
A Bayesian Classifier for Learning from

Tensorial Data

Wei Liu†‡!, Jeffrey Chan†, James Bailey†‡, Christopher Leckie†‡, Fang Chen‡,
and Kotagiri Ramamohanarao†‡

† Department of Computing and Information Systems, The University of Melbourne
‡ ATP and Victoria Research Laboratory, National ICT Australia

Abstract. Traditional machine learning methods characterize data ob-
servations by feature vectors, where an entry of a vector denotes a scalar
feature value of a data instance. While this data representation facil-
itates the application of conventional machine learning algorithms, in
many cases it is not the best way of extracting all useful information
from the data observations. In this paper we relax the (often unstated)
assumption of vectorizing features of data instances, and allow a more
natural representation of the data in a tensor format. Tensors are multi-
mode (aka multi-way) arrays, of whom vectors (i.e., one-mode tensors)
and matrices (i.e., two-mode tensors) are special cases. We show that the
tensor representation captures useful information that is difficult to pro-
vide in the conventional vector format. More importantly, to effectively
utilize the rich information contained in tensors, we propose a novel
semi-naive Bayesian tensor classification method (which we call Bat)
that builds predictive models directly on data in tensor form (instead of
on their vectorizations). We apply Bat to supervised learning problems,
and perform comprehensive experiments on classifying text documents
and graphs, which demonstrate (1) the advantage of the tensor rep-
resentation over conventional feature-vectorization approaches, and (2)
the superiority of the proposed Bat tensor classifier over other existing
learners.

1 Introduction

A major challenge in machine learning is finding an appropriate representation
to characterize observed data. Given a set of data observations (instances), tra-
ditional feature extraction methods seek to enumerate a list of features that
are associated with an instance, and thus interpret an instance by a vector of
feature values. This feature formulation strategy is a common, though often un-
stated, presumption of many supervised and unsupervised learning algorithms
that build machine learning models on feature vectors [1].

In this paper, we relax the assumption that features of data observations
are linearized into vectors. Instead, we allow a more natural representation of a
data instance in the form of a tensor. Tensors are multi-mode (also known as

! Correspondence goes to wei.liu@nicta.com.au

2 W. Liu et al.

multi-way) arrays, whose one-mode special cases are vectors and two-mode cases
are matrices.

Motivation: A major motivation for using tensors to represent instances
is that they capture the “interactions” among features in different modes of
the tensorial format, which are normally hard to capture using feature vectors.
Although there is a rich literature in computer vision and other related fields on
the study of data observations that are originally represented by tensors, such
as two-mode images and three-mode videos, the more general scenarios where
data observations are usually represented by vectors (such as text documents by
frequent words, and graphs by frequent subgraphs) have been less well studied.
To clearly motivate the use of using tensor representations, in the following
we give examples to illustrate how we use tensors of features to describe data
instances, and their advantages compared to using vectors of features.

In the following three motivating examples, we first explain that the tensor
formulation can be applied to any conventional data set, and then introduce
some examples on document and graph retrieval problems. In Examples 2 and
3, the tensor representation is capturing new information that is not explicit in
the original representation, whereas in Example 1 it is capturing information
that is explicit in the original representation. The different nature of the three
examples is a reflection on the ability of tensor representations in addressing a
diverse range of domain problems.

Example 1 (Data representation of a data set from an arbitrary domain).
For an arbitrary standard data set, one can first discover a set of closed frequent
patterns from the data’s categorical features (or discretized continuous features)
as shown in Fig. 1(b). Then for each instance one can construct a tensor that
uses the frequent patterns as its dimensions in each mode (shown in Fig. 1(c)). In
this way, an entry in this tensor indicates whether two closed frequent patterns
(if the tensor is of two modes) co-occur in the same instance. This formulation
can also be generalized to construct tensors of n modes, where an entry tells
whether n distinct patterns co-occur in the same instances.

A special case of the formulation in Example 1 is that one can ignore the step
of discovering frequent patterns, but use each unique value of each feature as a
dimension in a mode. However, in this case the number of dimensions in each
mode could be extremely large even for data sets of small sizes (i.e., when the
total number of all features’ unique values is very large), which is impractical for
use in real domains. Hence we make use of the frequent pattern discovery step,
which reduces the number of dimensions in each mode and also keeps the main
variance of the original data.

Example 2 (Data representation in document classification problems).While
a document is conventionally represented by a vector of frequent words (denoted
by “Fw”), a tensor representation can capture more information than a vector.
As shown in Fig. 2, a two-mode tensor contains in its diagonal entries the fre-
quency of each Fw in the document, while its off-diagonal entries record the
numbers of “pairs” of features that co-occur in the same paragraph. For ex-
ample, Fw1 and Fw2 co-occur twice (in paragraph 1 and 3) so the entries at

A Bayesian Classifier for Learning from Tensorial Data 3

(a) An arbitrary standard data instance characterized by a list of four binary
features (f).

