
Flavours of XChange, a Rule-Based Reactive
Language for the (Semantic) Web

James Bailey1, François Bry2, Michael Eckert2, and Paula-Lavinia Pătrânjan2

1 The University of Melbourne, Australia, http://www.cs.mu.oz.au/~jbailey/
2 University of Munich, Germany, http://pms.ifi.lmu.de/

Abstract. This article introduces XChange, a rule-based reactive lan-
guage for the Web. Stressing application scenarios, it first argues that
high-level reactive languages are needed for both Web and Semantic Web
applications. Then, it discusses technologies and paradigms relevant to
high-level reactive languages for the (Semantic) Web. Finally, it presents
the Event-Condition-Action rules of XChange.

1 Introduction

A common perception of the Web is that of a distributed repository of hyper-
media documents, with clients (in general browsers) that download documents,
and servers that store and update documents. Although reflecting a widespread
use of the Web, this perception is not completely accurate. In fact, many Web
applications rely on the updating of server data in response to the requests of
clients, or client data in response to the requests of servers. Indeed, there are
many kinds of reactions for both servers and clients, to events or messages ex-
changed on the Web. The Web has an infrastructure for updates and reactivity:
the protocol HTTP. This article first argues that complementing HTTP with
high-level languages for updates and reactivity is needed for both standard Web
and Semantic Web applications. It then introduces XChange, a novel high-level
language for Event-Condition-Action rules for updates and reactivity on the
(Semantic) Web.

2 Motivation

Updates on the Web. Many Web applications build upon servers that update
data according to client requests or actions. This is the case for e-Commerce
systems that receive, process and buy orders, e-Learning systems that select
and deliver teaching materials depending on students’ test performances, and
of communication platforms such as wikis, where several users modify the same
documents. Conversely, some Web applications also build upon clients that up-
date data according to server requests. This is the case with so-called cookies,
i.e. descriptions on a client of the states of a connection to a server, or when a
client keeps, after a connection to a server, data collected during the connection,
e.g. for a railways or airline electronic ticket.

2

Reactivity on the Web. Many Web applications not only build upon the updating
of data, but also upon complex reactions to messages or events, exchanged not
only between clients and servers but also (via servers) between clients. This is the
case when contributors to a Web-based communication platform are informed
of other contributors joining in or leaving a session. It is the case for Web-based
business management systems, such as business travel applications and planning
and reimbursement in large companies, that rely upon complex workflows of
actions and messages, possibly realized using Web services. It is also the case for
Web-based systems offering context-dependent services. e.g. a time and location
dependent car park directory, that adapts the information it delivers and reacts
to time changes, with clients changing places and car parks announcing their
free parking capacities.

Updates and Reactivity on the Semantic Web. Updates and reactivity are as
much “Semantic Web issues”, as they are “standard Web issues”. The application
scenarios stressed above, might involve both standard Web and Semantic Web
data and techniques, such as HTML, XML, RDF, Topic Maps and OWL data,
as well as inference from RDF triples. For example, e-Commerce offers might be
described by RDF meta-data and an e-Learning system might refer to inference
rules expressed in terms of RDF triples, RDFS, and OWL.

HTTP/1.1: The Infrastructure for Updates and Reactivity on the Web. Updates
and reactivity on the Web are realized using HTTP/1.1, the current version of
the Hypertext Transfer Protocol. HTTP’s communication paradigm is a client-
server model of request-response interactions offering among others, the requests
GET (by which a client can retrieve from a server, information identified by a
URI) and POST (by which a client can submit information to an “entity” on a
server identified by a URI). HTTP has roles for (software) intermediaries such as
proxies, gateways, and tunnels, giving rise to the specification of various forms
of communication. HTTP has two kinds of messages: requests and responses.
Message headers give rise to the specification of network communication and
system parameters (e.g. whether the message sender wants to close the connec-
tion), caching directives, encoding information (e.g. indicating that the message
body is encoded using the gzip file format), communication protocols other than
HTTP/1.1 a client offers the server to use, the length of the message body, a
base for relative URIs referred to in a message body, etc.

High-Level Languages for Updates and Reactivity on the Web. Although HTTP/
1.1 can help implement updates and reactivity on the Web, as needed by the
afore-mentioned applications, more abstract and higher-level languages are need-
ed that (1) abstract away network communication and system issues, (2) ease the
specification of complex updates of Web resources (e.g. XML, RDF, and OWL
data), (3) are convenient for specifying complex flows of actions and reactions on
the Web. The need for high-level Web update and reactivity languages is similar
to the need for high-level (Semantic) Web query languages (cf. [2] for a survey).
High-level reactivity languages will complement, not replace HTTP. Indeed, the
simplest and therefore most desirable way to implement a high-level reactivity
language for the (Semantic) Web, is to use HTTP/1.1.

