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Abstract. Anomaly detection is a vital task for maintaining and improving any
dynamic system. In this paper, we address the problem of anomaly detection in
time-evolving graphs, where graphs are a natural representation for data in many
types of applications. A key challenge in this context is how to process large vol-
umes of streaming graphs. We propose a pre-processing step before running any
further analysis on the data, where we permute the rows and columns of the ad-
jacency matrix. This pre-processing step expedites graph mining techniques such
as anomaly detection, PageRank, or graph coloring. In this paper, we focus on
detecting anomalies in a sequence of graphs based on rank correlations of the
reordered nodes. The merits of our approach lie in its simplicity and resilience to
challenges such as unsupervised input, large volumes and high velocities of data.
We evaluate the scalability and accuracy of our method on real graphs, where
our method facilitates graph processing while producing more deterministic or-
derings. We show that the proposed approach is capable of revealing anomalies
in a more efficient manner based on node rankings. Furthermore, our method can
produce visual representations of graphs that are useful for graph compression.

1 Introduction

Dynamic graphs are becoming ubiquitous formats for representing relational datasets
such as social, collaboration, communication and computer networks. One of the vital
tasks for gaining an insight into the behavioral patterns of such datasets is anomaly de-
tection. Anomaly detection in time-evolving graphs is the task of finding timestamps
that correspond to an unusual event in a sequence of graphs [2]. For instance, a so-
cial network anomaly may correspond to the merging or splitting of its communities.
Anomaly detection plays an important role in numerous applications, such as network
intrusion detection [9], credit card fraud [11] and discontinuity detection in social net-
works [3].
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However, there are many challenges associated with event detection in dynamic
graphs. Networks such as Facebook or Twitter comprise billions of interacting users
where the structure of the network is constantly updated. Moreover, there is often a
lack of labels for normal and anomalous graph instances, which requires learning to be
unsupervised. Due to these challenges, graph anomaly detection has attracted growing
interest over time.

To address these challenges, many anomaly detection techniques use a pre-processing
phase where they extract structural features from graph representations. These features
may include node centrality [16], ego-nets [3] and eigenvalues [12]. They then apply
well-known similarity measures to compare graph changes over a period of time [4]. In
this scenario, the graphs are converted into feature sets and therefore they do not pose
the complexities associated with the inter-dependencies of nodes, in addition to causing
a considerable decrease in the time and space requirements for the anomaly detection
scheme.

However, the process of generating structure-aware features for graphs can be chal-
lenging in itself. For instance, the eigenvalues of a graph can be a suitable representa-
tion for its patterns of connectivity, but they have high storage and time requirements.
A common shortcoming between these approaches is the need to perform matrix in-
versions, where the graphs are too sparse to be invertible. Another property of graph
summarization techniques should be their interpretability. Revealing structural infor-
mation such as communities, node roles or maximum independent sets can be very
useful in further analysis of graphs.

To address these issues we propose an approach for detecting graph anomalies based
on the ranking of the nodes. The novelty of our method lies in a scalable pre-processing
scheme that produces stable results. Our matrix re-ordering approach efficiently assigns
ranks to each node in the graph, where the resulting ranks can be used directly as a ba-
sis for comparing consecutive graph snapshots. Our re-ordering approach reduces the
input dimension of a graph from O(n2) to O(n). We can easily use a rank correla-
tion coefficient as a similarity measure over pairs of graphs. Another advantage of our
approach is its capability to produce interpretable results that identify large indepen-
dent sets. The compact representation of the graphs yields faster and simpler anomaly
detection schemes.

We review some of the algorithms previously introduced in the domain of graph
anomaly detection in Section 2. We then define our notation and outline the problem
statement in Section 3. The details of the proposed method and its properties are sum-
marized in Section 4. The benchmark datasets in addition to the baseline algorithms
for comparison are discussed in Section 5. We then show the results of anomaly detec-
tion and discuss the scalability and stability of our algorithm in Section 6. Finally, we
conclude the paper and present future directions for research in Section 7.

