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Abstract Data clustering is a fundamental and very popular method of data analysis.

Its subjective nature, however, means that different clustering algorithms or different

parameter settings can produce widely varying and sometimes conflicting results. This

has led to the use of clustering comparison measures to quantify the degree of similarity

between alternative clusterings. Existing measures, though, can be limited in their

ability to assess similarity and sometimes generate unintuitive results. They also cannot

be applied to compare clusterings which contain different data points, an activity which

is important for scenarios such as data stream analysis.

In this paper, we introduce a new clustering similarity measure, known as ADCO,

which aims to address some limitations of existing measures, by allowing greater flexi-

bility of comparison via the use of density profiles to characterize a clustering. In par-

ticular, it adopts a ‘data mining style’ philosophy to clustering comparison, whereby

two clusterings are considered to be more similar, if they are likely to give rise to similar

types of prediction models.

Furthermore, we show that this new measure can be applied as a highly effec-

tive objective function within a new algorithm, known as MAXIMUS, for generating

alternate clusterings.
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1 Introduction

Cluster analysis is a fundamental machine learning and data mining task which dis-

covers patterns, relationships and structures in an unsupervised manner. It is used in a

variety of fields, including biomedicine, information retrieval and financial analysis, to

discover hidden knowledge and information. However, the process of grouping similar

data objects is subjective and highly dependent on the clustering criteria used. For this

reason, a vast number of clustering algorithms have been developed, each based on dif-

ferent heuristics. These algorithms often provide very different results. Moreover, even

if a single algorithm is used, many different alternative clusterings1 can still be gen-

erated, simply by changing the initial conditions/parameters of the algorithm. Given

this situation, researchers often need to compare or measure the similarity between

two clusterings. Indeed this is a key component in what is called external validation [2]

and it is used to return a quantitative measure of the degree to which two different

clusterings are similar or different. Furthermore, clustering comparison techniques are

frequently applied to evaluate the quality of clustering algorithm by comparing its re-

sults against a gold-standard clustering and to obtain a set of a diverse, high quality

alternate clusterings [3,4].

In this paper, we introduce a new clustering similarity measure, known as ADCO,

which aims to address some limitations of existing techniques, by allowing greater

flexibility of comparison via the use of density profiles to characterize a clustering. In

particular, it adopts a ‘data mining style’ philosophy to clustering comparison, whereby

two clusterings are considered to be more similar, if they are likely to give rise to similar

types of prediction models.

Furthermore, we show that this new measure can be applied as a highly effec-

tive objective function within a new algorithm, known as MAXIMUS, for generating

alternate clusterings.

In the following two subsections, we provide background about the limitations of

existing comparison measures and also explain further about the alternate clustering

generation problem.

1.1 Problems with Existing Methods and Motivations

Whilst there already exist a number of clustering comparison measures, all of them use

the membership of points to clusters as the primary factor in their similarity calculation.

Although this can be an important determinant for clustering similarity, it neglects

some other aspects. There are two main limitations faced by this type of approach:

– Inability to Detect Structural Dissimilarity : We illustrate this using Figure 1,

which shows three clusterings, each with three clusters (represented respectively by

circles, triangles and stars). Figure 1(a) is the pre-defined (gold-standard) clustering

and 1(b) and 1(c) are two other possible clusterings of the same data set. Suppose

we wish to separately compare 1(a) to 1(b) and 1(a) to 1(c), to check which of

1(b) and 1(c) is more similar to 1(a). As indicated by the dotted lines, each of

clusterings 1(b) and 1(c) has five points clustered differently compared to 1(a).

1 A clustering is a set of clusters.
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(a) pre-defined clustering (b) clustering P (c) clustering S

Fig. 1 3 clusterings, each containing 3 clusters.
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Fig. 2 Two clusterings, each for data from a different window of a data stream. Each letter
represents a data object and the objects are assumed to arrive in alphabetical order. These
two clusterings cannot be accurately compared using existing membership based measures.

