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Abstract. Classification is an important task in data mining. Contrast
patterns, such as emerging patterns, have been shown to be powerful
for building classifiers, but they rarely exist in sparse data. Recently
proposed disjunctive emerging patterns are highly expressive, and can
potentially overcome this limitation. Simple contrast patterns only allow
simple conjunctions, whereas disjunctive patterns additionally allow ex-
pressions of disjunctions. This paper investigates whether expressive con-
trasts are beneficial for classification. We adopt a statistical methodology
for eliminating noisy patterns. Our experiments identify circumstances
where expressive patterns can improve over previous contrast pattern
based classifiers. We also present some guidelines for i) using expressive
patterns based on the nature of the given data, ii) how to choose between
the different types of contrast patterns for building a classifier.
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1 Introduction

Classification is a well studied area in data mining. Contrast patterns [1, 2] cap-
ture strong differences between classes, and useful for building accurate classi-
fiers. Existing pattern-based classifiers consider simple contrasts, such as emerg-
ing patterns [3], which are conjunctions of attribute values. A highly expressive
class of contrast, namely disjunctive emerging patterns [4], allows disjunctions
as well as conjunctions of attribute values. Their use for classification is an open
question though, which we aim to answer in this paper.

Expressive contrasts can potentially overcome some of the limitations of sim-
ple contrasts. E.g. the following disjunctive pattern from the income [5] data set:
[age ∈ [30..39] ∧ (industry = ’manufacturing’ ∨ ’transportation’)] differentiates
males from females, being true for more than 10% of the males but not true for
any female. If the two industries were considered individually, the non-disjunctive
combination [age ∈ [30..39] ∧ industry = ’manufacturing’], would be true for far
fewer males, thus, a weaker contrast. This issue often arises when the data is
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sparse, or lacking in data instances. Despite their low frequency, rare contrasts
can be useful for classification, but they are often not identified.

Since emerging patterns assume discrete data, the rarity of contrasts can
also result from the data discretisation used, when the input data set has a
continuous-valued domain. We call this problem the resolution problem. In coarsely
discretised data, patterns may be lacking class-distinguishing ability, but in a
finely discretised data, patterns may be lacking frequencies (or support). Ex-
pressive patterns provide a solution to this problem, by allowing several discrete
attribute-values to be combined into a disjunction.

Expressive contrasts may help remedy the above-mentioned situations, but
they may also have limitations: i) an increased number of patterns become avail-
able, ii) more patterns may be noisy. E.g., [(age ∈ [20..24]∨ [40..44])∧ industry =
’manufacturing’] is a valid disjunctive pattern, but the two age groups, [20..24]
and [40..44], may be irrelevant. Such irrelevance within a pattern may, in turn,
cause misclassification. To address this issue, we propose a method for statisti-
cally testing the significance of disjunctive patterns.

This paper investigates the advantages and disadvantages of using highly
expressive contrasts, instead of simple contrasts, for classification. We aim to
answer the following questions: i) When should disjunctions be allowed in con-
trast patterns for building a classifier? ii) Which types of contrast patterns are
most suitable for various data characteristics? Our contributions are three-fold:

– We propose a classifier model based on disjunctive emerging patterns [4]. To
eliminate noise, we use a statistical significance method, similar to that used
in [6], which is based on the Fisher’s Exact Test. To test the significance of
each element in a pattern, we extend the testing methodology by using the
negative representation of the pattern, which is a conjunction of the negated
attribute values. The use of statistical tests on negative conjunctions has not
been previously studied.

– We present experimental results using several real [5] data sets, to study
the accuracy of our classifier. We use an existing contrast pattern based
classifier [1] as a baseline. It shows that the disjunctive classifier is superior
for sparse data, and as good as the baseline for dense data. Moreover, data
discretisation or data sparsity has low influence on the classification accuracy
when expressive contrasts are used.

– Based on our findings, we present a series of recommendations for practition-
ers, which answer the two questions posed earlier, regarding when disjunc-
tions should be allowed in contrast patterns, and which types of contrasts
are most suitable for classifying data with particular characteristics.

