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ABSTRACT
Existing graph compression techniques mostly focus on static
graphs. However for many practical graphs such as social
networks the edge weights frequently change over time. This
phenomenon raises the question of how to compress dynamic
graphs while maintaining most of their intrinsic structural
patterns at each time snapshot. In this paper we show that
the encoding cost of a dynamic graph is proportional to the
heterogeneity of a three dimensional tensor that represents
the dynamic graph. We propose an effective algorithm that
compresses a dynamic graph by reducing the heterogeneity
of its tensor representation, and at the same time also main-
tains a maximum lossy compression error at any time stamp
of the dynamic graph. The bounded compression error ben-
efits compressed graphs in that they retain good approxima-
tions of the original edge weights, and hence properties of the
original graph (such as shortest paths) are well preserved.
To the best of our knowledge, this is the first work that
compresses weighted dynamic graphs with bounded lossy
compression error at any time snapshot of the graph.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining
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1. INTRODUCTION
An important intrinsic property of real graphs such as

social networks is that the weights of their edges tend to
continuously and irregularly change with time. The irreg-
ular changes of weights make the compression of dynamic
graphs more challenging than that of static graphs due to
the additional dimension of time. For example, the size of
the publication network maintained in DBLP1 keeps grow-
ing with time as new publications are being added to the

1http://dblp.uni-trier.de
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repository. If one wants to construct a who-published-with-
whom dynamic network, one would have to download a large
amount of data from the server to uncover all the historical
publications. An efficient method for compressing these dy-
namic graphs will not only save the cost of storage on the
server side, but also reduce the communication cost needed
for transmitting this information on the Internet.

Existing methods for compressing static graphs generally
use two types of strategies: (1) removing edges to simplify
the overall graph [4,8], or (2) merging nodes that have sim-
ilar properties (such as common neighbors) [5,6]. While the
existing methods compress a static graph from its “spatial”
(nodes or edges) perspective, in this paper we propose to
compress a dynamic graph from both the “spatial” and the
“temporal” perspectives simultaneously.

Static graphs are usually represented by their adjacency
matrices. Similarly, we characterize a dynamic graph by a
three dimensional (3D) tensor (i.e., a 3D array: V ertices×
V ertices× T ime), where an entry of this tensor is an edge
weight at a certain time stamp. Since large dynamic graphs
are mostly sparse, when using tensors to represent dynamic
graphs, we only have to encode the sparse version of a tensor
to encode the entire dynamic graph. The sparse version of
a tensor is a set of locations and values of non-zero entries
in the tensor. While the locations of non-zero entries can
be efficiently encoded by (for example) run-length encoding,
in this research we put our focus on reducing the cost of
encoding the values of the tensor’s non-zero entries.

For a small example, consider a co-authorship publication
network that evolves in three time periods shown in Fig. 1(a)
to 1(c), where edge weights are numbers of collaborated pa-
pers. The original cost of encoding this dynamic graph is
shown in Fig. 1(d). For visualization purposes, in this figure
we demonstrate the 3D V ertices× V ertices× T ime tensor
by a 2D Edges× T ime matrix. Our target is to merge cer-
tain subsets of weights across all dimensions of the tensor
so that the overall encoding cost of the graph is minimized.
Fig. 1(e) is an example of the re-weighted graph which has
lower heterogeneity of edge weights and lower encoding cost.

Since the reduction of the encoding cost of a tensor is from
the homogenization of subsets of weights, a major challenge
of compressing dynamic graphs becomes how to select ap-
propriate subsets of weights and unify them while maintain-
ing desirable properties (such as the shortest paths) at each
time snapshot. In this research we introduce the use of hier-
archical clusters of edge weights to address the weight sub-
set selection problem. The main contributions we make
in this paper are as follows:



A u t h o r 3A u t h o r 6 A u t h o r 5A u t h o r 2 A u t h o r 1
A u t h o r 8A u t h o r 7 A u t h o r 9A u t h o r 41 7 231 31 21 11

(a) Graph at time t1.

A u t h o r 3A u t h o r 6 A u t h o r 5A u t h o r 2 A u t h o r 1
A u t h o r 8A u t h o r 7 A u t h o r 9A u t h o r 41 2 3413 32 16 32

(b) Graph at time t2.