3

3 Technologies and Paradigms

Atomic Events, Event Messages, and Composite Events: Web and Semantic Web
applications require a number of different kinds of atomic events: i) events ex-
changed between Web nodes, to make it possible for a Web node to trigger re-
actions at remote Web nodes, ii) events local to a Web node, to help express
local reactivity, e.g. local updates, and iii) system events, making it possible
for reaction to the functioning, or non-functioning, of the encompassing “sys-
tem(s)”, e.g. the operating system of a node or of the network. A simple and
natural assumption is that events exchanged between Web nodes are expressed
as event messages, expressed in a Web format such as XML. Reacting to compos-
ite (or complex) events, is essential in practice. Complex events have received
considerable attention in the field of active databases, cf. e.g. [16, 14]. How-
ever, differences between (generally centralised) active databases and the Web,
where central clock and management are missing and message deliveries between
Web nodes can be delayed, necessitate new approaches. Furthermore, composite
events reflecting a user-centered, and not a system-centered view are needed on
the Web.
Event Messages vs. Web Resources. Event messages and standard Web resources
should be kept in two separate data kinds, since otherwise the development of
the reactive Web may be insufficiently distinguishable from the (Semantic) Web.
In short: No URIs for event messages!
Temporal Dependencies often have to be expressed when composite events are
specified. An application example might be “depend on an event E1 occurring
before an event E2”, or “depend on an event E3 occurring within a time interval”.
Thus, a reactive language requires sophisticated temporal notions and temporal
event composition constructs.
Event-Condition-Action Rules, (ECA rules) fit well with the widespread and
intuitive view of the Web as a distributed repository of documents mentioned
above. Indeed, ECA rules build on queries by the use of “conditions”. Thus,
ECA rules building on a Web or Semantic Web query language are a very natural
paradigm for updates and reactivity on the Web. Updates and reactivity pertain
to imperative programming, because they refer to state changes on the Web.
Arguably, ECA rules building on a Web query language are more convenient for
reactivity on the Web, than conventional imperative programming languages.
Distributed Processing and Communication. On the Web, reactive programs call
for distributed processing. Arguably, reactive languages making each Web node
capable of controlling its own reactive behaviour, would fit the de-centralised
management of the (Semantic) Web.

4 XChange in a Nutshell

XChange is a language of ECA rules. Each rule consists of three parts: (1) an
event query, also called “event”, accessing (local or remote) event messages and
(local) system events, (2) a Web query refereed to as the “condition” accessing

4

standard Web data, and (3) an “action” expressing (3.a) single updates, (3.b)
transactions i.e. a group of actions to be realized in an all-or-nothing manner,
or (3.c) messages to be sent to Web nodes.

The atomic events of XChange are happenings (e.g. an update of a possibly
remote Web resource) to which each Web node (through a reactive program) may
or may not react. XChange distinguishes between two kinds of atomic events: ex-
plicit events and implicit events. Explicit events are explicitly raised by a user or
by an XChange program at a Web node and sent to this and/or other Web nodes
as event messages. XChange’s event messages are (arbitrary) XML documents
within an event message envelope expressed itself as a (specific) XML document.
An envelope mentions at least the sender, a recipient, and, upon reception at
a Web node, the reception time. An envelope, might in addition, mention other
recipients and the event’s raising time (at the sender’s node). Figure 2 presents
an envelope in the term syntax of Xcerpt [5, 2, 18] and XChange. This syntax is
a slight variation of the XML syntax with unlabeled parentheses instead of la-
beled tags and element names occurring immediately before the parentheses, e.g.
article[title{"Flavour of XChange"}, body[...]] is the term syntax

for the XML document of Figure 1. Figure 2 presents an XChange event mes-
<article>

<title>Flavour of XChange</title> <body>...</body>

</article>

Fig. 1.

sage (note the namespace prefix xchange). The respective meanings of the square
brackets [] and curly braces { } are explained in Section 5. Nesting messages
with their former envelopes make it possible to track the origin of messages,
removing envelopes before forwarding messages hides their origin.

xchange:event {

xchange:sender { "http://www.pms.lmu.de/" },

xchange:recipient { "http://ruleml.org" },

xchange:recipient { "http://www.cs.mu.oz.au/~jbailey/" },

xchange:raising-time { "2005-06-29T18:15:00" },

info { "Here is an article for RuleML’06!"],

article [title {"Flavour of XChange"}, authors [...], body [...]]