2 Contrast Pattern Definitions

A dataset D is defined upon a set of k attributes (also referred as dimensions)
{A1, A2, . . . , Ak}. For every attribute Ai, the domain of its values (or items)
is denoted by dom(Ai). Let I be the aggregate of the domains across all the
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attributes, i.e. I =
⋃k

i=1 dom(Ai). An itemset is a subset of I . Let P and Q be
two itemsets. We say P contains Q if Q is a subset of P , Q ⊆ P , and P is a
superset of Q. A dataset is a collection of transactions, each transaction T is a
set of attribute-values, i.e. T ⊂ I . The number of transactions in D is denoted
by |D|. The support of an itemset P in dataset D, denoted by support(P, D), is
the transactions in D which contain P , divided by |D| (0 ≤ support(P, D) ≤ 1).

Assume two classes in dataset D, namely Dp (the positive class) and Dn (the
negative class). The support ratio of an itemset between two classes, termed

as growth rate (gr): gr(P, Dp, Dn) =
support(P,Dp)

support(P,Dn)
. Each itemset is associ-

ated with a discriminating power (or contrast strength): strength(P, Dp, Dn) =

support(P, Dp) ∗
gr(P,Dp,Dn)

1+gr(P,Dp,Dn) . Given support thresholds α and β, an Emerg-

ing Pattern (EP) [3] is a simple contrast pattern, defined as an itemset P ,
s.t. support(P, Dn) ≤ β (i.e. infrequent in Dn), and support(P, Dp) ≥ α (i.e.
frequent in Dp). Moreover, P is a minimal emerging pattern if it does not
contain other emerging patterns. A Jumping Emerging Pattern (JEP) is
an EP which has an infinite growth rate. In the remainder of this paper we use
the term pattern to refer to an emerging pattern. The support of a pattern refers
to its support in the positive class.

A Disjunctive Emerging Pattern (DEP) is an itemset P which con-
tains one or more items from the domain of every attribute, and satifies two
support constraints: i) support(P, Dp) ≥ α, and ii) support(P, Dn) ≤ β. E.g.
Given a dataset with three attribute domains {a1, a2, a3, a4}, {b1, b2, b3, b4},
{c1, c2, c3, c4}, and x = {a1, a2, a4, b1, b4, c1, c2} is a DEP. DEPs express con-
trasts as conjunctions of disjunctions (CNF), where disjunctions are only al-
lowed between items within attributes. The boolean function that x represents,
denoted f(x), is (a1 ∨ a2 ∨ a4)∧ (b1 ∨ b4)∧ (c1 ∨ c2). The dataset projection into
multi-dimensional space considers x as a subspace (see Fig. 1a). Thus, we can
calculate support by counting the transactions which are subsets of x.

For an attribute with an ordered domain, a set of adjacent items within the
same dimension (or attribute) is called a contiguous itemset. We call a set of
non-occuring items between two adjacent items (within the same dimension) as
a gap. If the gap in each dimension of x is no larger than a given minimum
threshold g, then we say that x is a g-contiguous itemset, where 0 ≤ g ≤ k−2, k

is the number of domain items for that attribute. Moreover, a disjunctive pattern
is a g-contiguous pattern if it does not contain non g-contiguous itemsets in
any of its dimensions. Consider Fig. 1, x is g-contiguous for g ≥ 2, and y is
g-contiguous for g ≥ 1.

3 Classification by Significant Expressive Contrast

Patterns

For the purpose of our study, we use the existing JEP-classifier framework [2]
as a baseline, which is highly accurate for dense and large datasets. It is based
on minimal JEPs, which are considered the most powerful JEPs for classifica-
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(a) x = {a1, a2, a4, b1, b4, c1, c2} (b) y = {a1, a2, a4, b1, b2, b3, b4, c1, c2}

Fig. 1. Geometric representations of disjunctive patterns

tion, since their supports are largest. To adapt the framework, our classifier uses
maximal disjunctive patterns which have infinite growth rate. Given a test in-
stance T , all patterns which contain T can be found from each class. Based on its
distinguishing class frequencies, a JEP favors Dp over Dn. Each pattern which
occurs in T makes a contribution to classify T as an instance of Dp, based on
its support. The JEP classifier then chooses the class which has the highest total
contribution to be the winner.

Since disjunctive patterns are relatively longer (i.e. contain more items) than
the simple patterns, intuitively not every item makes an equally-high contri-
bution to the contrast strength of a pattern. Thus, we propose two levels of
significance testing: i) external significance: tests whether the pattern is highly
associated with the class, ii) internal significance: tests whether each element in
a pattern makes a significant contribution in the pattern’s strength.