(c) The data instance in (a) characterized by a two-mode tensor of five
frequent patterns.

f1 f2 f3 f4
1 1 0 1

Fp1 = {f1=1,f3=0,f4=1}, Fp2 = {f1=0,f2=0}, Fp3 = {f2=1,f3=0}
Fp4 = {f2=1,f4=1}, Fp5 = {f3=1,f4=0}

(b) Five frequent patterns (Fp) discovered from the overall training data.

Fp1 Fp2 Fp3 Fp4 Fp5
Fp1
Fp2
Fp3
Fp4
Fp5

1 1 1

1 1 1
1 1 1

Fig. 1: Vector and (two-mode) tensor representations of a data instance from an
arbitrary domain. We assume binary feature values in this example.

locations (Fw1, Fw2) and (Fw2, Fw1) are 2. In the document representation,
we use paragraphs to capture the relations among words, since paragraphs are
natural segmentations of the original documents. We note that both local and
global weighting methods, including tf-idf (term frequency-inverse document fre-
quency), can be applied to the entries of tensors in the same manner to entries
of Fw vectors. We also note that it is straightforward to generalize the represen-
tation of the two-mode tensor to a n-mode tensor that describes co-occurrences
of n frequent words in paragraphs.

Example 3 (Data representation in graph classification problems). Given a
graph database, it is common for a data miner to first discover closed frequent
subgraphs, and then use these to describe each graph instance [2, 3]. The example
shown in Fig. 3 is a graph that contains six closed frequent subgraphs (denoted
by “Sg”). Based on the graph’s layout (Fig. 3(a)), conventional graph-based ma-
chine learning methods (e.g., [4–6, 2, 3]) construct a graph instance by defining
the six subgraphs as features and the frequency of each subgraph found in the
original graph as feature values (Fig. 3(b)). While this feature vector can provide
information on the components of a graph, it does not capture relations among
the components that could potentially be very useful for machine learning tasks.
In this regard, we use the representation of tensors to capture both the occur-
rences of subgraphs and their hidden internal relations. As shown in Fig. 3(c),
for the same graph instance, we can use a two-mode tensor to first capture in
its diagonal entries all information stored in the instance’s feature vector, and
then record in the tensor’s off-diagonal entries the relations/interactions among
different features. Note that to enclose more information from the original graph,
we give an asymmetric design to the tensor: the upper-diagonal entries indicate

4 W. Liu et al.

(Paragraph 1) , Fw1, , Fw2, , Fw3, .

(Paragraph 2) ,Fw4, , Fw1, , Fw5, ,
Fw6, .

(Paragraph 3) , Fw2, , Fw6, , Fw1, .

(a) The original layout of a text document, showing only frequent words (Fw).

Fw1 Fw2 Fw3 Fw4 Fw5 Fw6
3 2 1 1 1 2

Fw1 Fw2 Fw3 Fw4 Fw5 Fw6
Fw1
Fw2
Fw3
Fw4
Fw5
Fw6

3 2 1 1 1 1
2 2 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 2

(b) The text document in (a) characterized by a vector of frequent words.

(c) The text document In (a) characterized by a two-mode tensor (a matrix).

Fig. 2: Vector and (two-mode) tensor representations of a text document.

how many “column-wise features” are connected to “row-wise features” and the
lower-diagonal entries tell how the number of “row-wise features” that are con-
nected to “column-wise features”. For example, there are two “Sg2” connected
to one “Sg1”, so the upper-diagonal entry in location (Sg1,Sg2) is 2, and the
lower-diagonal entry in location (Sg2,Sg1) is 1. Besides the two-mode tensor
representation shown in Fig. 3(c), we note that by using the same formulation
one can have a generalized n-mode tensor to describe a graph instance (e.g., a
three-mode tensor can capture the triad connection among Sg1, Sg2, and Sg3 in
Fig. 3(a)).

Having obtained the tensor representation of data observations, a challenge
one faces is how to build machine learning models that can discover knowledge
from data in the tensor format, so that one can fully utilize the rich information
contained in tensors. This is a non-trivial challenge since most standard learning
algorithms assume data instances are feature vectors, and it is not straightfor-
ward to apply these algorithms on tensorial data. A simple solution is to linearize
the tensors into new vectors, and use the new vectors in a conventional learn-
ing algorithm. However, such tensor linearizations will break the relations among

A Bayesian Classifier for Learning from Tensorial Data 5

Sg1 Sg2 Sg3 Sg4 Sg5 Sg6
1 2 2 1 1 1

Sg1 Sg2 Sg3 Sg4 Sg5 Sg6
Sg1
Sg2
Sg3
Sg4
Sg5
Sg6

1 2 1
1 2 1 1
1 1 2 1

1 1 1
2 1 1 1

1 1

(a) The original structure of a graph instance, represented by closed
frequent subgraphs (Sg).

(b) The graph instance in (a) characterized by a vector of subgraphs.

(c) The graph instance in (a) characterized by a two-mode tensor (a matrix).

Sg1

Sg2

Sg3

Sg2

Sg4

Sg5

Sg6

Sg3

Fig. 3: Vector and (two-mode) tensor representations of a graph instance.

features in different modes, which is equivalent to assuming independence among
entries of tensors1.