}

Fig. 2. An XChange Event Message

Implicit events are local events such as updates of local Web resources and
system clock events. They are not expressed through event messages. Events are
transmitted from one Web node to another via event messages. Thus, an event
sent from one Web site to another is necessarily explicit. Composite events are
defined in XChange as answers of composite event queries, cf. Section 6.

XChange makes a strict distinction between persistent data, i.e. Web re-
sources,3 and volatile data, i.e. by definition events. XChange relies on the query
3 A Web resource might be computed on request from other resources, using e.g. views,

and therefore be more “dynamic” than “persistent”. XChange’s distinction between
Web resources and events is not affected by the existence of “dynamic” resources.

5

language Xcerpt [5, 2, 18] for accessing persistent, i.e. Web, data. XChange uses
a novel query language especially tuned to events for accessing volatile data,
i.e. events. This event query language builds upon Xcerpt and extends it with
constructs for temporal event composition. Event messages can be turned into
Web resources, and Web resources might be included in event messages. The
metaphor for XChange’s distinction between “volatile data” or events, versus
“persistent data” or Web resources, is that of speech vs. written text: Speech
cannot be stored and cannot be updated once produced, but only completed by
further speech, whilst written text can be stored and updated. However, (non-
storable, non-updatable) speech can be turned into (storable and updatable)
written text.

XChange’s event query evaluation is not based on event consumption: an
event already used in answering an event query can be used for answering another
event query. XChange supports a limited form of event selection [19] with the
temporal ranges of its event queries. The authors believe that rejecting event
consumption and instead using “pure” event selection, greatly contributes to
making the event query language closer to database and Web query languages,
especially Xcerpt, thus making programming in XChange easier. Note that event
consumption and selection strategies can easily be implemented using XChange
rules.

XChange’s communication model is peer-to-peer, i.e. all Web nodes, whether
they be clients or servers according to HTTP, have the same communication
capabilities and every party can initiate a communication with every other Web
node. Two basic communication strategies are possible on a network: a push
strategy where senders inform recipients of messages they want to send to them,
and a pull strategy where (potential) recipients keep querying all (potential)
senders for messages. Arguably, the pull strategy is convenient for querying
(persistent) Web resources, while the push strategy is convenient for querying
(volatile) events. XChange relies on the push strategy for event queries and on
the pull strategy for Web resource queries.4 XChange’s message communication
is asynchronous, i.e. XChange’s ‘send operation’ is non-blocking: the execution
of an XChange program immediately continues after a ‘send operation’ without
waiting for the message transmission, an acknowledgement of receipt, or a reply.
Note that blocking sending can easily be implemented using XChange rules.

XChange programs are processed in a distributed manner, each (XChange-
aware) Web node processes, possibly by delegation to another Web node, the
XChange programs locally specified. XChange relies neither on “super-peers”,
nor on central services, such as a central synchronization point.

XChange ensures a local control of events, as well as of event memorisation.
A Web node might reject an update request from a remote Web node (sent in

4 Push communication can be simulated in a pull communication framework by “con-
tinuous queries”, i.e. potential recipients periodically polling all potential senders.
This simulation has severe drawbacks: Increased network traffic, delayed receptions,
communication initiated by potential recipients and not actual senders, potential
recipients must be aware of all potential senders, etc.

6

an event message), e.g. because of a lack of credentials. Furthermore, the events
memorized at a Web node only depend on the XChange event queries posed at
that node. The time during which an atomic event, e.g. an event message or a
local implicit event, is kept in memory at a Web node, only depends on the event
queries posed at that node. By design, XChange composite event queries can be
evaluated without keeping any event forever in memory. If this is necessary for
some applications, (volatile) events should be explicitly stored as (persistent)
Web resources.

XChange event queries have a declarative semantics expressed in terms of
a Tarski-style model theory, i.e. recursively on the structure of composite event
queries, making them easy to understand and to implement. XChange event
query evaluation is data-driven, incoming events are used for incrementally eval-
uating queries. In contrast, the evaluation of queries against Web resources, e.g.
Xcerpt queries and XChange conditions, is in general query driven.