2 Related Work

One of the most valuable tasks in data analysis is to recognize what stands out in a
dataset. This type of analysis provides actionable information and improves our knowl-
edge of the underlying data generation scheme. Various approaches have been devel-
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oped for detection of such abnormalities [5], however many of these techniques disre-
gard relational datasets where data instances demonstrate complex inter-dependencies.
Due to the abundance and cross-disciplinary property of relational datasets, graph-based
anomaly detection techniques have received growing attention in social networks, web
graphs, road map networks and so forth [3, 9].

We review some of the dominant techniques for the detection of anomalies. We fo-
cus on graphs that are plain where nodes and/or edges are not associated with attributes
and the nodes are consistently labeled over time.

2.1 Graph-based Anomaly Detection

Several approaches to pattern mining in graphs stem from distance based techniques,
which utilize a distance measure in order to detect abnormal vs. normal structures. An
example of such an approach is the k-medians algorithm [10], which employs graph edit
distance as a measure of graph similarity. Other approaches take advantage of graph ker-
nels [17], where kernel-based algorithms are applied to graphs. They compare graphs
based on common sequences of nodes, or subgraphs. However, the computational com-
plexity of these kernels can become problematic when applied to large graphs.

Other graph similarity metrics use the intuition of information flow when compar-
ing graphs. The first step in these approaches is to compute the pairwise node affinity
matrices in each graph and then determine the distance between these matrices. There
are several approaches for determining node affinities in a graph, such as Pagerank and
various extensions of random walks [7]. Another recent approach in this category is
called Delta connectivity, which can be used for the purpose of anomaly detection. This
approach calculates the graph distance by comparing node affinities [18]. It measures
the differences in the immediate and second-hop neighborhoods of graphs. These ap-
proaches also suffer from the curse of dimensionality in large graphs.

Moreover, there are approaches that try to extract properties such as graph centric
features before performing anomaly detection. These features can be computed from
the combination of two, three or more nodes, i.e., dyads, triads and communities. They
can also be extracted from the combination of all nodes in a more general manner [1].
Many anomaly detection approaches [15] have utilized graph centric features in their
process of anomaly detection. Since the graph is summarized as a vector of features, the
problem of graph-based anomaly detection transforms to the well-known problem of
spotting outliers in an n-dimensional space. Therefore standard unsupervised anomaly
detection schemes such as ellipsoidal cluster based approaches can be employed [21].
A thorough survey of such techniques can be found in [5]. It is worth noting that the
extracted features cause information loss that can affect the performance of the anomaly
detection scheme.

Another approach for graph mining is tensor decomposition. These techniques rep-
resent the time-evolving graphs as a tensor that can be considered as a multidimen-
sional array, and perform tensor factorization. Tensor factorization approximates the
input graph, where the reconstruction error can highlight anomalous events, subgraphs
and/or vertices [22].

Although this field of research has received growing attention in recent years, the
problem of scalability and interpretability of results still remains. Graph-centric features
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can reduce the dimensionality of the input graphs, but they may not be able to provide
visually interpretable results. On the other hand, decomposition-based methods provide
meaningful representations of graphs but suffer from the curse of dimensionality. The
trade-off between these two issues has motivated us to find a compact representation
of graphs that preserves the structural properties of networks. This can help further
analysis of the data to become computationally efficient. Specifically for the task of
anomaly detection, we provide experiments that demonstrate the efficiency and utility
of our approach.

3 Preliminaries and Problem Statement

We start by describing the basic notation and assumptions of our anomaly detection
task. A graph G = (V,E) is defined as a set of nodes V and edges E ⊆ V × V ,
where an edge e ∈ E denotes a relationship between its corresponding nodes vi, vj .
The degree di of a vertex vi is defined as the sum of the number of its incoming (in-
degree) and outgoing (out-degree) edges. A Maximum Independent Set (MIS) is the
largest subset of vertices VMIS ⊆ V such that there is no edge between any pair of
vertices in VMIS .