Existing clustering measures, would report that the similarity between 1(a) and

1(b) is exactly the same as the similarity between 1(a) and 1(c) (in fact a similarity

of 0.44 for both comparisons when using the the Rand index [5]).

However, we argue that 1(a) and 1(c) are actually more similar than 1(a) and 1(b).

This is based on the following observations:

– The cluster centroids of 1(a) are more similar to the cluster centroids of 1(c),

than they are to the cluster centroids of 1(b).

– The cluster shapes in 1(a) are more similar to the cluster shapes in 1(c), than

they are to the cluster shapes in 1(b).

– Suppose we were to learn predictive models, one for each cluster, each summaris-

ing the cluster’s common properties and being able to predict the likelihood of

an unseen point being a cluster member. It is likely that the cluster models of

1(a) would be more similar to the cluster models of 1(c), than they would be

to the cluster models of 1(b). This is a reflection of the fact that the spatial

distribution statistics for each cluster share more similarity between 1(a) and

1(c), then they do between 1(a) and 1(b).

– Inability to Compare Clusterings of Non-Overlapping Points : One often

needs to compare two clusterings, each derived from a different dataset. This is

particularly true for evolving data, such as stream datasets for stock market infor-

mation or network traffic information, where the data is divided into time based

snapshots and clusterings of different snapshots are compared.

However, it is not possible to use existing membership-based comparison measures

for clustering comparison in such scenarios. Consider Figure 2. Two clusterings are

shown in 2(a) and 2(b). Assume each clustering uses data from a different time

period (window) of the data stream. Let each letter represent a data object and

suppose the objects arrive in alphabetical order. If existing membership-based com-
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parison measures are used to evaluate the similarity between these two clusterings,

they can only use the points common in both clusterings (‘a’, ‘d’, ‘e’, ‘f’, ‘g’, ‘i’,

‘j’, ‘k’, ‘l’) and would discount any of the points not present in both clusterings

(‘b’, ‘c’, ‘h’, ‘m’, ‘n’, ‘o’, ‘p’, ‘r’, ‘s’), giving a misleading and inaccurate comparison

result.

1.2 A Clustering Similarity Measure for Use in Discovering Alternate Clusterings

In existing literature, similarity measures for comparing clusterings have been used

as important tools for performing external validation and for exploring degrees of

similarity amongst existing clusterings.

However, in this paper, we also identify a novel and unexplored use of a clustering

similarity measure - as a tool for alternate clustering generation. Here, the goal is to

generate a distinctively different and high quality alternate clustering, given an input

initial clustering. The key idea is that the clustering similarity measure itself can be

used as an objective function to drive the creation of an alternate clustering.

Moreover, this task also motivates us to develop a new type of clustering constraint,

we call the distribution constraint. This can be viewed as supplementary knowledge that

can be used to drive the construction of a clustering, in an analogous way to must-link

or cannot-link constraints [6].

We show that our ADCO similarity measure is well suited to these circumstances.

In fact, using ADCO as an objective function allows the formulation of alternate clus-

tering generation as an integer linear program of moderate complexity. The possibility

of using other existing clustering similarity measures (e.g. Rand Index) for this task

is an open question, but appears problematic, as the natural encoding would result in

non linear integer programs, which are considerably more difficult to efficiently solve.

1.3 Contributions

Our main contribution in this paper is a new clustering similarity measure known

as ADCO (Attribute Distribution Clustering Orthogonality), which is designed to

address the limitations of existing clustering comparison measures. By representing

clusterings as density profiles, ADCO is able to take into account feature distribution

information, as well as point membership information. At a more detailed level, our

contributions are:

– Detecting structural dissimilarity : ADCO incorporates distribution infor-

mation of data points along each attribute, considering the structures or density

profiles of the clusters. This provides the ability to compare two clusterings in terms

of their feature distributions, and this means that the comparison is a reflection of

their similarity as “hypotheses”, or as their similarity for deriving predictors. This

type of comparison is not possible with existing membership based measures, such

as the Rand [5] index or Jaccard index [7].