5 Conditions or Web Queries

The condition parts of XChange rules are expressed in Xcerpt [5, 2, 18], a Web
and Semantic Web query language. Xcerpt has query patterns, called query
terms, for querying Web resources, and construction patterns, called construct
terms, for re-assembling data selected by queries into new data items. Common
to query, construct, and data terms, is that they represent graphs, i.e. ID/IDREF
and other XML references are dereferenced by Xcerpt. The children of the node
of an XML document might be either ordered or unordered, i.e. during querying
with Xcerpt, their order might be modified. In the term syntax of Xcerpt, an
ordered term specification is denoted by square brackets [], an unordered term
specification by curly braces { }.

bib { massimo @ person{ first { "Massimo" }, last { "Benedetti" } },

article { title { "Querying XML" }, authors { ^ massimo } },

article { title { "Updating XML"}, authors { ^ massimo } } }

Fig. 3. A Xcerpt Data Term

Data Terms represent Web resources, i.e. XML documents. In an Xcerpt pro-
gram, the Web resources to be queried are specified using the keyword resource,
followed by the URIs of the resources. Figure 3 presents an Xcerpt data term
describing a bibliography. Note the defining occurrence massimo @ ... and the
referencing occurrence ^ massimo of the reference, or pointer, massimo.
Query Terms are (possibly incomplete) patterns that are matched against Web
resources. Both partial (i.e. incomplete) or total (i.e. complete) query patterns
can be specified. A query term t using a partial specification (denoted by double
square brackets [[]] or curly braces {{ }}) for its subterms, matches with all
such terms that (1) contain matching subterms for all subterms of t and that (2)
might contain further subterms without corresponding subterms in t. In contrast,
a query term using a total specification (denoted by single square brackets [] or
curly braces { }) does not match with terms that contain additional subterms

7

without corresponding subterms in t. Query terms contain variables for selecting
subterms of data terms that are bound to the variables. Variable restrictions can
be expressed using the -> construct (read as), which restrict the bindings of the
variable at the left of -> to those terms matching with the query term at the
right of ->. Figure 4 presents a query term retrieving the authors of articles
listed in the data term of Figure 3 at http://library.com.

in { resource { "http://library.com" }

bib {{ article {{ var Wrote -> authors }} }} }

Fig. 4. A Xcerpt Query Term

Xcerpt query terms may use additional constructs like subterm negation (key-
word without), optional subterms (keyword optional), and descendant (key-
word desc) [18]. Query terms are “matched” against data or construct terms by
a non-standard unification method called “simulation unification” [6].
Construct Terms serve to reassemble variables (the bindings of which are spec-
ified in query terms) so as to construct new terms. They are similar to data
terms, but are augmented by variables (acting as place holders for data selected
by a query) and the grouping constructs all (which serve to collect all instances
that result from different variable bindings) and some or some n which serve to
collect one or n (non-deterministically chosen) instances resulting from different
variable bindings. Occurrences of all, some, or some n, may be accompanied by
an optional sorting specification.
Construct-Query Rules relate a construct term (introduced by the keyword
CONSTRUCT) to a query (introduced by the keyword FROM) consisting of “and”
and/or “or” connected query terms. Queries or parts of a query may be further
restricted by constraints (e.g. arithmetic constraints), in a so-called condition
box (introduced by the keyword where). A goal is like a rule, except for the
keyword CONSTRUCT replaced by GOAL. Goals specify data to be computed and
delivered, while rules specify possible intermediate computations. A (query) pro-
gram consists of one or more rules and of at least one goal. Xcerpt rules may
be chained to form complex query programs, i.e. rules may query the results of
other rules. More on Xcerpt can be found at [5, 18].

6 Event Queries

6.1 Syntax of Atomic Event Queries

Atomic Event Queries are patterns to be “matched” against incoming events (at
the Web node where the atomic event query is evaluated). They are in XChange
like they are in Xcerpt, query terms, the only difference being that event query
terms never refer to a Web resource, unlike Xcerpt query terms (recall: No URIs
for event messages!). Figure 5 presents an atomic event query (watching events
announcing flight cancellations for Massimo Benedetti) within an XChange rule
(the action and condition of which are not given).

8

RAISE

< action >

ON

xchange:event {{

flight-cancellation {{

flight-number { var Nb },

passenger {{ name { first { "Massimo" }, last { "Benedetti" } } }}

}}

}}

FROM

< condition >

END

Fig. 5. An Atomic Event Query Within an XChange Rule

6.2 Syntax of Composite Event Queries

A Composite Event Query consists of (1) a connection of (atomic or compos-
ite) event queries (possibly with where clauses limiting variable bindings) with
event composition operators such as and, andthen,or, and without and (2) an
optional temporal range limiting the time interval in which event occurrences
are relevant to the composite event query. Atomic events are event messages.
Composite events are only defined as answers to, or instances of composite event
queries. Composite events do not have time stamps, in contrast to event mes-
sages, i.e. atomic events. Instead, a composite event inherits from its components
a beginning time (the reception time of the first event message received that con-
tributes to the composite event) and an ending time (the reception time of the
last event message received that contributes to the composite event).