To tackle this tensor learning challenge, in this paper we proposed a gen-
erative semi-naive Bayesian classifier, which can be trained directly on data in
tensor formats with respect to relations among features in different modes. The
semi-naive property of our method enables the learning of inter-mode relations in
an effective manner. We analyse why the assumption made in simple naive Bayes
classifiers is not ideal for learning tensorial representations, and also why other
existing semi-naive Bayesian classifiers are not suitable for capturing the pre-
cise information represented in tensors. These shortcomings of existing Bayesian
classifiers motivate us to design a novel type of learning algorithm that can make
the best use of tensorial representations.

In brief, the contributions we make in this research are as follows:

1. We propose to characterize data instances by using tensors of features, which
contain much richer information than using feature vectors.

1 This is because the ordering of entries in the linearization is not used by a classifier,
but the ordering of entries in the original tensor can potentially play an important
role in disclosing the relations among features in different modes.

6 W. Liu et al.

2. We introduce a semi-naive Bayesian tensor (Bat) learning method, which
builds classifiers by making use of the relations among features in different
modes of a tensor. The Bat method can be applied directly to data in tensor
format without tensor vectorization.

3. We apply the tensor representations and the Bat method to graph and docu-
ment classification problems, and comprehensively evaluate our method with
comparison to existing naive and semi-naive Bayesian methods.

The rest of the paper is organized as follows. We review related work in Sec-
tion 2. Section 3 introduces our Batmethod and discusses the differences between
Bat and other existing Bayesian learners. Experimental results are presented in
Section 4. We conclude in Section 5.

2 Related Work

Existing methods on tensor analysis mostly focus on decomposing tensors into
factor matrices [7–9], whereas the problem of how to build classifiers directly on
tensor data has not been well studied.

Tao et al. [10] proposed supervised tensor learning (STL) as a generalization
of support vector machines, where the authors learn weight vectors separately
from each mode of a data tensor. However, there is no theoretical guarantee
that the weight vector learned on separate modes will provide global optima of
training bias minimization. In the recent Bayesian learning literature, averaged
one-dependence estimators (AODE) [11] have been introduced as a special form
of the one dependence estimator (ODE), which relaxes the naive Bayes’ indepen-
dence assumption by making each feature a parent of other features. This method
is improved by weightily averaged one-dependence estimators (WAODE) [12],
which give different levels of importance to parent features by examining the
mutual information between those features and the class variable. Since making
each feature a parent of other features incurs very high computational costs, sub-
sumption resolution of AODE (AODEsr) has been proposed to speed up AODE’s
learning process by eliminating features that are generalizations or specializa-
tions of another feature. Another way of building dependencies among features
is to look at the hidden relationship between pairs of features, which gives the
proposal of hidden naive Bayes (HNB) [13]. Bayesian networks are also popular
ways to discover the dependencies among features, among which K2 [14] and
TAN [15] have been two of the most popular methods.

3 Bayesian Tensor Classification

The strong feature-independence assumption used in NB ignores possible corre-
lations among features. Hence when the data has multiple modes, the potentially
useful interactions among features will not be taken into the classification rule of
NB, which could degrade the classification performance. To address this problem,
in the following we introduce a method that is specifically designed to tackle data

A Bayesian Classifier for Learning from Tensorial Data 7

with multiple modes. Our proposed method belongs to the taxonomy of semi-
naive Bayesian learning models [16], since it enhances the conditional probability
estimation of naive Bayes by relaxing its attribute independence assumption.

In contrast to using a vector of features (e.g., x) to represent a data obser-
vation, we describe an instance by using a n-mode tensor of features, denoted
as X ∈ Rm×m...×m. Vectors (Rm) and matrices (Rm×m) are specifications of
(1-mode and 2-mode) tensors. Without loss of generality, we present our learn-
ing method by using tensors of two modes (i.e., X ∈ Rm×m). Then each entry
of X can be viewed as a new feature value (denoted by Xi,j which represents
the relations between features i and j), and the tensor X represents a set of m2

features. To relax the assumption of conditional independence made in NB, we
assign a “parent” feature to other features that share the same dimension with
the parent feature. The scenario when entries share the “same dimension” of a
tensor is analogical to when entries are in the “same row” or “same column” of
a matrix. All entries are in the same dimension in a one-mode tensor (a vector).

The notion of the “parent” feature is the same as the concept of a parent
node/vertex used in graphical models such as Bayesian networks, where features
that are not connected represent variables that are conditionally independent of
each other. In other words, the features that are independent in NB conditioned
on the class variable will only be independent in our model given both the class
and the parent. Therefore, instead of computing P (y,x) by P (y)P (x|y) as in
NB, we estimate P (y,x) by

PXp1,p2
(y,x) = P (y,Xp1,p2

)P (x|y,Xp1,p2
) = P (y,Xp1,p2

)
m∏

i,j=1

P (Xi,j |y,Xp1,p2
) (1)

where the first step assigns a parent feature Xp1,p2
∈ X , while the second step

utilizes conditional feature-independence (given the class and the parent fea-
ture), where p1 and p2 are respectively the row and column indices. For ease of
interpretation, in Eq. 1 we use

∏m
i,j=1 to represent the operation

∏m
i=1

∏m
j=1.