– Comparing non-overlapping clusterings : Since ADCO takes into account the

density of points, it can achieve more flexibility in the type of clustering comparison.

In particular, using ADCO it is possible to compare clusterings which do not share

any common data points. This has important applications in situations where the

data is evolving, such as stream clustering.
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Table 1 Definitions of Five Existing Clustering Comparison Measures

Rand index (RI) RI(C, C′) = N11+N00
N11+N10+N01+N00

Jaccard index (JI) JI(C, C′) = N11
N11+N10+N01

Clustering error (CE) CE(C, C′) = 1 − 1
n

max
PK

k=1 nk,σ(k)

Variation of information (VI) V I(C, C′) = 2H(C, C′) − H(C) − H(C′)

Normalized Mutual φNMI (C, C′) = 2
n

PK
l=1

PK′

h=1 n
(h)
l

logK×K′

„

n
(h)
l

n

n(h)nl

«

Information (NMI)

– Application in alternate clustering algorithms : We propose a novel al-

gorithm, MAXIMUS, for alternate clustering generation, which uses the ADCO

measure as an objective function. Given an input clustering, MAXIMUS discovers

multiple alternate clusterings, each of high quality, yet each distinctively different.

We compare MAXIMUS to other alternate clustering algorithms and demonstrate

its capacity to efficiently generate high quality solutions.

2 Related Work

This paper is an expanded version of work in [1], which first described the ADCO mea-

sure. Compared to that work, this paper contains the following additional material: i)

gives a deeper analysis of the philosophy behind ADCO and proves a number of formal

properties of the measure, ii) presents a more comprehensive experimental analysis of

its accuracy, compared to other measures, using more datasets, iii) analyses ADCO’s

runtime complexity both formally and experimentally, iv) shows how ADCO can be

used in a novel way, as an objective measure for a powerful new alternate clustering

algorithm called MAXIMUS.

There are three main types of existing clustering comparison methods, which are

discussed below and also summarized in Table 1.

– Pair counting : Methods in this category are based on counting pairs of points

and comparing the ‘agreement’ and the ‘disagreement’ between two clusterings.

Pairs of points are classified into four types - N11, N10, N01 and N00 - where N11 is

the number of pairs of points which belong to the same cluster in both clusterings,

N10 and N01 are numbers of pairs which belong to the same cluster in one of the

clusterings but not the other, and N00 is the number of point pairs belonging to

different clusters in both clusterings. N11 and N00 are treated as ‘agreements’ and

N10 and N01 are treated as ‘disagreements’ between the two clusterings. Popular

pair counting methods are the Rand index [5] and Jaccard index [7] (defined in

Table 1) and also the Wallace indices [8] and their extensions [9,10].

– Set matching : This category of methods is based on measuring the shared set

cardinality between two clusterings. The simplest form of set matching technique

is called ‘clustering error’ [11], which is defined in Table 1 (where n is the number

of objects and K is the number of clusters in each clustering, and nk,σ(k) finds the

‘best match’ between clusters); it computes the best matches between clusters (in

terms of shared points) from each of the two clusterings. It returns a value equal to

the total number of points shared between pairs of matched clusters. Other related

techniques have also been developed by Larsen [12] and Meila [13].
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– Information theoretic measures : Examples of these are the (NMI) [14] and

‘variation of information’ (VI) measures [15]. Both measures utilize the mutual

information between two clusterings, which is determined by the conditional prob-

abilities resulting from the number of points shared between clusters of the two

clusterings. The mutual information essentially signifies the amount of information

one clustering provides about the other. While NMI normalizes the mutual informa-

tion with the sum of the two clusterings’ entropies, VI uses a different comparison

criterion to give the final value. (NMI and VI are defined in Table 1, where n is the

number of objects, n
(h)
l indicates the number of points shared by l-th cluster of C

and h-th cluster of C′, nl indicates the number of points in l-th cluster of C and

n(h) indicates the number of points in h-th cluster of C′.)