The following notations, possibly with indices, are used in the rest of the
section: AtomicEventQuery, CompositeEventQuery, EventQuery (an atomic or
composite event query), TimePoint, AbsTimeRange(an absolute time range, i.e.
an anchored finite time interval like e.g. “from June 3, 2005 to July 4, 2005”),
RelTimeRange (a relative time range, i.e. an unanchored finite time interval like
e.g. “3 days”), and TimeRange(an absolute or relative time range).

6.2.1 Temporal Ranges
A Temporal Range is a time interval during which a composite event query is to
be evaluated, i.e. only events received during this time interval might be relevant
to the event query. Temporal ranges are necessary for ensuring that no events
received by this node might have to be kept forever for answering some composite
event queries posed at this Web node. A temporal time range can be absolute
or relative.

a An absolute temporal range has either the form in AbsTimeRange, or the form
before TimePoint. Figure 6 presents two composite event queries that detect
new discounts for flights from Munich to Paris.

The current prototype implementation of XChange accepts time points ex-
pressed, like in the examples of Figure 6, using the “restricted profile” of ISO
8801 [17], possibly leaving out the “time zone designator” (then considering im-

9

plicitly the time zone of the Web node evaluating the event query). XChange
has additional constructs by which one can define absolute temporal ranges re-
ferring to the raising or reception times of atomic events, or to the beginning or
ending (raising or reception) times of composite events. If a temporal range can
be derived from the temporal ranges of the components of a composite event
query, then no explicit temporal range need be specified for this query.

xchange:event {{ xchange:event {{

flight {{ flight {{

from { "Munich" }, from { "Munich" },

to { "Paris" }, to { "Paris" },

new-discount { var D } new-discount { var D }

}} }}

}} before "2005-08-10T14:00:00" }} in ["2005-08-10", "2005-08-31"]

Fig. 6. Composite Event Queries with Absolute Temporal Ranges

b A relative temporal range has the form within Duration. The current im-
plementation of XChange accepts durations expressed as numbers of years, days,
hours, minutes and seconds. Figure 7 presents a (composite) event query with a
relative temporal range.

6.2.2 Event Composition Operators

a Non-Temporal Event Composition Operators
a.1 Conjunctions of event queries are used for detecting instances for each
specified event query regardless of their order. They have the form:
and { EventQuery1, . . ., EventQueryn }
a.2 Inclusive Disjunctions of event queries are used for detecting instances for
one of the specified event queries. They have the form:
or { EventQuery1, . . ., EventQueryn }
An answer to this event query is the first answer of one of the EventQueryi the
evaluation of which can be completed using the events received so far.

b Temporal Event Composition Operators
The reception time of incoming atomic events determines the temporal order
of events that the temporal event composition operators refer to (the raising
time is another alternative currently being investigated). The temporal event
composition operators of XChange include: orderings, event exclusions, multiple
selections and exclusions, branchings, and occurrences.
b.1 Orderings
b.1.1 Temporally ordered conjunctions of event queries detect successively, in
terms of the event temporal order, instances of events. They have the forms:
andthen [EventQuery1, . . ., EventQueryn]
andthen [[EventQuery1, . . ., EventQueryn]]
A total specification (using []) expresses that only instances of the EventQueryi

(i = 1, . . . , n) are of interest and are included in the answer. Instances of other

10

events that possibly have occurred between the instances of the EventQueryi are
not of interest and, thus, are not contained in the answer. In contrast, a partial
specification (using [[]]) expresses interest in all incoming events that have
been received between the instances of the EventQueryi. Thus, all these instances
are contained in the event query’s answer. Figure 7 presents an event query that
detects notifications of flight cancellations that are followed, within two hours of
reception, by notifications that the airline is granting no accommodation.