3.1 Statistical Fisher Exact Test and Externally Significant Patterns

Work in [6] showed that the Fisher Exact Test (FET) is useful for finding statis-
tically significant association rules, which makes it potentially useful for contrast
patterns as well. To test the significance of a pattern P , FET uses a 2x2 contin-
gency table containing the support of P and its complemented support in each
class (shown in Table 1). The test returns a p-value, which is a probability that
the null-hypothesis should be accepted, i.e. there is no significant association
between the pattern and the class. If the p-value is below the significanceLevel
(typically 0.05), we reject the hypothesis and say P is externally significant.
Given a contingency table [a, b; c, d], and n = a + b + c + d. The p-value is
computed by:

p([a, b; c, d]) =

min(b,c)∑

i=0

(a + b)!(c + d)!(a + c)!(b + d)!

n!(a + i)!(b − i)!(c − i)!(d + i)!
(1)

3.2 Internally Significant Disjunctive Emerging Patterns

The testing methodology for significant association rules [6] tests whether the
inclusion of each condition significantly contributes to the rule’s association.
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Table 1. The contingency table for testing the significance of association between
pattern P and class C

D P ¬P

C a = support(P, C) b = support(¬P, C)

¬C c = support(P,¬C) d = support(¬P,¬C)

However, it was originally fashioned for purely conjunctive rules. To adapt the
method for our needs, we use a negative representation of a disjunctive pattern,
which is a pure conjunction of negated items. A pattern is significant if each of the
negated items makes a significant contribution. This differs from previous work
on significant association rules, which consider conjunctions of positive items,
instead of negative items. E.g. The NNF (Negative Normal Form) representation
of a disjunctive pattern x in Fig. 1a, denoted fN(x), is the conjunction of the
non-occurring items: fN(x) = (¬a3) ∧ (¬b2 ∧ ¬b3) ∧ (¬c3 ∧ ¬c4).

Given ordered attribute domains, a disjunctive pattern can be projected to a
subspace, possibly with some holes in it (correspond to gaps). Small holes may
not be worth retaining if they contain very few data instances from the positive
class. On the other hand, big holes may be necessary if they contain many data
instances from the negative class. A gap is a significant gap if it passes the
internal significance test. We call the generalisation of a pattern that is obtained
by filling-in a gap as the gap-filled generalisation. A gap is maximal if it is not a
subset of another gap. If all maximal gaps in a pattern are significant, then we
say that the pattern is internally significant.

E.g. Reconsider pattern x = {a1, a2, a4, b1, b4, c1, c2}. It contains three max-
imal gaps: ¬{a3}, ¬{b2, b3}, ¬{c3, c4}. These correspond to the negative rep-
resentation of x. The significance of a gap ¬z is calculated between x and its
generalisation (by inverting ¬z to z). Let z = {b2, b3}. Let y be the gap-filled
generalisation of x s.t. y = x ∪ {b2, b3} = {a1, a2, a4, b1, b2, b3, b4, c1, c2}. We can
calculate the p-value using Eq. 1 and the contingency table in Table 1, by letting
P = ¬z = ¬{b2, b3}, C = Dp|y, and ¬C = Dn|y, where Dp|y (resp. Dn|y) refers
to transactions in Dp (resp. Dn) which support y. A low p-value indicates the
significance of gap ¬{b2, b3} in x.

3.3 Classification by Significant Disjunctive Emerging Patterns

Our classifier is built based on the maximal disjunctive patterns which have an
infinite growth rate. Using only those patterns, however, may overfit the training
data. In real situations, there may be training instances which have significant
association with the class, but are overlooked, due to the strict infinite growth
rate constraint. To eliminate this problem, our classifier allows some limited
constraint violation by filling-in the insignificant gaps, based on two criteria:
i) the gap is not significant in the original pattern, and ii) the resulting gap-
filled pattern is externally significant. Thus, all patterns which are used by the
classifier are externally and internally significant. We refer to such patterns as
significant disjunctive patterns.
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(a) breast-cancer-w (dense) (b) horse-colic (dense)

Fig. 2. Comparison of classification accuracy w.r.t. data discretisation’s granularity

4 Experimental Results and Discussion

In this section, we study the performance of our classifier described in Section 3.3,
based on significant disjunctive patterns, which we call CNF-Classifier. We will
compare its classification performance against strictCNF-Classifier, which is also
based on significant disjunctive patterns, but does not employ the significance
testing (strictly imposing the support constraints on the patterns). As a baseline,
we also use the Jumping Emerging Pattern Classifier (JEPC) [2]. The accuracy
is based on 10-fold stratified cross validation. We use four data sets [5], which
contain continuous attributes, and categorise them by their sparsity/density.
The first two data sets are dense, namely breast-cancer-w and horse-colic, which
contain two classes. The other data sets, wine and glass, contain multiple classes
and are considered sparser. The glass data set is greatly imbalanced and ex-
tremely sparse, having 7 classes with only a few instances in each class.