Clustering comparison methods are frequently applied as part of the process of

ensemble clustering, in which several clusterings are merged to form a consensus clus-

tering. A popular technique for merging is called ‘majority voting’ [16], which is a

pair-counting method extended over multiple clusterings. In [17], a ‘hypergraph parti-

tioning algorithm’ [18] is applied to find a consensus clustering where the underlying

idea is to find dense intersections between the clusterings based on point member-

ship information. Comparison methods are also used in stream data clustering [19,

10], where clusters are generated and consistently evolve as new data arrives. The idea

is that studying this evolution can uncover valuable information and detect sudden

structural changes within the data. In [19], clusterings at different time periods are

compared by observing any newly formed, removed or modified clusters. The tech-

nique used is membership-based and assumes that the clusterings have at least some

non-empty overlap of data points. However, it would not work if the two clusterings

share no common points at all. Indeed in this circumstance, the existing comparison

measures are not applicable.

We will discuss related work about alternate clustering generation in Section 7.1.

3 The ADCO Similarity Measure

Let us introduce the following terminology to describe ADCO. Let D be a data set of N

objects containing R attributes. Also assume C = {c1, . . . , cK} and C′ = {c′1, . . . , c′K′}
are two (hard) clusterings that are to be compared. The ADCO similarity value be-

tween the two clusterings is denoted as ADCO(C, C′), where higher values of the

measure indicate higher similarity (less dissimilarity).

3.1 Defining ADCO

The ADCO measure determines the similarity between two clusterings based on their

density profiles along each attribute. Essentially, each attribute’s range is divided into a

number of intervals, and the similarity between two clusters corresponds to how closely

the point sets from each cluster are distributed across these intervals. The similarity

between two clusterings then corresponds to the amount of similarity between their

component clusters. We begin by defining some terms that we need for describing

density.
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Fig. 3 Two Clusterings C = {c1, c2} and C′ = {c′1, c′2} with attributes X and Y each binned
into 2 intervals

Definition 1 Given an attribute/feature space A = {a1, a2, .., aR}, let the range of

each attribute ai be divided into Q bins. An attribute-bin region is a pair denoted as

(i, j), which corresponds the j-th bin of the i-th attribute. (So there are a total of RQ

regions.) The density of an attribute-bin region (i, j) is denoted as dens(i, j) and

refers to the number of points in that region expressed as

dens(i, j) = |{d ∈ D | d[ai] ∈ (i, j)}| (1)

where d[ai] is the projection of instance d on attribute ai. Additionally, the density of

an attribute-bin region for cluster ck in clustering C, denoted as densC(k, i, j),

refers to the number of points in the region (i, j), which belongs to the cluster ck of

clustering C.

The values of densC(k, i, j) for all possible k, i, j form the building blocks of a clus-

tering’s ‘density profile vector’; in the vector those values are listed in a lexicographical

ordering imposed on all attribute-bin regions. For example, in Figure 3, the data set

contains two attributes X and Y , which are both divided into two bins. The ordering

applied to its attribute-regions is (X, x1), (X, x2), (Y, y1), (Y, y2). The density profile

vector is generated using the density profile function defined below.

Definition 2 The density profile of a clustering C is the following density profile

vector of C:

VC = (densC(1, 1, 1), densC(1, 1, 2), .., densC(1, 1, Q), densC(1, 2, 1), ..,

densC(1, R, Q), densC(2, 1, 1), .., densC(K, R, Q))

For example, in Figure 3, the density profiles of clusterings C and C′ are VC =

(8, 0, 5, 3, 0, 6, 3, 3) and VC′ = (5, 2, 2, 5, 3, 4, 6, 1).