andthen [

xchange:event {{ xchange:sender { "http://airline.com" },

cancellation-notification {{ flight {{ number { var Nb } }} }} }},

xchange:event {{ xchange:sender { "http://airline.com" },

important { "Accommodation not granted!" } }}

] during 2 hours

Fig. 7. A Temporally Ordered Conjunction Event Query

b.1.2 Overlappings of composite event queries detect instances of event queries
that overlap on the time axis of the incoming events.
EventQuery1 and EventQuery2 overlap if the beginning time of EventQuery1 is
before the beginning time of EventQuery2 and the ending time of EventQuery1

is after the beginning time of EventQuery2, or vice versa.
Ordered and unordered specifications are possible for overlapping of compos-

ite event queries, i.e one has the possibility to express that the temporal order
is of importance or not. Thus, overlappings have the forms:
overlap [EventQuery1, EventQuery2]
overlap { EventQuery1, EventQuery2 }
b.1.3 Meets for composite event queries detect event query instances whose
components “meet” on the time axis of the incoming event. EventQuery1 meets
EventQuery2 if the ending time of EventQuery1 is the same as the beginning time
of EventQuery2, or vice versa. As for overlappings of composite event queries,
ordered and unordered specifications are possible. The keyword for this event
composition operator is meet.

b.1.4 Overlappings or meets for composite event queries, detect event query
instances whose components overlap or meet on the time axis of the incoming
events. overlap-or-meet is the keyword for this event composition operator.

b.1.5 Inclusions for event queries detect instances of events that have occurred
during the time interval determined by the beginning time and ending time of
an instance of a composite event query. The keyword for this event composition
operator is include. This operator is Allen’s during relation [1].
b.2 Event Exclusions
The event exclusion operator enables the monitoring of the non-occurrence of
(atomic or composite) event query instances. i.e. to express event queries exclud-
ing some event query instances. Event exclusions queries have one of the forms:
CompositeEventQuery without EventQuery
without EventQuery AbsTimeRange

11

Figure 8 presents an event exclusion query detecting if the notification of an
online reservation made on 10th of August 2005 is not received within ten days.

without xchange:event {{

online-reservation-notification {{ }}

}} in ["2005-08-10", "2005-08-20"]

Fig. 8. An Event Exclusion Query

b.3 Multiple Selections And Exclusions for event queries have the forms:
m of EventQuery1, ..., EventQueryn AbsTimeRange
atleast m of EventQuery1 , ..., EventQueryn AbsTimeRange
atmost m of EventQuery1 , ..., EventQueryn AbsTimeRange
The first form requires 1 ≤ m ≤ n. It detects instances of m of the specified event
queries and the non-occurrence of instances of the n −m event queries, within
the given time interval. The other forms are self-explanatory. Multiple selection
and exclusions event queries must always be accompanied by the specification
of an absolute time range in which instances of the specified event queries are
to be monitored. Note that if m = 1, the first form is equivalent to an exclusive
disjunction. Figure 9 presents a composite event detecting notifications of either
cancellation or of an in-time departure for a flight.

1 of { xchange:event {{ xchange:sender { "http://airline.com" },

cancellation-notification {{ varFlight ->

flight {{ number { "AI2021" }, date { "2005-08-10" } }} }}

}},

xchange:event {{ xchange:sender { "http://airline.com" },

in-time-departure-notification {{ var Flight }} }}

} before "17:00"

Fig. 9. A Multiple Selections And Exclusions Event Query

b.4 Branchings
b.4.1 An if-then-else event composition operator gives rise to query different
event instances, depending whether an instance of an event query (specified in
the if part) has occurred or not.
b.4.2 The case event composition operator generalizes the if-then-else oper-
ator. An optional else part can be specified for detecting event query instances
if none of the event queries of the case part could be answered.
b.5 Occurrences
b.5.1 Quantifications of event queries serve to detect event query instances
occurring at least, at most, or exactly a given number of times in a time range.
Quantifications have the forms:
n times EventQuery TimeRange
atmost n times EventQuery TimeRange
atleast n times EventQuery TimeRange
Figure 10 presents a composite event query making it possible to react only after
three identical notifications from a secretaries pool within 2 hours.

12

at least 3 times xchange:event {{

xchange:sender { "http://xchange.com/secretaries/" },

var Notification -> important {{ }}

}} within 2 hours

Fig. 10. An Event Query Specifying 3 Occurrences of A Same Notification

b.5.2 Ranks serve to detect instances of event queries with a given position, or
rank, in the flow of events. Composite event queries with ranks have the forms:
EventQuery withrank n TimeRange
last EventQuery TimeRange
Negative ranks denote event query instances counted from the end of the event
query sequence, with −1 denoting the last occurrence. Event queries with last
or negative ranks must have a time range so as to determine the last incoming
event. Figure 11 presents an event query detecting the last notification before
10:00 of a delayed arrival.