The maximum independent set problem is closely related to common graph theoret-
ical problems such as maximum common induced subgraphs, minimum vertex covers,
graph coloring, and maximum common edge subgraphs. Finding MISs in a graph can be
considered a sub-problem of indexing for shortest path and distance queries, automated
labeling of maps, information coding, and signal transmission analysis [20].

Graphs are often represented by binary adjacency matrices, An×n, where n = |V |
denotes the number of nodes. An element of the adjacency matrix aij = 1 if there is an
edge from vi to vj . The simultaneous re-ordering of rows and columns of the adjacency
matrix is called matrix permutation.

We formulate the problem of anomaly detection as follows: Given a sequence of
graphs {G}1...m, where m is the number of input graphs, we want to determine the
time stamp(s), i ∈ {1...m}, when an event has occurred and changed the structural
properties of the graph Gi. We consider the following assumptions about the input
graphs:

– The vertices and edges in the graph are unweighted.
– There is no external vertex ordering.
– The input graphs are plain, i.e., no attributes are assigned to edges or vertices.
– The number of nodes remains the same throughout the graph sequence.
– The labeling of nodes between graphs is consistent.

An important issue for the design of a scalable anomaly detection scheme is the num-
ber of input features or dimensions that are required to be processed. If a graph-based
anomaly detection uses a raw adjacency matrix as input, then the input dimensionality is
O(n2), which is impractical for large graphs. In order to address the issue of scalability,
we need to find a compact representation for each graph. We propose a pre-processing
algorithm that extracts a rank feature for each node that is associated with the maxi-
mum independent sets in each graph. Therefore, instead of storing and processing an
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adjacency matrix of size n× n, we reduce the input dimensionality and computational
requirements for our anomaly detector to n.

For each graph in the sequence {G1 = (V1, E1), G2 = (V2, E2), ..., Gm = (Vm, Em)},
we determine the new matrix re-ordering vector {V1

′
, V2

′
, ..., Vm

′
}. We then compute

the rank correlation coefficient between every two consequent tuples, (Vi
′
, Vi+1

′
). We

employ the Spearman rank correlation coefficient as shown in Equation 1 between two
input rank vectors,

−→
V

′

i,
−→
V

′

i+1, where di = vi − vi+1:

ρ = 1− 6
∑
di

2

n(n2 − 1)
(1)

The computational complexity of Equation 1 isO(n), where n is the length of the input
vectors. The intuition behind our approach is to design a stable and scalable algorithm
for determining the significance of each node and revealing structural information by
manipulating the adjacency matrix An×n. We need to find a matrix permutation that
satisfies the following properties:

– Locality: Non-zero elements of the matrix should be in close vicinity in the ordering
after the permutation.

– Stability: The initial ordering of the rows and columns should have no effect on the
final outcome of the re-ordering.

– Scalability: The algorithm should have low computational complexity in order to
handle large scale graphs.

– Interpretability: The permuted matrix should reveal structural information such as
MISs about the graph.

4 Our Approach: Amplay

In order to achieve the above objectives, we propose an approach entitled Amplay
(Adjacency matrix permutation based on layers). In each iteration, Amplay sorts ver-
tices according to their total degree, and picks the vertex with the highest degree. Ties
are resolved according to the ordering in the previous iteration. We then remove the
vertex and its incidental edges, and recursively apply the algorithm. The outline of the
re-ordering approach is given in Algorithm 1. In order to clarify the process of Amplay
implementation, we have provided an example of Amplay operation in Figures a and b.

(a) A sample partially reordered matrix at the be-
ginning of iteration 3 of the Amplay algorithm.
In this iteration, vx will be placed at position
nhead, and Ax will be placed immediately be-
fore position ntail. By definition, in each itera-
tion, Ax are vertices that are only incidental to
vertices placed before vx or to vx, which results
in a zero area at the bottom right corner. White
squares denote zero elements. Elements at gray
squares can contain 0 or 1.