Since we assume the relation among features exists only if they share the same
dimension in the tensor, for a given parent feature Xp1,p2

, the actual conditional
probabilities we use are:

PXp1,p2
(y,x)

= P (y,Xp1,p2
)

m∏

i=1

P (Xi,p2
|y,Xp1,p2

)
m∏

j=1

P (Xp1,j |y,Xp1,p2
)P (y)

∏

i!=p1,j !=p2

P (Xi,j|y)
(2)

where the first two products ensure Xp1,p2
is a parent feature of Xi,p2

and Xp1,j

only when they are from the same row or column of a two-mode tensor. And
the last product means when they are not from the same row or column, we
use standard NB (the naive feature-independence assumption) to compute the
posterior probabilities.

To make an unbiased selection of parent features, we make each element in
tensor X a parent at a time, and use the average of the probabilities conditioned
on each parent as the final classification rule. It is reported in [12] that the per-
formance of semi-naive Bayesian models can be improved by taking into account

8 W. Liu et al.

the mutual information between the parent feature and the class variable. By
using the definition from information theory, the mutual information Ii,j (i.e.,
assume a two-mode tensor) between a feature Xi,j and the class variable y is

Ii,j =
∑

Xi,j

P (Xi,j , y) log
P (Xi,j , y)

P (Xi,j)P (y)
(3)

where the summation is on all unique values in feature Xi,j . After applying this
mutual information, the label of an instance X is determined by our Bat method
using:

label = argmax
y

P (y|x) ∝ arg max
y

∑m
p1,p2=1

Ip1,p2
PXp1,p2

(y,x)
∑

m
p1,p2=1

Ip1,p2

(4)

where PXp1,p2
(y,x) is defined in Eq. 2. Eq. 4 is the final classification rule of our

Bayesian tensor classifier Bat.
For tensorial training data with two modes, the time complexity of estimating

Eq. 4 is O(2mt), where t is the number of training instances, and its space
complexity is O(k(mv)2), where k is the number of classes and v is the average
number of values in each feature.

3.1 Advantages of Bat

Similar to NB, Bat only needs to update the conditional probabilities when a
new training instance becomes available, hence one advantage of Bat is that it
is capable of incremental learning.

AODE [11] is a special case of Bat when each training instance is of one
mode (i.e., a feature vector). However, when training instances are of more than
one mode, AODE does not provide a way to handle the data. If we linearize the
data tensor into a vector (like what we do to make tensor data learnable to other
classifiers), AODE will have to enumerate each entry in the vector (linearized
tensor) to be a parent of other entries that are in the same dimension of a tensor.
This will lead to a training time complexity of O(tm2). However in Bat, tensor
linearization is not needed, and an entry will be a parent of another entry if
only they share the same row index or column index. Therefore, besides the
specific focus on inter-relations of features, another advantage of Bat is that its
training time complexity (i.e., O(2mt)) is an order of magnitude lower than that
of AODE (i.e., O(tm2)).

Fig. 4: An illustrative exam-
ple to explain the differences
among NB, AODE, and Bat

(see Example 4 at Sec 3.1).

Example 4 (Differences among NB, AODE, and Bat). Suppose we have a
data set associated with a class variable y and a 3 × 3 two-mode tensor (9 fea-
tures). As shown in Fig. 4, the 9 features are indexed as X1,1, X1,2, ..., X3,3.

A Bayesian Classifier for Learning from Tensorial Data 9

Then taking feature X2,2 as an example, NB estimates the joint likelihood (from
the Bayesian rule) of this feature and class variable simply by P (y)P (X2,2|y),
which means X2,2 is (conditionally) independent of other features. AODE es-

timates this joint likelihood by
∏3

i,j=1 P (y,Xi,j)P (X2,2|y,Xi,j), which means
AODE has to enumerate other features to be parent features of X2,2. This
is a reflection of the fact that AODE cannot distinguish data of vector fea-
tures from tensor features. In contrast, Bat estimates the joint likelihood by
P (y,X1,2)P (X2,2|y,X1,2)P (y,X2,1)P (X2,2|y,X2,1)P (y,X2,3)P (X2,2|y,X2,3)

P (y,X3,2)P (X2,2|y,X3,2), which means Bat only uses the features that are at the
same column or row of the target feature (i.e., X2,2) to be parent features (i.e.,
X1,2, X2,1, X2,3, and X3,2). This design of Bat gives it the advantage of learning
the specific structures of tensors.

Bat has a lower risk of overfitting the training data compared to AODE, since
Bat still assumes conditional independence between features that are not in the
same rows or columns (just like NB in this case), while AODE would have to
assume none of the features are conditionally independent from each other given
only the class variable.

The AODEsr method [17] is also closely related to Bat. However, different
to our method, it infers the interdependence relationship by inspecting gener-
alization/specialization or duplications among features. For example, given two
features Gender and Pregnant, the feature value “Gender=female” is a general-
ization of “Pregnant=yes”. Such types of so-called subsumption resolutions are
used by AODEsr to discover highly correlated features.