last xchange:event {{

xchange:sender {"http://airline.com"}, delay-notification {{var Notif}}

}} before "10:00"

Fig. 11. An Event Query With Rank

b.5.3 Repetitions are used to detect e.g. every second, third, etc. instances of a
specified event query in a given time range. They have the form:
every n EventQuery TimeRange
Figure 12 presents a composite event query making it possible to react only
to every fourth message labeled important from the secretaries pool within a
workday, a temporal type defined using the calendar system CaTTS [4], the
integration of which with XChange is currently underway.

every 4 xchange:event {{

xchange:sender { "http://xchange.com/secretaries/" }, important {{ }}

}} within workday

Fig. 12. An Event Query Specifying a Repetition

6.3 Semantics of Event Queries

XChange event queries have a declarative semantics [9] defined in terms of a
Tarski-style model theory, i.e. the valuation of a composite event query with re-
spect to a stream of incoming events is defined recursively on a query’s structure.
An answer to an event query, i.e. an event query instance, can take two forms:
an event stream form and a “resource” form.

The event stream form of an event query instance, is the stream of events
selected from the incoming stream by the event query. This form ensures the
answer-closedness of the event query language, i.e. answers are of the same
kind as the data queried. Answer-closedness is a necessary feature for modular
programs specifying computations in a stepwise manner.

The “resource” form of an event query instance is an XML document (storable
as a Web resource, hence the name) structured after the event query and ex-
pressed either in the term syntax or in the XML syntax of XChange event queries.

13

The “resource” form of an event query instance is obtained by binding a variable
using the Xcerpt -> (‘as’) construct to the event query, thus “resource-ifying”
event query instances. This variable serves as a “handle” for “resource-ifying”
event instances and thus making them usable in the “condition” and/or “action”
of an XChange rule. “Resource-ification” of event query instances is needed be-
cause of XChange’s position: “No URIs for event messages!”

XChange event queries have a procedural semantics which is data driven,
i.e. the evaluation of a composite event query is performed incrementally, using
the atomic events as they are received. The procedural semantics is sound and
complete with respect to the declarative semantics.

7 Actions

The action of an XChange rule can be (1) the specification of (one or more)
events to raise, i.e. the specification of event messages to send to (one or sev-
eral) Web nodes, (2) (one or more) update requests to (one or several) Web
nodes, or (3) (one or more) transactions, i.e. groups of events to raise and/or
update requests to perform in an all-or-nothing manner: The notification by a
remote Web node of the rejection of a part of a transaction, is interpreted by the
(XChange-aware) Web node that had emitted the transaction as the rejection
of the whole transaction. Specific transactional event messages are provided for
notifying the rejection of update requests or transactions.

XChange transactions obey the ACID properties [15] (Atomicity, Consistency,
Isolation, and Durability). They can be called weak because, in contrast to
database systems, XChange does not automatically roll-back rejected transac-
tions, but leaves this task to the Web node that emitted the transaction, where
it can be implemented with specific XChange rules. This is consistent with the
XChange communication model discussed in section 4, especially with XChange’s
non-blocking ‘send operation’, and with XChange’s local control of events men-
tioned in section 4. The database systems style of automatic rollback would
contradict these two paradigms of XChange and the de-centralised management
of the Web.

XChange update requests are expressed by update terms built up from Xcerpt’s
query and construct terms: subterm deletions are specified similarly to Xcerpt
query terms, so as to make possible intensional specifications of deletions, sub-
term insertions similarly to Xcerpt construct terms. Figure 13 presents a com-
posite action (1) canceling all appointments of Benedetti on the 10th of August
2005, (2) notifying via email all the persons concerned by the cancellations, and
(3) inserting an novel appointment for Benedetti on that same day. Note the in-
tensional specification of the deletions using the variables DelApp and EmailAdd,
the grouping all, and the temporally ordered conjunction andthen [...] speci-
fying in which order the three action components should be performed. Enclosing
an composite action in a term labeled transaction makes it a transaction.