(b) Amplay ordering for a sample graph. Each
row shows an ordering at the end of each itera-
tion. Rectangles outline sets Vi at the beginning
of each iteration.
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Algorithm 1: Amplay Permutation
Input : Graph G = (V,E) and n = |V |
Output: Node re-ordering V → V′

1 nhead = 1; ntail = n+ 1;
2 i = 1; Vi = V ; Ei = E; Gi = (Vi, Ei);
3 while nhead < ntail do
4 Sort Vi according to the degrees of vertices;
5 Resolve ties using previous ordering;
6 vx ∈ Vi ← a vertex with the maximum total degree;
7 ex ⊆ Ei ← edges incidental to vx in Gi;
8 Ax ⊆ Vi ← vertices incidental only to vx in Gi;
9 ai = |Ax|;

10 Place vx in position nhead;
11 Place Ax in position ntail − ai, ..., ntail − 1;
12 (preserving ordering of vertices Ax from Gi);
13 Vi+1 = Vi\vx ∪Ax(\ denotes set difference);
14 Ei+1 = Ei\ex;
15 nhead = nhead + 1;
16 ntail = ntail − a;
17 i = i+ 1

One of the interesting properties of Amplay is its capability to reveal MISs asso-
ciated with each input graph. Figure 2 shows the permuted adjacency matrix of the
Enron email dataset where the MISs are denoted as S1, S2, .... The groupings of nodes
into the MISs indicates that Amplay can be used as a heuristic to determine the MISs
of a graph in various problem domains. A prominent feature of the matrices produced
by the Amplay method is a front line such that all non-zero matrix elements are lo-
cated above the line. Indeed, we can consider an adjacency matrix as a grid with in-
teger coordinates. Here the first coordinate spans rows from top to bottom, the sec-
ond coordinate spans columns from left to right. We define the front line as follows:
(1, n), (1, n−a1+1), (2, na1), (2, n−a1−a2+1), ..., (s, s), ..., (n−a1+1, 1), (n, 1),
where {ai} is the sequence produced by Algorithm 1 and s is the number of iterations
of the algorithm.

Lemma 1. Every matrix element below the front line is zero.

Proof. The front line spans intersections of vertices from sets Ax with their respective
vx. By definition,Ax are vertices that are only incidental to vertices placed before vx or
to vx, which implies that matrix elements below and to the right from the intersections
of Ax and vx are zero.

As we explain below, the front line is important in visualization, because it allows us
to grasp (1) the degree distribution of the graph, and (2) the relative size of the largest
independent set revealed by Amplay. Note that the shape of the front line is defined
by the sequence {ai}, where ai is closely related to the degree of the vertex placed at
position i. As a consequence, the front line reflects the degree distribution in a graph.
Here, the point of intersection of the front line with the matrix diagonal tends to shift
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in accordance to the ratio of the mean degree to the maximum degree. However, graphs
with a similar ratio can still be visually distinguishable, if their structure is different. A
key property of Amplay is multiple vertex sorting. Recall that at each iteration, vertices
are sorted according to the total degree of the remaining graph, and ties are resolved
using the ordering from the previous iteration. Such a sorting has two consequences.
First, the resulting index of each vertex depends not only on the vertex degree, but
also on a vertex connectivity pattern (e.g., the number of connections to high-degree
nodes). This pattern is reflected in the positions of the vertex in subsequent sorting
rounds. While many vertices can have the same degree, the vertices tend to differ in
their connectivity patterns. As such, Amplay tends to produce a relatively deterministic
ordering. This in turn results in a relatively small variance in the behavior of subsequent
graph processing algorithms. Second, vertices that have a similar connectivity pattern
will have similar positions during sorting across subsequent iterations, and thus have
similar positions in the resulting Amplay ordering. This explains why Amplay tends to
produce matrices with a smooth visual appearance.

Lemma 2. Graph G = (V,E) contains an independent set with at least n − ntail
vertices, where ntail is the value from Amplay at the moment of termination.