Relation to Bayesian networks: Bat can be viewed as a special case
of Bayesian networks, where the network structure is pre-defined in order to
learn the underlying knowledge hidden behind the correlation among features.
Such a pre-defined structure specialised by Bat captures the dependence among
variables in a common dimension of a tensor, which is generally not captured by
a vectorized format. It is possible that Bayesian networks can also learn some
network structures to approximate the feature dependencies, but this would
involve manual tuning on the selection of structure search algorithms. The final
structure of a Bayesian network could also be too complicated to capture all
useful tensorial information, which makes it infeasible in practice.

While classification error is commonly used to estimate the performance of
classifiers, two other factors, namely bias and variance, can be decomposed from
classification results that contribute to the error. The bias of a classifier is the
difference between the expected value (i.e., the central tendency) of the class
variable returned by the classifier and the true values of the labels. The variance
of a classifier is the portion of the total error that is due to deviations from the
expected value (i.e., the central tendency) of the classifier [18]. An ideal classifier
is the one that has both low bias and low variance.

Why is Bat conjectured to outperform other methods? One reason
that Bat is conjectured to outperform alternative methods is that Bat makes
weaker conditional independence assumptions than NB, hence the bias of Bat is

10 W. Liu et al.

expected to be lower2 than that of NB. Since Bat considers dependencies among
features from different modes, the bias of AODE is conjectured to be higher than
that of Bat. Furthermore, because AODE assumes parent-child relationships
among all features, its variance is conjectured to be higher than that of Bat.
These comparisons of bias, variance, and errors are what we use to evaluate Bat
against other classifiers in the experiment section.

Another reason that puts Bat at an advantage in learning tensorial data is
that Bat uses a representation that we believe is more likely to capture depen-
dencies between features and allows this dependency information to be used
explicitly as part of the training process. Bayesian networks also could poten-
tially learn this feature dependence, but it would require complicated structure
search which could be infeasible in practice.

3.2 Limitations of Bat

Bat can only be trained on tensorial data with a given number of modes. The
number of modes needed in a tensor to best describe the original data can be
domain specific, so the proposed Bat is not designed with a mechanism that can
automatically find the best number of modes. Another limitation is that Bat can
only learn from categorical features values. However we note that this is also the
case for all NB type classifiers, and is not a problem specific to Bat. Numerical
feature values can be applied to Bat after they are discretized.

4 Evaluation

The objectives of our experiments are to evaluate (1) the effectiveness of the
tensor formulations compared to traditional feature vectors, and (2) the classi-
fication performance of Bat compared to naive and other semi-naive Bayesian
learners. We implement Bat in Weka [19], and evaluate our method with compar-
isons to NB, AODE [11], AODEsr [17], HNB [13], K2 [14], TAN [15], STL [10],
logistic regression, SVMs with RBF/Sigmoid/Soft margin kernels, and decision
trees. All the methods in our comparison are from Weka (version 3.6.7) and we
use their default parameter settings (e.g., 10 single trees for a random forest,
γ = 0.01 for SVM with RBF kernels etc.). The results are obtained from 5-
fold cross validation with 10 repeated runs. We use the same bias and variance
estimation method as was used in [18].

4.1 Data sets

We use two types of data sets in our experiments: graphs and text documents.
Instances in all of the data sets are transformed into tensors of two modes. We
note that the ways to model the relationship between subgraphs or between
words are the same as the ones we demonstrated in Examples 2 and 3.

2 However, because the classification rule of Bat is derived from higher dimensions
than that of NB, its variance might be larger than NB.

A Bayesian Classifier for Learning from Tensorial Data 11

Table 1: Statistics of graph (chemical compound) data sets. “#Inst” represents
the number of instances in each data set.

Name #Inst #Classes Sources
AID1481 217968 2 ATPase Inhibition
AID83 27784 2 Breast Cancer
AID81 40700 2 Colon Cancer
AID1446 217968 2 Janus Kinase
AID123 40152 2 Leukemia
AID1 40460 2 Lung Cancer
AID1531 289475 2 Mek Inhibitors
AID33 40209 2 Melanoma
AID47 40447 2 Nerve Cancer
AID109 40691 2 Ovarian Cancer
PTC-M 336 5 Mice Toxic
PTC-R 349 5 Rats Toxic

Table 2: Statistics of document data sets. “#Fw” represents the number of
frequent words extracted from each data set.

Name #Fw #Classes Sources
oh0 3183 10 OHSUMED collection
oh5 3013 10 OHSUMED collection
oh10 3239 10 OHSUMED collection
oh15 3101 10 OHSUMED collection
re0 2887 13 Reuters-21578
re1 3759 25 Reuters-21578
tr11 6430 9 TREC
tr12 5805 8 TREC
tr23 5833 6 TREC

We use chemical compounds as graphs where atoms in compounds are treated
as nodes of graphs, and bonds that connect atoms are treated as edges of graphs.
The labels of the chemical compounds are obtained from two sources: (1) Bioas-
says of anti-cancer activity and kinase inhibition (AID)3: the task is to predict
whether a compound is positive or negative in anti-cancer activities or in kinase
inhibition activities. The original data sets contain a large number of compounds
(shown in Table 1). We randomly sample 1000 compounds from each data set for
evaluation. (2) Toxicology prediction (PTC)4: the task is to predict the carcino-
genicity of compounds on mice and rats. Each chemical compound is associated
with a carcinogenicity class from {CE, SE, P, E, EE, IS, NE, N}. Following the
settings of [2], we use {CE, SE, P} as positive classes, {NE, N} as negative ones,
and discard other neutral classes.