Suppose C and C′ are clusterings with respectively K and K′ clusters. We use the

following formula on their density profile vectors to determine the degree of similarity

between C and C′:

sim(C, C′) = VC · ρ(VC′) (2)

= max
ρ

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC′(ρ(k), i, j) (3)
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where ρ ranges over permutations over the cluster IDs of C′ and Kmin = min(K, K′).

By considering all possible permutations ρ, we consider all possible pairings of clusters

and select the maximum dot product value corresponding to the best match. The best

cluster match may not be the match where the kth cluster in C is matched with the

kth cluster in C′. This ensures that the similarity is independent of the assigned cluster

labels. For example, in Figure 3, the pairing of (c1, c′1) and (c2, c′2) gives a higher value

(110) compared to the value (90) given by the pairing (c1, c′2) and (c2, c′1). Regarding

computation, rather than iterating through all possible permutations of C′, we can

consider equation 2 as an assignment problem between clusters of C and clusters of C′

where the aim is to maximize the scalar product value. This can be solved in polynomial

time of O(K3
min) by the widely used Hungarian algorithm [20] for solving assignment

problems; the input to the algorithm is a K × K′ cost matrix M between C and C′,

where the (k, k′)-element is the scalar product of the density values between the kth

cluster of C and the k′th cluster of C′.

We note that sim(C, C) =
PK

k=1

PR
i=1

PQ
j=1 densC(k, i, j)2. Indeed, for arbitrary

permutations ρ, we have

K
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j)2 ≥
K

X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC(ρ(k), i, j)

by the following reasoning:

0 ≤
K

X

k=1

R
X

i=1

Q
X

j=1

(densC(k, i, j) − densC(ρ(k), i, j))2

=
K

X

k=1

R
X

i=1

Q
X

j=1

(densC(k, i, j)2 + densC(ρ(k), i, j)2 − 2densC(k, i, j) ∗ densC(ρ(k), i, j))

=
K

X

k=1

R
X

i=1

Q
X

j=1

(2densC(k, i, j)2 − 2densC(k, i, j) ∗ densC(ρ(k), i, j)) (4)

which proves that sim(C, C) =
PK

k=1

PR
i=1

PQ
j=1 densC(k, i, j)2. Lastly, we also need

a normalization factor for computing the ADCO measure, which corresponds to the

maximum achievable similarity when using either of the two clusterings. This is given

in equation 5. The ADCO(C, C′) measure is then shown in equation 6.

NF (C, C′) = max
ˆ

sim(C,C), sim(C′, C′)
˜

(5)

ADCO(C, C′) =
sim(C,C′)

NF (C, C′)
(6)

The value of ADCO ranges from 0 to 1, where a lower value indicates higher

dissimilarity and a higher value indicates higher similarity. For the example in Figure

3, NF (C, C′) = max [152, 120] = 152 and ADCO(C, C′) = 110
152 = 0.72.

Algorithm 1 summarizes the calculation steps of ADCO. When clusterings C and

C′ do not share the same number of clusters, ADCO simply finds the best matching,

similar to the clustering error metric described earlier. Note that by varying the Q

parameter (the number of bins), one can trade off between the granularity of the

density profile and the complexity of computing the ADCO value. We have found
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Q = 10 to work well as suggested in [21]. Unless mentioned otherwise, we assume it as

a default setting that will be used throughout the rest of the paper.

The method of defining the bins can be determined by any discretization techniques

such as ‘maximal marginal entropy’ [22], ‘StatDisc’ [23] or those outlined in [24–26].

For ADCO, we have applied a simple equi-width method, which divides an attribute

range into equi-width intervals. In Section 4.4, we further investigate the effect of

discretization choice on the ADCO value.