Proof. At the end of each iteration of Amplay, vertices assigned to indices larger than
or equal to ntail are incidental only to vertices assigned to indices smaller than nhead.
At the point of termination nhead = ntail. Hence, vertices assigned to indices larger
than ntail are pairwise disjoint and form an independent set.

In addition to revealing structural properties of the graph, Amplay proves to be
scalable. We describe the computational complexity of this re-ordering approach in
Lemma 3.

Lemma 3. The complexity of Amplay is O(
∑s
i=0 ni log ni) where ni = |Vi| defined in

Amplay, and s ≤ |V | is the number of iterations.

Proof. Each iteration of the algorithm operates on a subgraph with ni vertices, and
involves sorting (which can be performed in O(ni log ni) time), finding neighbors of
the chosen vertex vx (linear in ni), and removing incidental edges (linear in ni). As
such the overall complexity of one iteration is bounded by O(ni log ni) and the total
complexity is bounded by O(

∑s
i=0 ni log ni).

It is worth mentioning that in many real-world graphs, ni rapidly decreases, which
reduces the total running time. Moreover, we can improve the scalability of Amplay
further, by choosing k vertices with the largest total degrees, place them, and advance
the nhead pointer by k at each iteration (line 6 in Algorithm 1). Furthermore, in line 8
of Algorithm 1, we can define Ax as a set of vertices incidental only to the chosen k
vertices. The front line is now defined as (k, n), (k, n− a1 +1), (2k, n− a1), (2k, n−
a1−a2+1), ..., (s.k, s.k), ..., (n−a1+1, k), (n, k), and it is easy to verify that Lemmas
1 and 2 hold. If we increase k, we can see that the prominent structural features of the
graph are preserved. Moreover the computational complexity of Amplay when k > 1

is O(
∑s

′

i=0 ni
′ × ri) where ri = max(log ni

′
, k). Using k > 1 is beneficial because it

reduces the number of iterations s
′
, and sequence ni

′
decreases faster than ni.
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Fig. 2: The Amplay re-ordered adjacency matrix of the Enron email dataset.

5 Evaluation Methodology

In this section, we describe each dataset used in our experiments and elaborate on the
baseline algorithms for comparison.

5.1 Benchmark Datasets

For the purpose of anomaly detection, we have selected a representative sample of
sparse real-world datasets. The first real dataset that we have used is the Facebook
wall posts data collected from September 26th, 2006 to January 22nd, 2009 from users
in the New Orleans network [24]. The number of users in this graph is 90,269, however
only 60,290 users exhibited activity.

The next real benchmark dataset is the Autonomous Systems (AS) dataset [19]. The
graphs comprising the AS dataset represent snapshots of the backbone Internet routing
topology, where each node is an AS that corresponds to a subnetwork in the Internet.
The edges in this graph represent the traffic flows exchanged between two neighbors.
The dataset consists of 733 days from November 8, 1997 to January 2, 2000 with nodes
being added or deleted from the network.

Another real dataset is the Enron email network that gathers the email communica-
tions within the Enron corporation from January 1999 to January 2003 [8]. There are
36,692 nodes in this network, where each node corresponds to an email address. We
have used the nodes with a minimum activity level and reduced the graph to 184 nodes.
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The final real dataset is the DBLP 6 dataset that consists of co-authorship informa-
tion in computer science. The number of nodes is 1,631,698 and the data is gathered
from 1954 to 2010. The description of these datasets is summarized in Table 1. DBLP
graphs are used to test the scalability of our approach.

Table 1: Benchmark Description.

Dataset Type Description #Nodes #Time Stamps

AS Undirected Communication 65,535 733
Facebook Undirected Social 60,290 1,495

Enron Directed Communication 184 893
DBLP Undirected Co-authorship 1,631,698 57

5.2 Baseline Algorithm

For the purpose of comparison, we have used a recent approach for computing graph
similarity with applications in anomaly detection as our baseline. This algorithm is
called delta connectivity (DeltaCon) [18], where the node affinity matrices for each
graph are calculated using a belief propagation strategy shown in Equation 2. This ap-
proach considers first-hop and second-hop neighborhoods for calculating the influence
of the nodes on each other and has been proven to converge.