A u t h o r 3A u t h o r 6 A u t h o r 5A u t h o r 2 A u t h o r 1
A u t h o r 8A u t h o r 7 A u t h o r 9A u t h o r 4 5 2211 21 14 22

(c) Graph at time t3.

3 47 21 11 12 33 31 631 31 22 11 2
E d g e 1 , 3E d g e 2 , 3E d g e 3 , 4E d g e 3 , 5E d g e 3 , 6E d g e 3 , 7E d g e 4 , 7E d g e 5 , 6E d g e 6 , 7E d g e 6 , 9E d g e 7 , 8E d g e 2 , 4 25122412211E n t r o p y : 2 . 1 8

t 1 t 3t 2
E n c o d i n g c o s t : 9 8 b i t s
(d) Original weights.

3 37 11 11 11 33 31 731 31 11 11 1
E d g e 1 , 3E d g e 2 , 3E d g e 3 , 4E d g e 3 , 5E d g e 3 , 6E d g e 3 , 7E d g e 4 , 7E d g e 5 , 6E d g e 6 , 7E d g e 6 , 9E d g e 7 , 8E d g e 2 , 4 15111311111E n t r o p y : 1 . 2 6

t 1 t 3t 2
E n c o d i n g c o s t : 7 5 b i t s
(e) Merged weights.

Figure 1: (a) to (c) show a synthetic co-authorship network evolving over three time periods. (d) and (e) give an example of
the compression of this evolving graph by reducing the heterogeneity of weights across both “edge” and “time”dimensions. For
visualization purposes, in this example we demonstrate the tensor representation of this dynamic graph by an Edges× T ime
matrix. The concrete approaches of computing the “entropy” and the “encoding cost” stated in (d) and (e) are introduced in
Section 3.

• We propose to encode a dynamic graph by encoding
its tensor representation, and compress the dynamic
network by reducing the heterogeneity of the tensor.

• We design an effective compression algorithm (named
MaxErrComp), which uses hierarchical clusters of edge
weights to partition and merge weights across all di-
mensions of a tensor. This algorithm also guarantees
a bound on the compression error of path weights at
any time snapshot in the dynamic graph.

• We evaluate our method on two real networks, a co-
authorship network and an email communication net-
work, which demonstrates the advantage of our algo-
rithm in both compressing dynamic graphs and pre-
serving important aspects of their temporal properties.

2. PRELIMINARY DEFINITIONS
We define a weighted static graph by a triple G = (V , E,

w), where V is a set of vertices (nodes), E ∈ V × V is a set
of edges, and w(e) → R represents the set of non-negative
weights assigned to all edges e ∈ E. We assign zero weights
to edges that do not exist.

An essential property of a static graph is the connectivity
between two nodes. The quantification of how closely two
nodes are connected can be examined by the shortest path

between them. We use the notation ui
P
=⇒ uj to represent a

path from ui and uj (if the path exists). The weight of the
shortest path (WSP ) among the two nodes ui and uj can be
expressed as:

WSP (ui, uj) =







min
ui

P
=⇒uj

∑

e w(e), e ∈ P if P exists

+∞ otherwise
(1)

We use the average of shortest paths over all pairs of con-
nected nodes in a static graph to measure the connectivity
of that graph. Denote by P the set of all shortest paths in
a graph that exist (i.e., excluding paths of infinity weights
defined in Eq. 1), the average shortest path weight (AvgSP)
of a graph is defined by:

AvgSP (G) =
1

|P|

∑

P∈P,u
P
=⇒v

WSP (u, v) (2)

Now we give the definition of a dynamic graph:

Definition 1. A time-evolving (aka dynamic) graph DG
is a sequence of static graphs, DG = {G1, G2, ..., GT },
where Gt = (V , E, w(e, t)), and w(e, t) assigns a weight to
an edge e (e ∈ E) at time stamp t (1 ≤ t ≤ T ).

Intuitively, when Gt is represented by its adjacency matrix
of size |V | × |V |, a concatenation of G1 through GT forms a
tensor of size |V | × |V | × |T |. We denote the tensor of DG
by TDG.