Algorithm 1 Calculation steps for ADCO

1: Scan the clusterings to compute VC and VC′

2: sim(C, C′) = HungarianAlgorithm(C · C′) {the best matching pairs of clusters are de-
termined by the Hungarian algorithm [20]}

3: NF = max [sim(C, C), sim(C′, C′)]

4: ADCO(C, C′) =
sim(C,C′)

NF

3.2 Vector Interpretation of ADCO

We now present a geometric interpretation of the ADCO measure.

In our model each clustering C has been represented as a vector VC . By overloading

notation, we will now use both C and its density profile VC synonymously. We will

also use the notation |C| to denote the (Euclidean) magnitude of (the density profile

vector of) clustering C. Observe that |C| =
p

sim(C,C).

Consider two clusterings, C1 and C2, where |C2| ≥ |C1| and the angle between C1

and C2 is x. Then we can derive the following expression for ADCO:

ADCO(C1, C2) =
sim(C1, C2)

NF (C1, C2)

=
sim(C1, C2)

sim(C2, C2)

=
sim(C1, C2)

|C2|2

=
C1 · C2

|C2|2 (For ease of explanation, we disregard any permutation ρ, with the dot product)

=
|C1||C2|cos(x)

|C2|2

=
|C1|cos(x)

|C2| (7)

We can interpret this result in terms of vector algebra. Clustering C1 can be ex-

pressed as the sum of two component vectors. One of them parallel to C2 and the other

orthogonal to C2. The magnitude of the former is known as the scalar projection of

C1 onto C2. This is shown in Figure 4, where we see that the numerator |C1|cos(x) of

equation 7 is equal to the scalar projection of C1 onto C2. The denominator of equa-

tion 7 is equal to the length of C2. Hence ADCO(C1, C2) measures the ratio between

the scalar projection of C1 onto C2, and the magnitude of C2. In other words, ADCO
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C1
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|C1|*cos(x)

|C2|

|C1
|

Fig. 4 Interpreting ADCO in terms of scalar vector projection. The ADCO value equals
length of the projection of C1 onto C2, divided by the length of C2. i.e. |C1|cos(x)/|C2|

is assessing a type of containment judgement between C1 and C2, which might be

expressed as “How much of clustering C2 is contained in clustering C1 ?” or , “What

percentage of clustering C2 is contained in clustering C1 ?”.

Interestingly, the use of containment judgements for measuring similarity has been

studied in the field of psychometrics. Work in [27] used similar kinds of measures

in a study where subjects were being asked to assess the similarity between different

multidimensional stimuli. Subjects were asked questions such as “How much of this blue

is contained in this red ?”. The broader use of containment measures for similarity in

psychometrics is also discussed in [28] and [29].

3.3 Mathematical Properties of ADCO

We next establish a number of mathematical properties of ADCO, investigating how

it behaves as a similarity measure and also how it might be transformed into a distance

function.

We begin by analysing its properties as a similarity function:

Non-negativity : ADCO(C, C′) ≥ 0 for any two clusterings C and C′.
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Proof : The similarity of C and C′ is calculated using equations 2 and 5, involving the

density profile vectors VC and VC′ . Since values in density profile vectors cannot be

negative, the product of values in equations 2 and 5, and hence the resultant ADCO

value, cannot be negative. �

Identity of indiscernibles : We show this subject to some extra assumptions about

what it means for two clusterings to be indiscernible or equivalent. Let C and C′ be

clusterings where both C and C′ have K clusters for some K > 0. The density profiles

VC and VC′ are said to be equivalent if there is a permutation ρ over {1, ..., K} such

that densC(k, i, j) = densC′(ρ(k), i, j) for all i, j, k. We need to prove that VC and VC′

are equivalent iff ADCO(C, C′) = 1.

Proof : (If): Suppose VC and VC′ are equivalent. Then

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j)2 = max
ρ

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC′(ρ(k), i, j)

Hence sim(C, C) = sim(C, C′). Similarly, sim(C′, C′) = sim(C, C′).