S = [sij ] = [I + η2D − ηA
′−1

] (2)

After determining the node affinity matrices, they compare the consecutive graphs by
calculating the root Euclidean distance shown in Equation 3, which varies in the range
[0, 1]. We empirically have chosen η = 0.1 in our experiments.

sim(S1, S2) =

√√√√ n∑
i=1

j=n∑
j=1

(
√
S1,ij −

√
S2,ij)2 (3)

The computational complexity of this algorithm is reported to be linear in the number
of edges of each graph, O(|E|).

Another baseline algorithm is an approach called Random Projection (RP) that has
shown to be effective in determining anomalous graphs in block-structured networks
[23]. The intuition behind RP comes from the Johnson and Lindenstrauss lemma [13]
as presented in Lemma 4. This lemma asserts that a set of points in Euclidean space,
P 1...n ∈ Rn×m, can be embedded into a d-dimensional Euclidean space, P ′1...n ∈
Rn×d while preserving all pairwise distances within a small factor ε with high proba-
bility.

Lemma 4. Given an integer n and ε > 0, let d be a positive integer such that d ≥ d0 =
O(ε−2 log n). For every set P of n points in Rm, there exists f : Rm → Rd such that
with probability 1− n−β , β > 0, for all u, v ∈ P

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2 (4)
6 http://dblp.uni-trier.de/xml/
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One of the algorithms for generating a random projection matrix that has been shown
to preserve pairwise distances [13] is presented in Equation 5:

rij =
√
3


+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(5)

6 Results and Discussion

In this section, we outline our experimental setup in five sections and report the ob-
served results. We first demonstrate the effectiveness of Amplay and rank correlation
in prioritizing nodes that can contribute the most to the structural change in consecu-
tive graphs. We then investigate the capability of our algorithm in detecting anomalous
graphs based on the produced similarity score. Thereafter, we discuss the scalability of
our approach empirically by changing parameter k. We provide our empirical studies
regarding the stability of the Amplay algorithm on static graphs.

Experiment I: Gradual Change Detection The effectiveness of Amplay lies in
its ability to reveal maximum independent sets. The nodes that comprise each set can
be considered the most influential nodes collected from every community in the graph.
Figure 3 shows the gradual change in the graph structure by removing the edge e3,10
connecting v3 and v10. e3,10 is the connecting bridge between two of the present com-
munities in the graph and its elimination may lead to discontinuity in the entire graph
structure. As can be seen, v3 is the node that contributes the most to the dissimilarity
between G1 and G2.

Experiment II: Anomaly Detection We have applied the proposed approach (with
parameter k = 1) and the baseline algorithms on the benchmark datasets, and compared
their computed similarity score between consecutive days. The implementations were
run in Matlab using a machine with a 3GHz Processor and 8GB RAM. Due to the com-
putational complexity of the random projection approach, we only use this algorithm as
a baseline for comparing scalability.

Our proposed method and DeltaCon generate scores in the range [0, 1]. Figures 4, 5
and 6 demonstrate the graph similarity scores for the Autonomous Systems, Facebook
and Enron datasets respectively. As can be seen, the trend of similarity scores is the
same for DeltaCon and our proposed method.

Experiment III: Computational Scalability The reported results for anomaly de-
tection were achieved by setting parameter k = 1, where k was defined at the end of
Section 4 as the number of vertices that are processed and removed from the graph
in a single iteration. We decided to increase k and investigate the performance of our
anomaly detection scheme. It is worth recalling that we are using only a subset of nodes
for the purpose of anomaly detection. We consider the top l elements in the rank vectors
where l = nhead after the termination of Amplay.