3. ENCODING DYNAMIC GRAPHS
The locations and values of non-zeros entries of TDG re-

spectively indicate the end-vertices and weights of all edges
in DG. As a way of discretizing edge weights, we round
values of these non-zeros entries to their closest integers (if
they are not originally integers). These non-zeros entries
are ordered by traversing along the time dimension first and
then along the two vertex dimensions of the tensor. Simi-
lar to the principle of the run-length coding, the locations
can be specified by the number of zeros in the tensor be-
tween adjacent non-zero entries, which makes the location
information simply a sequence of integers (denoted by Loc).
We concatenate Loc with the sequence of values to obtain a
single string LocVal, and encode it by an entropy encoding
method (e.g., arithmetic encoding [7]) as follows.

Let Int(x) be a bit string that encodes a positive integer
x, and L(s) be the length of a bit string s. There are dif-
ferent possible implementations of Int(x). We use the com-
mon variable length quantity (VLQ) format used in MIDI
files, so L(Int(x)) is 8 × ⌈log2(x + 1)/7⌉ bits. We first en-
code the tensor’s dimensions, and then encode its entries,
i.e., DG = Int(|V |)Int(|T |)Meta(LocV al)H(LocV al). The
string Meta(LocV al) contains all k unique integers xi and
their frequencies freqi (1 ≤ i ≤ k) from LocVal. Therefore

L(Meta(LocV al)) =
∑k

i=1

(

L(Int(xi)) + L(Int(freqi))
)

.
The Shannon entropy estimates the lowest number of bits
required for encoding a source string [1]. The entropy of

LocVal is H(LocV al) =
∑k

i=1−
freqi

|LocV al|
log2

freqi
|LocV al|

. So in

total, a dynamic graph DG in our representation requires
L(DG) = L(Int(|V |)) + L(Int(|T |)) + L(Meta(LocV al)) +
H(LocV al) bits to be encoded. This graph encoding proce-
dure is stated as“Encode(TDG)” in the algorithm introduced
in the next section.

Since the costs of the first and the second terms of L(DG)



Algorithm 1 MaxErrComp

Require: A dynamic graph DG = {G1, G2, ..., GT }, and an
error threshold ǫ.
1: Compute a hierarchical cluster tree ClusterTree on non-

zero entries of DG’s tensor representation TDG;
2: Initialize cutoff ← 0;
3: Compute original average shortest path weights:

OldSPt ← AvgSP (Gt),∀t ∈ [1, T ];
4: while cutoff has not reached the root of ClusterTree

do
5: Increase cutoff by 1;
6: Obtain weight clusters from ClusterTree by applying

cutoff ;
7: for each cluster of weights CL do
8: CLold ← CL ;
9: wi ← round(mean(CL)), ∀wi ∈ CL;
10: NewSPt ← AvgSP (Gt),∀t ∈ [1, T ];

11: if max1≤t≤T ( |OldSPt−NewSPt)|
OldSPt

) > ǫ then

12: Restore weights: wi ← (CLold)i,∀wi ∈ CL;
13: return Encode(TDG);
14: end if
15: end for
16: end while
17: return Encode(TDG);

are fixed, our method aims to reduce the cost of the third
term L(Meta) by generating fewer unique weight integers,
and the fourth term H(LocV al) by decreasing the hetero-
geneity of the bit string.

The heterogeneity of a tensor is straightforwardly mini-
mized when all its non-zero entries are set to a constant value
across different edges. From this perspective, the “average”
of all weights of a dynamic graph, which we call the “aver-
age graph”, provides a lower bound for the encoding cost of
the dynamic graph. However, simply setting all weights to
their average value loses the inherent variances and dynam-
ics in all snapshots of the graph, which is detrimental to the
analysis of the temporal behavior of graphs. Therefore, in
the next section we propose an effective algorithm that finds
appropriate tradeoffs between the original graph and the av-
erage graph, which reduces the encoding cost and preserves
desirable temporal properties simultaneously.