Performance comparison with respect to discretisation granularity:
In this experiment, we vary the number of bins (or discretised intervals) when
discretising each data set using equal-density discretisation. Fig. 2 shows the
classification accuracies from two data sets. In the breast-cancer-w data set, it is
shown that the CNF-Classifier has the highest accuracy for all scenarios. Given
finer granularties (i.e. more bins), strictCNF-Classifier and CNF-Classifier are
able to outperform JEPC by 12% accuracy. In the horse-colic data set, the CNF-
Classifier is more accurate than the strictCNF-Classifier when 6 or more bins
are used, but it is less accurate otherwise. It shows that the significance test is
useful when the data is finely discretised. The JEPC has the lowest accuracy in
this data set.

Sensitivity of classification with respect to the support constraint: We
now compare the sensitivity of the classifier w.r.t. to the minimum support of
the contrast patterns. Fig. 3 shows the lower bound of the accuracy for various
support thresholds, which is computed as (mean - 2 st.dev), for each discreti-
sation granularity. In the dense data sets, JEPC has the lowest lower bound
and its accuracy greatly varies across the discretisation granularities. When a
12-bin discretisation was used for the breast-cancer-w data set, the JEPC has a
mean accuracy of 79%, which indicates its large deviation or sensitivity w.r.t.
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Fig. 3. Comparison of mean - 2 st.dev of the classification accuracy (over various
minimum support of the patterns) w.r.t. the discretisation granularities

the support constraint. (the relevant figure is not included in this paper, due to
space limitation). The other classifiers, on the other hand, have mean accura-
cies of 96% and 99%, showing their low sensitivity w.r.t. the support constraint.
In the sparse glass data set, the strictCNF-Classifier has a similar performance
to JEPC, whereas the CNF-Classifier has a high sensitivity w.r.t the minimum
support threshold and the data discretisation. In the less sparse wine data set,
CNF-Classifier has the highest lower bound accuracy, and JEPC has the lowest
lower bound.

Practical recommendations for users: Answering the questions posed at the
beginning of this paper, we now present our recommendations:

When should disjunctions be allowed in contrast patterns for building a classi-
fier? Disjunctions should be allowed in contrast patterns when the data is sparse,
that is when the classes are imbalanced, or when the data is finely discretised,
e.g. 8 bins or finer.

Which types of contrast patterns are most suitable for various data character-
istics? When the data is sparse, expressive contrasts are more appropriate than
simple contrasts. The significance test should be performed, except when the
data is greatly imbalanced. Simple contrasts are useful for dense and coarsely
discretised data sets.
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5 Related Work

A contrast pattern is similar to a highly confident class association rule [7].
More expressive association rules have been studied [8], but they allow DNF
(disjunction of conjunctions) rules, instead of CNF, which is the kind of rules
considered in this paper. Our significance testing methodology could be extended
for disjunctive association rules. Previous work on significant association rules [9,
6] only considers conjunctive rules. In an ordered domain, contiguous disjunctive
patterns correspond to quantitative association rules [10], which are conjunctions
of intervals of ordered values, however gaps are disallowed in a quantitative
association rule. The negative representation of a disjunctive pattern in this
paper is similar to a negative association rule [11], but the rule’s antecedent
contains only negative items, and the consequent contains a class label.

6 Conclusion and Future Work

In this paper, we investigated the advantages and disadvantages of using expres-
sive (in the form of CNF combinations) contrast patterns in classification. We
proposed a statistical testing for finding significant CNF patterns, which can also
be adopted for disjunctive association rules or negative association rules. As our
results suggest, expressive forms of patterns can be beneficial for classification,
being less sensitive to the data sparsity. For future research, we would like to
investigate their use in other types of classifiers and other data mining tasks.
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