Increasing parameter k leads to an exponential decrease in computation time. This
observation can be explained by the sparsity of real-world graphs, i.e., the small pro-
portion of fully-connected cliques. Since k is the number of vertices that are processed
and removed from the graph within a single iteration, increasing k leads to a more rapid
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(a) G1: Snapshot at t = 1 (b) G2: Snapshot at t = 2

Fig. 3: Example of gradual change in the structure of the graph and the importance of
each node in the overall similarity score.

Initial Node Ordering for G1, G2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Amplay and Rank Correlation Node Importance: 3, 5, 13, 15, 6, 7, 1, 2, 4, 8, 9, 10, 11, 12, 14, 16
DeltaCon Node Importance: 3, 10, 14, 16, 12, 13, 2, 5, 15, 4, 6, 7, 11, 1, 9, 8

Fig. 4: Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Autonomous Systems dataset.

graph reduction. However, at some value of k, all highly connected vertices are pro-
cessed within a single iteration, and the remaining graph contains only vertices with
low degrees. Therefore, subsequent increases of k do not lead to a significant perfor-
mance improvement. Figure 7 demonstrates the effect of parameter k on the processing
time of Amplay for the Enron dataset. Although the parameter k is increased to 100,
we can still observe the maximum independent sets S1, S2, ..., Sn as demonstrated in
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Fig. 5: Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Facebook dataset.

Fig. 6: Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Enron dataset.

Figure 2. Another attractive property of our scheme is the compact representation of the
graph produced by Amplay. This compact representation scales linearly in the number
of input nodes n. The real-world graphs are mainly comprised of sets of dense cores and
sparse periphery nodes. Therefore, the number of nodes to consider for graph similarity
computation is only a fraction of the total number of nodes in a graph. Amplay discards
the peripheral nodes that are connected to only a few vertices from the core. The influ-
ential nodes usually appear as V

′

1 , V
′

2 , ..., V
′

nhead
, where nhead << n. The upper bound

of n denotes the worst case scenario where the input graph is fully-connected. Table
2 demonstrates the computation time and number of considered nodes in calculating
graph similarity. The upper bounds for time complexity of the embedding approaches
is demonstrated in Table 3. As can be seen, our proposed method and DeltaCon outper-
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Fig. 7: Amplay computation time as the parameter k is increased in the Enron dataset
where k is the number of vertices that are processed and removed from the graph in a
single iteration.

Table 2: Computation time of Amplay on different datasets.
Dataset Amplay Time DeltaCon Time #Nodes #Nodes to Consider

AS 0.1956 ± 0.0049 0.0872 ± 3.6162e-04 65,535 1,913
Facebook 0.05376 ± 0.0029 0.0721 ± 4.4818e-04 60,290 1,316

Enron 0.00093874 ± 0.00077612 0.0029 ± 8.2857e-07 184 41
DBLP 29.7074 ± 6.2685e+03 1.7174 ± 0.1998 1,631,698 38,903

form random projection, and both are scalable when the adjacency matrices are sparse.
The advantage of our approach lies in its ability to generate an interpretable result where
structural features of a graph, such as MISs, are revealed as shown in Figure 2.

Table 3: Computational Complexity for Baseline and Proposed Approaches.
Approach Embedding Complexity + Similarity Complexity

Amplay - Rank Correlation O(
∑s

i=0 ni logni) +O(|V |)
DeltaCon - Euclidean Distance O(|E|) +O(|V |)

Random Projections - Euclidean Distance O(n2d) +O(|V |)

Experiment IV: Amplay Stability We compare Amplay with other ordering meth-
ods, namely random, RCM [6], and SlashBurn [14]. Random permutation serves as a
naive baseline; RCM is a classical bandwidth reduction algorithm [6]; and SlashBurn
is a recent method that is shown to produce adjacency matrices with localized non-zero
elements. This method is shown to be one of the best state-of-the-art methods [14].

