (abbreviated as lcp) is used for this
technique. It has the same dimension as sa and lcp[i] con-
tains the length of the longest common prefix of sa[i− 1]
and sa[i]. For sa in Figure 1, lcp is given in the second
column of the table. There are two cases to consider. In
the ideal case, if two adjacent suffixes sa[i − 1] and sa[i]
share some common prefix, then da computed for prefix
in sa[i − 1] can be preserved and reused when moved to
candidate generation in sa[i]. The second, more compli-
cated case, is that sometimes even though two adjacent suf-
fixes might share a common prefix, we may not be able to
straightforwardly preserve a necessary da during candidate
generation within the first suffix. This is because the small-
est suffix sa[x] sharing the longest common prefix with cur-
rent suffix sa[i] may not be sa[i− 1]. A longer eyesight is
used to identify the smallest suffix sharing longest common
prefix with each sa[i] so a best da can be preserved for each
suffix.

5. Experimental Results

Datasets. 4 real-world challenging biomolecular datasets
are used to test the performance of FAS-Miner. Details of
the datasets are given in Table 22

Algorithms. FAS-Miner was compared against a frequent
substring mining approach, a frequent subsequence mining
approach (PrefixSpan [9]), a frequent subsequence with gap
constraint mining approach and a closed frequent subse-
quence mining approach (BIDE [12]). For (exact) substring

2The middle two datasets can be obtained from http://www.sanger.
ac.uk/Software/Pfam/ and the last one obtained from NCBI using the
query term “200:300[sequence length] AND 2002/12:2003/02[publication
date]” in the category of “Nucleotide”.

mining, we implemented a mining algorithm (referred to
as Substr) using a lazy suffix trie construction, rather like
[4]. We also extended this algorithm to mine subsequences
according to maximum gap constraint g (referred to as Sub-
seq), using the gap checking approach from [7].

We used the complement of the identity matrix, as dis-
tance matrix. In our discussions, support value (α) refers
both to the approximate minimum support threshold for
FAS-Miner and the exact minimum support threshold for
other algorithms. In all diagrams, ε is denoted as e, l is
the minimum length threshold and g is the maximum gap
threshold. We did not apply minimum length constraint in
any algorithm other than FAS-Miner. Results are only given
for PrefixSpan and BIDE on snake dataset, since they could
not finish in reasonable time on the other datasets. Miss-
ing data points indicate that either a timeout (> 3 hours)
occurred or no pattern was found.
Pattern quality analysis. We evaluated the patterns accord-
ing to supports and lengths. The maximum pattern length
distributions for varying support thresholds are given in (a),
(b), (c), (d) of Figure 2. It is obvious that FAS-patterns
with high supports have consistently longer lengths than
frequent substring or subsequence patterns3. The larger ε
was set, the longer FAS-patterns could be found. Among
all types of patterns, frequent substrings have the shortest
maximum length. Although not shown in these diagrams,
FAS-patterns also achieved a much longer average length
than the other types of patterns. From these diagrams we
can also see that by using a maximum gap threshold g, pat-
terns longer than pure substrings could be found, but un-
fortunately it is expensive to mine such patterns with large
gaps.

Pattern distributions over different lengths for two
datasets are shown in (e) and (f) of Figure 2. We can see
that substring and subsequence patterns mainly have small
lengths, from 1 to 6. In contrast, FAS-patterns were found
to have much longer lengths.

We also studied the distribution of the total volume of
patterns for different algorithms on PF03880. Figure 2(g)
shows that frequent substring and subsequence patterns dis-
appear quickly as α increases, while the number of FAS-
patterns drops more slowly. Note that all FAS-patterns in
this diagram are longer than 15, whereas other patterns are
permitted to have shorter lengths. So even for a support as
high as 90%, we still discovered as many patterns as Substr
and Subseq did, but with far longer lengths.
Runtime (varying α). The running times of different al-
gorithms are shown in diagrams (h), (i), (j) and (k) of Fig-
ure 2. FAS-Miner with full optimization is denoted as FAS-
Miner op and a version without optimization of preserving

3There are some missing values for FAS-patterns, when ε = 3, since no
patterns was found. The other algorithms didn’t have this length constraint
applied and thus some patterns with shorter lengths could be found.

328



Figure 2. Experimental results.
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da with a longer eyesight is denoted as FAS-Miner no.
From Figure 2(h), we see that PrefixSpan and BIDE are

insufficient to handle mining tasks from long sequences
with small alphabet sets. The running time of Subseq
with small gaps is faster than PrefixSpan and BIDE, but
its performance markedly deteriorates for larger gaps (Fig-
ure 2(k)). Substr is easily the most efficient algorithm over-
all.

There are two main points regarding the efficiency of
FAS-Miner. Firstly, the improvement gained through us-
ing the optimization is obvious. Indeed, a 25% runtime
improvement in all datasets was observed. Secondly, FAS-
Miner experiences little change in runtime as α varies, be-
cause most of the time was spent in checking the distance
between the candidate and all the substrings of the same
length. Another reason is, we have to fully generate the
search space of all candidates with lengths smaller or equal
to ε and this takes up considerable proportion of the total
running time.

We also measured FAS-Miner running time by varying
α and fixing other thresholds. The results are given in di-
agrams (m), (n) and (o) of Figure 2. They show that FAS-
Miner is affected mostly by the increase of ε.

6. Related work

Frequent and closed subsequence pattern mining has
been studied thoroughly in [1, 9, 12, 13]. Algorithms con-
sidering various constraints, such as [10, 14] have also been
popular. [2] introduces a pattern which is like a combi-
nation of short frequent substrings having a maximum gap
constraint between any two adjacent substrings. Emerg-
ing substrings and distinguishing subsequences are studied
in [4, 7]. Suffix trees and suffix arrays are frequently used
data structures in substring matching problems. [6, 5] intro-
duce how to use suffix arrays and trees for fast mining of
frequent string patterns.

[8] discusses mining approximate sequential patterns.
Sequences are clustered into groups, based on edit distance.
Then, an approximate multiple alignment is done within
each cluster and profiles are generated from frequencies of
aligned items. [3] looks at mining approximate sequen-
tial patterns, where the patterns mined are constrained to
be within a certain distance from a user-defined reference
pattern.

There are varieties of string patterns in biomolecular se-
quences known as motifs. Many motif finding techniques
require multi-sequence alignment, which is rather different
from the case of FAS-patterns. Other motif algorithms are
enumeration based [11], but typically require the length of
the motif to be specified in advance. Also, they are designed
to discover motifs that are relatively short (around 10-15
items in length). In contrast, FAS-Miner can discover very

long patterns, sometimes reaching up to 80 items in length
and often over 50.

7. Conclusion

We have studied the mining of frequent approximate sub-
strings. These patterns tend to have high quality, i.e. having
both long lengths and high supports. They cannot be found
using previous sequential mining algorithms. Experiments
show that FAS-Miner works well for a number of challeng-
ing datasets, being able to discover very high quality pat-
terns within reasonable time and memory limits.
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