14

andthen [

in { resource { "organizer://xchange.com/~benedetti/" },

organizer {{ delete var DelApp appointment {

receiving { last { "Benedetti" } },

visiting {{ email { var EmailAdd } }},

when {{ day { "2005-08-10" } }}

} }}

},

in { resource { "organizer://xchange.com/benedetti/" },

organizer {{ insert appointment {

receiving { first { "Massimo" }, last { "Benedetti" } },

when { day { "2005-08-10" }, from { "9:00" }, to { "18:00" } }

} }}

},

all raise {

in { resource { "mailto:" var EmailAdd },

appointment-cancellation { var DelApp }

}

}

]

Fig. 13. Composite Ordered Action Specifying Updates and Raising Messages

8 Related Work And Conclusion

Allen’s Temporal Relations [1] have been an important inspiration in defining
the temporal event composition operators.
Active Databases prototype systems have been developed that provide sophisti-
cated event algebras, e.g. [8, 7, 11]. Their composite events have been an inspi-
ration for XChange event query language.
High-Level Reactive Languages for the Web formerly developed, e.g. [13], support
simple update operations on XML documents. They offer no means to specify
several updates to be executed in a given order or in an all-or-nothing manner.
Other related work can be found in [12], where Xyleme is described. Xyleme is
a system for monitoring and subscription on the Web. Alerters monitor simple
updates of Web resources, a monitoring query processor performs more complex
event detection and send notifications of events to a trigger engine which per-
forms actions. The reactive functionality of Xyleme is highly tuned to its specific
application field.

XChange significantly differs from and/or extends over the above-mentioned
approaches with (1) its structured event messages, (2) its distinction between
Web resources and event messages, (3) its logical variables possibly shared by its
event queries, conditions, and actions, (4) its weak transactions, (5) its declara-
tive semantics, and (6) its communication and distributed processing models.

This article has introduced XChange, stressing its principles and outlining its
syntax, semantics, and processing. XChange is an on-going research prototype,
which was presented in an earlier state in [3]. The present paper extends this
previous publication by reporting on the newly developed temporal composite

15

event operator. On-going work on XChange is devoted to the transaction spec-
ification language, the transactional messages, event query optimization, and
on integrating the CaTTS calendric type system [4]. A promising perspective
for future work is to extend XChange with security functionalities, especially
authentication and authorization. The protocols of a Grid architecture such as
Globus [10], would provide means for such an extension. Conversely, XChange
could be used as the core of a high-level reactive language for advanced services
on the Grid.

References

1. J. F. Allen. Maintaining Knowledge About Temporal Intervals. Comm. ACM,
26:832–843, 1983.

2. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and Semantic Web Query
Languages: A Survey. In Reasoning Web, LNCS 3564. Springer-Verlag, 2005.

3. F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applications
of the Language XChange. In Proc. 20th Annual ACM Symp. Applied Computing,
2005.

4. F. Bry, F.-A. Rieß, and S. Spranger. CaTTS: Calendar Types and Constraints for
Web Applications. In Proc. 14th Intl. World Wide Web Conference, 2005.

5. F. Bry and S. Schaffert. A Gentle Introduction into Xcerpt, a Rule-based Query
and Transformation Language for XML. In Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, 2002.

6. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In Proc. Int.
Conf. Logic Programming, LNCS 2401. Springer-Verlag, 2002.

7. A. Buchmann, A. Deutsch, and J. Zimmermann. The REACH Active OODBMS.
In Proc. ACM SIGNMOD Int. Conf. on the Management of Data, 1995.

8. S. Chakravarthy and D. Mishra. SNOOP: An Expressive Event Specification Lan-
guage for Active Databases. Data and Knowledge Engineering, 14(1), 1994.

9. M. Eckert. Reactivity on the Web: Event Queries and Composite Event Detection
in XChange. Master’s thesis, Inst. for Informatics, Univ. Munich, Germany, 2005.

10. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid. Enabling
Scalable Virtual Organizations. Int. Jour. of Supercomputer Applications, 2001.

11. R. Meo, G. Psaila, and S. Ceri. Composite Events in Chimera. In Proc. 5th Int.
Conf. on Extending Database Technology, 1996.

12. B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML Data on
the Web. In Proc. ACM SIGMOD Conf. on the Management of Data, 2001.

13. G. Papamarkos, A. Poulovassilis, and P. Wood. Event-Condition-Action Rules Lan-
guages for the Semantic Web. In Proc. Workshop on Semantic Web and Databases,
2003.

14. N. W. Paton. Active Rules in Database Systems. Springer-Verlag, 1999.
15. J. D. Ullman. Principles od Database and Knowledge-base Systems, volume 1.

Computer Science Press, 1988.
16. J. Widom and S. Ceri. Active Database Systems. Morgan Kaufmann, 1996.
17. M. Wolf and C. Wicksteed. Date and Time formats. W3C Note, 1997.
18. Xcerpt. http://xcerpt.org.
19. D. Zimmer and R. Unland. On the Semantics of Complex Events in Active

Database Management Systems. In Proc. 15th Int. Conf. Data Engineering, 1999.