The text document data sets are obtained from various sources, including the
OHSUMED collection [20], the Reuters-21578 text collection5, and the TREC
repository6. We use the frequent words that are originally extracted by Han
et al. [21] to construct tensors. Details of the document data sets are listed in
Table 2.

3 http://pubchem.ncbi.nlm.nih.gov
4 http://www.predictive-toxicology.org/ptc/
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
6 http://trec.nist.gov

12 W. Liu et al.

Table 3: Performance of each classifier on data sets in vector and tensor formats.

Data sets
Average of AUC-PR on all class labels

NB AODE AODEsr HNB WAODE K2
VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗

ATPase .9347 .9708 .9572 .9696 .9383 .9758 .9614 .9789 .8998 .9758 .9533 .9752
Breast .9292 .9480 .8599 .9554 .9061 .9622 .9304 .9715 .9304 .9715 .8956 .9597
Colon .8525 .8964 .8853 .9007 .9003 .9236 .9081 .9168 .9182 .9266 .8315 .9081
Jak2 .8981 .9296 .9278 .9309 .9171 .9446 .8875 .9440 .9212 .9465 .9066 .9390
Leuk. .8694 .9608 .9134 .9677 .9196 .9801 .9316 .9776 .9681 .9832 .8939 .9695
Lung .8459 .9317 .8540 .9366 .9339 .9594 .8874 .9538 .9324 .9594 .8768 .9403
Mek .9674 .9725 .9063 .9713 .8941 .9744 .9080 .9763 .9333 .9763 .9731 .9738
Mela. .8679 .9370 .9222 .9401 .8639 .9580 .8974 .9586 .9081 .9586 .8876 .9444
Nerve .8602 .8840 .8543 .8870 .8423 .9086 .8964 .8994 .8665 .9080 .8628 .8975
Ovar. .8924 .9318 .8931 .9362 .9225 .9554 .9371 .9436 .8752 .9591 .8600 .9467
Mice .8897 .9413 .8545 .9475 .9102 .9666 .9262 .9567 .9189 .9691 .9566 .9567
Rats .8499 .9383 .9255 .9402 .9465 .9568 .9037 .9544 .8677 .9581 .9038 .9476
oh0 .3860 .4028 .6213 .6795 .7158 .7871 .6727 .7198 .7150 .7637 .1246 .1301
oh5 .3182 .3529 .5534 .5915 .6642 .7282 .6223 .6487 .6230 .6890 .1242 .1302
oh10 .4106 .4233 .6507 .6762 .6734 .7333 .6596 .7186 .7101 .7276 .1248 .1352
oh15 .3402 .3658 .6054 .6172 .6891 .7076 .6079 .6550 .6480 .6950 .1235 .1276
re0 .4763 .5103 .6447 .6735 .6616 .7035 .6092 .6745 .6815 .7018 .2071 .2247
re1 .3785 .4001 .5414 .5688 .6392 .6406 .5726 .6047 .5911 .6337 .1616 .1696
tr11 .3404 .3659 .7350 .7440 .7505 .7838 .7069 .7307 .7293 .7838 .1697 .1703
tr12 .3280 .3514 .5743 .6102 .7211 .7444 .6433 .6502 .6759 .6805 .0832 .0847
tr23 .3105 .3162 .6252 .6397 .6848 .6961 .6374 .6789 .6783 .6961 .2411 .2598
Win 16 19 17 19 18 20
Tie 5 2 4 2 3 1
Loss 0 0 0 0 0 0
t-test 2×10−6 5×10−6 2×10−7 3×10−8 1×10−7 1×10−4

∗: The “tensor” data are linearized, since existing classifiers can only handle feature vectors.

Table 4: Bias of each classifier. “F. test” represents the Friedman significance
test, which compares classifiers by their rankings.

Data sets
Bias of each learner’s classification performance

Bat NB AODE AODEsr HNB WAODE K2 TAN STL
Win 124 27 40 104 95 112 25 35 37
Tie 40 13 18 50 39 43 39 35 37
Loss 4 128 110 14 34 13 104 98 94

F. test Base4×10−64×10−6 0.016 2×10−4 2×10−4 3×10−54×10−64×10−6

4.2 Effectiveness of Tensor Formulation

We first test the effectiveness of using tensors to represent data instances, with
comparisons to the traditional way of using feature vectors. To inspect the in-
fluence of tensors, we compare the classification accuracy of different represen-
tations using the same classifier on the same data set. Since most of the existing
classifiers can only handle data instances by using feature vectors, the data in
tensor formats are linearized into one mode before building classifiers on them.