4. THE MAXERRCOMP ALGORITHM
Our dynamic graph compression algorithm “merges” sub-

sets of edge weights by assigning a common (average) weight
to them. The subsets of weights being merged are selected
using agglomerative hierarchical cluster trees [2] built on
non-zero entries of the dynamic graph’s tensor representa-
tion. We note that we only need to build the cluster tree
on unique weight values (instead of all weight values), since
identical weights are always clustered together without dis-
tance checking. In Alg. 1 we present the MaxErrComp algo-
rithm which reduces the cost of encoding a dynamic graph,
and at the same time provides error-bounded changes on
average shortest path weights for all time snapshots of the
dynamic graph.

The MaxErrComp algorithm runs in a greedy fashion, which
gradually increases the clustering cutoff value to obtain clus-
ters from the hierarchical cluster tree. The cutoff value is
the maximum difference allowed among the weights within
each cluster. The cost of encoding the dynamic graph is
reduced by averaging the weights that belong to the same
cluster (line 10 in Alg. 1). Similar to the original weights, we

round new weights to their nearest integers. The algorithm
checks the max error of average shortest path weights among
all snapshots of the dynamic graphs at each iteration. As
soon as the compression error reaches the threshold ǫ, the
algorithm terminates the iterations and the weights that are
changed in the last iteration roll back to their previous values
(lines 12 to 15), so the compression error is always bounded
by ǫ. If the dynamic graph does not change much across
time or if the threshold ǫ is set to a high value, the program
would run to the last line of Alg. 1 and potentially produces
the average graph whose error could be lower than ǫ.

It can be observed from line 12 of Alg. 1 that our Max-

ErrComp algorithm can be application-generic: by changing
the termination condition to other properties of graphs (such
as changes to communities of vertices), one can straight-
forwardly generalize MaxErrComp to preserve other types of
properties of a dynamic graph.

Compared to existing methods that compress static graphs
(i.e., compress one snapshot at a time in a dynamic graph), a
major advantage of MaxErrComp is that it takes into account
both the spatial and the temporal information of a dynamic
graph, and thus the cost of encoding all dimensions of the
dynamic graph’s tensor representation can be reduced.

4.1 A Baseline Algorithm
We present a baseline method (MaxErrRandom) that aver-

ages random partitions of edge weights. The MaxErrRandom

algorithm is similar to the MaxErrComp algorithm in terms of
their terminating conditions. The difference is that instead
of choosing weights from cluster trees, MaxErrRandom ran-
domly selects a partition of weights, and sets all weights in
each partition to their average value. The number of parti-
tions used in MaxErrRandom decreases by 1 at each iteration
from the total number of edges until it reaches 1, or until
the terminating condition is met.

5. EXPERIMENTS AND ANALYSIS
In our evaluations we include a recently proposed static-

graph compression method [6], which we denote by Stat-

Comp. Since StatComp does not provide a strategy for com-
pressing dynamic graphs, we measure the encoding costs of
a dynamic graph compressed by StatComp using the cost of
encoding all of its snapshots that are separately compressed
by StatComp. In this way, we can evaluate the scope for
compressing temporal information of dynamic graphs.

5.1 Data sets
We use two types of dynamic graphs to validate our algo-

rithm. The first is a co-authorship network extracted from
the DBLP bibliography. We select co-authors who have data
mining publications from year 2000 to 2011. We select data
mining journals and conferences from the venues whose full
book or proceeding titles contain the phrases “data mining”
or“knowledge discovery”, and only include authors who have
at least 5 publications through the 12 years period. The sec-
ond data set is extracted from the Enron email network [3],
which provides email connections from senior executives to
other employees in the Enron company. Statistics of these
two datasets are shown in Table 1.

5.2 Results
We first evaluate our method under different settings of er-

ror thresholds. Comparisons on the performance of the Max-



Table 1: Statistics of data sets.

Data set |V| |E| |T| Type
DBLP 3282 55756 12 (years) Undirected
Enron 2359 99742 28 (months) Directed
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Figure 2: Comparisons on the degree of compression, in
terms of the reduction of encoding costs. Values correspond
to “ǫ = 0” in the x-axis are the encoding costs before lossy
compression, and those correspond to “ǫ > 0” are the encod-
ing costs after compression.

Table 2: Comparisons on the quality of compression, in
terms of the error on compressed average shortest path
weight, at each snapshot of the DBLP data set.