We use a representative sample of sparse real-world graphs of different sizes for
quantitative evaluation (Table 4) where all graphs were downloaded from the Stanford
Large Network Collection 2. The table shows graph names as they appear in the Col-
lection, however in the paper we use simplified names (e.g., gnutella instead of p2p-
Gnutella08).

We first load each graph as an adjacency matrix S and produceN+1 random permu-
tations of the graph vertices RNDi(S), i = 0, 1, ..., N . We then take each random per-
mutation as input and either leave it as it is (method Random), or apply RCM, SlashBurn

2 snap.stanford.edu/data
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or Amplay permutation -respectively,RCM(RNDi(S)), SlashBurn(RNDi(S)) and
Amplay(RNDi(S)).

We then evaluate ordering stability by selecting one of the random permutations as
a reference (e.g., iref = 0), and comparing the vertex ordering between each of the
other permutations and the reference (e.g., compare RND0(S) with RNDj(S)). In
this section, we use both Amplay and SlashBurn with k = 1. That is, we evaluate the
basic forms of these algorithms, as opposed to more coarse scalable versions.

We compare two vertex orderings using the Kendall correlation coefficient. This
coefficient takes values in [−1, 1], where 1 is reached in the case of equivalence of the
orderings. If the two orderings are independent, one would expect the coefficient to be
approximately 0.

Intuitively, vertices with higher degrees tend to have a higher impact on matrix op-
erations and visual appearance. Therefore, we also separately look at ordering stability
for higher degree vertices only. Specifically, we compute the Kendall correlation while
ignoring a certain proportion (0, 80, 90, 95%) of vertices with low degrees. Here 0%
means that we compare orderings for all graph vertices. On the other hand, 95% means
that we only consider the ordering of the top 5% of vertices with the highest degrees.
We present our results in Figure 8 and Table 5 (permutations with k = 1 were slow for
large graphs, therefore we have fewer runs for large graphs). Overall, Amplay outper-
forms the other methods by a large margin (p < 0.01, Wilcoxon signed rank test). In
other words, Amplay tends to be less dependent on the input ordering.

Table 4: Real-world graphs used
in our stability analysis. Asterisks
mark undirected graphs.

Dataset Vertices Edges

ca-HepTh 9877 51971*
Wiki-V ote 7115 103689

p2p-Gnutella08 6301 20777
oregon1 010331 10670 22002*

email-Enron 36692 367662*
soc-epinions1 75879 508837
Email-EuAll 265214 420045
loc-Gowalla 196591 1900654*

flickr 105936 2300660*

Table 5: Stability measured with Kendall
Tau at 90% for large graphs. The table
shows the means for three comparisons.

Dataset Random RCM SlashBurn Amplay

Email-Eu < 0.01 0.02 0.11 0.46

gowalla < 0.01 0.41 0.78 0.89

flicker < 0.01 0.27 0.05 0.99

7 Conclusion and Future Work

In this paper, we presented an unsupervised approach for detecting anomalous graphs
in time-evolving networks. We created a compact yet structure-aware feature set for
each graph using a matrix permutation technique called Amplay. The resulting feature
set included the rank of each node in a graph and this rank ordering was used by rank
correlation for comparing a pair of graphs. This simple yet effective approach over-
comes the issues of scalability when handling large-scale graphs. We showed the low
time complexity and structure-aware property of our re-ordering approach both empiri-
cally and theoretically. Moreover, we designed experiments for the purpose of anomaly
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Fig. 8: Amplay stability in comparison to the rival approaches, SlashBurn [14], RCM
[6] and Random ordering, as we vary the percentage of vertices with low degree that
we ignored.

detection in four real datasets, where our approach was compared against an effective
graph similarity method and proved to be successful in highlighting abnormal events.
In future work, we will explore the possibilities of reducing the dimensionality of the
graph even further by using a random projection approach. Since we reduce the dimen-
sionality from O(n2) to O(n), we can consider the rank vectors of each graph as a
data stream. Thereafter, we will investigate a window-based approach for determining
anomalous graphs given a history of past normal instances.
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