As some of the data sets (i.e., the document data) have multiple labels,
we use average precision (AvgPrec) as the evaluation metric for a class variable.
AvgPrec evaluates the ranking performance of queried objects, which is also geo-
metrically referred to as the area under the precision-recall curve (AUC-PR) [22].
Since AvgPrec only evaluates the performance of rankings of one class label, we
use the mean of the AvgPrec of all class labels to examine the performance of
a classifier, which is equivalent to the mean of AUC-PR of all class labels. For

A Bayesian Classifier for Learning from Tensorial Data 13

Table 5: Variance of each classifier.

Data sets
Variance of each learner’s classification performance

Bat NB AODEAODEsrHNBWAODE K2 TAN STL
Win 83 61 80 108 71 112 43 10 29
Tie 42 30 46 33 39 35 43 12 38
Loss 43 77 42 27 58 21 82 146 101

F. test Base 0.002 1 0.016 0.827 0.049 0.0165×10−52×10−4

Table 6: Average AUC-PR of each classifier.

Data sets
AUC-PR of each learner’s classification performance

Bat NB AODE AODEsr HNB WAODE K2 TAN STL
Win 148 27 49 125 101 129 39 38 46
Tie 9 8 10 20 13 14 11 11 12
Loss 11 133 109 23 54 25 118 119 110

F. test Base4×10−64×10−6 0.016 2×10−4 0.016 4×10−64×10−62.1×10−4

Table 7: Comparisons between Bat and other classifiers that are either not
Bayesian based or not generative learners. “LogReg” is short for logistic re-
gression.

Data sets
AUC-PR of each learner’s classification performance
Bat LogReg RBF Sigmoid Soft C4.5 Forest

Win 124 53 5 30 68 24 85
Tie 1 25 6 19 23 12 16
Loss 1 48 115 77 35 90 25

F. test Base 8×10−41×10−85×10−56×10−41×10−6 0.016

clarity, in the remainder of the paper we use AUC-PR to denote the mean of the
AvgPrec of all class labels in the classification tasks.

The classifiers’ performance on data in vector formats and tensor formats
are shown in Table 3. For each classifier, we compare the list of AUC-PR values
on all data sets between their feature vector representations and their tensor
representations. Demšar et al. [23] have reported that t -tests are appropriate
to compare pairs of classifiers. Hence we perform t -tests between vector and
tensor data formats on each classifier, under the null hypothesis that the AUC-
PR on vector and tensor formats are not significantly different. As shown in
the bottom of Table 3, the p-values are all extremely small for each classifier.
This suggests that the rich information contained in the tensorial format has
significantly improved the performance of all classifiers.

4.3 Effectiveness of Bat Tensor Learning

In the evaluation of our Bat method, besides AUC-PR values of each classifier
we also look at the biases and variances7 that contribute to the errors of clas-
sification on each data set. Comparisons between Bat and other classifiers, in
terms of bias, variance and accuracy, are respectively shown in Tables 4, 5 and
6. Classifiers that have to take data instances by their feature vectors are trained

7 We use the same bias and variance estimation method as in [18].

14 W. Liu et al.

on linearized tensors. Due to page limits, we only present statistics concluded
from the comparisons in Tables 4 to 7.

In contrast to previous subsections where pairs of classifiers (i.e., trained on
data of vector and tensor formats respectively) are compared, in this experi-
ment we compare multiple classifiers all together with multiple data sets. In
such multiple classifier comparisons, Demšar et al. [23] have reported that the
most appropriate measure is to perform Friedman tests on the rankings of the
classifiers. So we rank the classifiers on each data set by their bias, variance
and AUC-PR values, and conduct Friedman tests under the null hypothesis that
their rankings are not significantly different. p-values from these tests that are
lower than 0.05 reject the null hypothesis with 95% confidence. In addition, we
also perform t -tests in each data set separately to summarize the number of
wins, ties, and losses of each classifier, under the 95% significance level.

As we can observe from Tables 4 and 5, the bias of Bat is almost always the
lowest among all classifiers, while its variance is slightly higher than those of
AODEsr and WAODE. This phenomenon confirms our preceding analysis that
Bat reduces the bias by taking into account the interactions among features of
different dimensions. It also shows that the introduction of feature interactions
increases the dimensionality of the learner, which usually comes at the cost of
increased variance. However as shown in the bottom of Table 5, the increased
variance of Bat is not significantly different to that of AODE and HNB. Note
that in these tables, the comparisons are performed for multiple classifiers on
21 datasets. So when we have 8 alternative classifiers in the evaluation, each
classifier will need to be compared 21 × 8 times (and hence the total count of
win/tie/loss is 21 × 8). In other words, the win/tie/loss states how often the
classifier in that column scores better/neutral/worse than classifiers in any other
columns.

The figures in Table 6 show that the overall errors of Bat, which are affected
by both its bias and variance, are significantly better than all other methods
in the comparison. We can also see that NB generates the worst results, which
indicates that the naive conditional independence assumption made in NB is
detrimental to the learning process when the data contains richer information
in tensor formats than vector formats. It is also noticeable that AODEsr and
HNB both perform better than AODE, K2 and TAN, which suggests that the
“feature elimination” strategy used in AODEsr and the “hidden variable” used
in HNB are more beneficial to tensorial data than using averaged dependence
estimators or using Bayesian networks. However, the constraint that AODEsr
and HNB require feature vectors as learning inputs ignores the relations among
different modes of features, and hence limits their performance in tensorial data.