Time
Compression error on path weights

cr = .05 cr = 0.1 cr = 0.2
M1 M2 M3 M1 M2 M3 M1 M2 M3

2000 0.13 0.67 0.39 1.84 7.89 6.6710.53 25.4 18.9
2001 0.12 0.89 0.67 1.56 8.32 8.92 9.89 27.6 14.9
2002 0.13 0.78 1.42 2.79 9.64 3.29 8.56 18.9 15.6
2003 0.16 0.96 0.58 2.03 7.77 9.87 6.59 16.7 14.7
2004 0.17 0.68 0.67 1.49 9.93 4.69 8.97 15.2 19.8
2005 0.21 1.09 0.86 2.8310.64 9.9112.54 28.8 21.9
2006 0.25 1.18 1.54 1.87 9.3611.2017.71 29.4 24.1
2007 0.13 0.66 0.94 1.57 8.54 6.3514.45 22.1 22.8
2008 0.14 0.89 1.88 2.3611.8110.3313.36 27.6 19.3
2009 0.28 0.74 0.42 2.6814.52 7.89 9.46 18.7 16.5
2010 0.14 0.85 0.52 1.59 8.97 6.29 7.27 15.5 18.2
2011 0.16 0.55 0.70 3.67 12.8 7.74 8.98 17.1 15.9

t-tests on cr = .05 Base4E-83E-4
t-tests on cr = 0.1 Base 5E-9 7E-6
t-tests on cr = 0.2 Base4E-71E-8

ErrComp, MaxErrRandom and StatComp methods are shown
in Fig. 2. The scenario of “ǫ = 0” on this figure represents
the encoding cost of the original dynamic graph before lossy
compression. We can observe that on a fixed error threshold,
the cost of encoding a dynamic graph using MaxErrComp is al-
ways lower than that using MaxErrRandom before they reach
a common stationary point (i.e., the average graph). This
phenomenon demonstrates that on the same error thresh-
old, the subsets of weights selected by hierarchical cluster
trees are more effective in reducing the encoding costs of dy-
namic graphs. We can also observe that the encoding costs
of the StatComp method are generally higher than those of
the MaxErrComp and MaxErrRandom methods, and the com-
pression rates (i.e., Cost on ǫ > 0

Cost on ǫ = 0
) of StatComp are also the

lowest among the three methods.
It is also important to examine wether the temporal prop-

erties of each time snapshot of the dynamic graphs are pre-
served after compression. For this purpose, we change the
termination condition of Alg. 1 (line 12) to a compression

ratio cr (0 ≤ cr ≤ 1):
Encode(TCompressedDG)

Encode(TOriginalDG)
> cr. Then we

compare the compression error made on the average short-
est path weight in every snapshot of the dynamic network,
where the error is defined by |1− Compressed avg. path weight

Original avg. path weight
|.

As shown in Table 2, the shortest path weights preserved by
MaxErrComp are the most accurate among the three methods
at all times. Due to space limits, in Table 2 we only present
comparions of methods on the DBLP data set. Results ob-
tained from the Enron data set make the same conclusions
to those of the DBLP data. To confirm the superiority of
MaxErrComp on compression quality, we apply paired t-tests
on the errors made by the three compression methods, un-
der the null hypothesis that their errors are not significantly
different. From the low p-values in the bottom three rows
of Table 2, we can confidently reject the null hypothesis.
This suggests that under the same compression ratio, the
compression quality preserved by MaxErrComp is significantly
better than the other two methods.

6. CONCLUSIONS AND FUTURE WORK
We propose to encode a dynamic graph by encoding its

tensor representation, and compress the dynamic graph by
reducing the heterogeneity of the tensor. We have designed
a compression algorithm that decreases the heterogeneity of
the tensor entries by using hierarchical cluster trees built
on the time-stamped edge weights. This algorithm is highly
generic and can be easily generalized to preserve various
properties of the original dynamic graph while compressing
it. We have exemplified weights of shortest paths in all time
snapshots of a dynamic graph as a desired property to main-
tain, and with this property we have empirically tested our
method on the compression of a co-authorship network and
an email communication network.

In future we would like to apply our method to numerical
edge weights by using differential entropy.
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