In addition, to validate the advantages of Bat in learning from tensorial data,
we also conduct comparisons with other classifiers that are not dependent on the
Bayesian setting, or are not generative classifiers. These comparisons include
logistic regression, SVMs with the radial basis function kernel (RBF), Sigmoid
kernel, as well as the linear soft margin kernel. We also include decision tree
based methods, such as C4.5 [24] and random forests. It is important to note

A Bayesian Classifier for Learning from Tensorial Data 15

that, like other existing classifiers, these non-generative or non-Bayesian models
can only handle vector features (instead of tensors) and hence the experiments
on these models are done on linearized tensors. The comparison results are shown
in Fig. 7. It is easy to see that Bat is able to statistically outperform all of the
other methods in the comparisons.

5 Conclusion and Future Work

In this research we propose to formulate data observations by using tensorial
formats, which capture more information than traditional feature vector rep-
resentations. To effectively learn from the tensorial data, we designed a novel
semi-naive Bayesian tensor learner Bat, which builds classifiers directly on data
of tensors without linearizing them into vectors. Bat uses feature dependence by
learning the interactions of features among different modes of the training data.
This gives it the advantage that it can fully utilize the rich information contained
in tensorial data, which leads to much higher classification accuracy compared to
existing Bayesian methods. We evaluate Bat using data of text documents and
chemical compound graphs, whose classification results confirm the advantage
of using tensor formats to represent observations and the superiority of Bat in
learning tensorial data.

In the future, we plan to apply Bat to other domains such as image classi-
fication and video semantic analysis. It is also interesting to examine the per-
formance of Bat when data are represented by tensors in three or even higher
modes.

References

1. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. 3rd edn.
Morgan Kaufmann Publishers Inc. (2011)

2. Kong, X., Yu, P.: Semi-supervised feature selection for graph classification. In:
Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). (2010) 793–802

3. Kong, X., Fan, W., Yu, P.: Dual active feature and sample selection for graph
classification. In: Proceedings of the 17th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD). (2011) 654–662

4. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: Pro-
ceedings of the 9th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). (2003) 286–295

5. Fei, H., Huan, J.: Structure feature selection for graph classification. In: Proceed-
ings of the 17th ACM Conference on Information and Knowledge Management
(CIKM). (2008) 991–1000

6. Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gBoost: a mathematical
programming approach to graph classification and regression. Machine Learning
75(1) (2009) 69–89

7. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM review 51(3)
(2009) 455

16 W. Liu et al.

8. Liu, W., Kan, A., Chan, J., Bailey, J., Leckie, C., Pei, J., Kotagiri, R.: On com-
pressing weighted time-evolving graphs. In: Proceedings of CIKM’12. 2319–2322

9. Liu, W., Chan, J., Bailey, J., Leckie, C., Ramamohanarao, K.: Mining labelled
tensors by discovering both their common and discriminative subspaces. In: Pro-
ceedings of SDM’13.

10. Tao, D., Li, X., Wu, X., Hu, W., S.J., M.: Supervised tensor learning. Knowledge
and Information Systems 13(1) (2007) 1–42

11. Webb, G., Boughton, J., Wang, Z.: Not so naive bayes: Aggregating one-
dependence estimators. Machine Learning 58(1) (2005) 5–24

12. Jiang, L., Zhang, H.: Weightily averaged one-dependence estimators. In: Pro-
ceedings of the 9th Pacific Rim International Conference on Artificial intelligence.
(2006) 970–974

13. Jiang, L., Zhang, H. and, C.Z.: A novel Bayes model: Hidden naive Bayes. IEEE
Transaction on Knowledge and Data Engineering 21(10) (2009) 1361–1371

14. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9(4) (1992) 309–347

15. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2-3) (1997) 131–163

16. Kononenko, I.: Semi-naive bayesian classifier. In: Proceedings of the European
working session on learning on Machine learning, Springer (1991) 206–219

17. Zheng, F., Webb, G., Suraweera, P., Zhu, L.: Subsumption resolution: an efficient
and effective technique for semi-naive bayesian learning. Machine Learning 87(1)
(2012) 93–125

18. Webb, G.: Multiboosting: A technique for combining boosting and wagging. Ma-
chine Learning 40(2) (2000) 159–196

19. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: an update. SIGKDD Explorations Newsletter 11(1)
(2009) 10–18

20. Hersh, W., Buckley, C., Leone, T., Hickam, D.: Ohsumed: an interactive retrieval
evaluation and new large test collection for research. In: Proceedings of SIGIR.
(1994) 192–201

21. Han, E., Karypis, G.: Centroid-based document classification: Analysis and ex-
perimental results. In: Proceeding of he European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD). (2000) 424–431

22. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: Proceedings of the 23rd International Conference on Machine Learning (ICML).
(2006) 233–240

23. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7 (2006) 1–30

24. Quinlan, J.R.: C4.5: programs for machine learning. Volume 1. Morgan kaufmann
(1993)