Therefore max{sim(C,C), sim(C′, C′)} = sim(C, C′) and ADCO(C, C′) = 1.

(Only-if): Assume that |C′| ≥ |C|. If ADCO(C, C′) = 1, then VC · ρ(VC′) = VC′ · VC′ .

Now for any C and any specific permutation ρn, we have VC ·VC = ρn(VC) ·ρn(VC). So

we can therefore conclude that there is some permutation ρn for which VC = ρn(VC′).

This means that VC and VC′ are equivalent. �

Clearly there are many clusterings whose density profiles are equivalent to each

other. The ADCO measure will treat these clusterings as indiscernible. In contrast,

the measures described in Section 2 will only consider two clusterings as equal if mem-

berships of points to clusters in the two clusterings are identical. We will discuss this

further in Section 3.4.

Symmetry : ADCO(C, C′) = ADCO(C′, C) for any two clusterings C and C′.

Proof : It suffices to show that sim(C, C′) = sim(C′, C). Let ρ be a permutation

satisfying

sim(C,C′) =

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC′(ρ(k), i, j)

Then

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC′(ρ(k), i, j) =

maxρ′

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC(k, i, j) × densC′(ρ′(k), i, j)

It is easy to see that ρ−1 is a permutation satisfying
PKmin

k=1

PR
i=1

PQ
j=1 densC′(k, i, j)×

densC(ρ−1(k), i, j) = maxρ′

PKmin

k=1

PR
i=1

PQ
j=1 densC′(k, i, j)×densC(ρ′(k), i, j). So

sim(C′, C) =

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC′(k, i, j) × densC(ρ−1(k), i, j) = sim(C,C′)
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Using ADCO as the basis for a distance function: We next consider how one

might employ a modification of ADCO as a distance function. The distance between

two clusterings should monotonically decrease as their similarity increases.

Consider the following natural proposal for a distance function based on ADCO.

DADCO(C1, C2) = 1 − ADCO(C1, C2) (8)

For DADCO to be a metric, the following properties are required to hold:

1. DADCO(C1, C2) ≥ 0

2. DADCO(C1, C2) = DADCO(C2, C1)

3. DADCO(C1, C2) = 0 iff C1 = C2

4. DADCO(C1, C2) ≤ D(C1, C3) + DADCO(C3, C2)

Properties 1,2 and 3 can be straightforwardly deduced from the nonnegativity, sym-

metry and identity of indiscernibles that we have already proved for ADCO. Property

4 is not true in general though and a counter example is (for profiles with 1 attribute

and 4 bins): C1 = (3, 0, 0, 4), C2 = (3, 3, 0, 1) and C3 = (1, 0, 2, 4).

We can, however, use standard techniques from multidimensional scaling (see e.g.

[30] and [29]) to modify DADCO so that it does satisfy the triangle inequality and thus

become a metric. The basic idea is to increase the value of the distance between all

discernible clusterings by some constant amount (in this case one further unit). This

effectively ‘repairs’ the violations of the triangle inequality that occurred for DADCO .

The revised distance function can be defined as follows:

D′
ADCO(C1, C2) = 2 − ADCO(C1, C2), if C1 6= C2 (VC1 6= VC2)

= 0, otherwise

Theorem 1 D′
ADCO is a metric

Proof: See appendix.

3.4 Philosophy behind the ADCO Measure

Now that we have defined and established some formal properties of the ADCO, we now

discuss further about the philosophy behind the ADCO function and how it compares

to existing measures.

Our belief is that the user’s goal of clustering will drive the type of clustering

similarity measure used.

The membership based measures that we have discussed have a partition based

philosophy. This corresponds to a user clustering goal where the aim is to derive par-

titions of objects (satisfying various measures). So each clustering is represented as

a partition of objects and two clusterings are judged to be similar if their partition

representations are similar.

The ADCO similarity function takes a different approach, in line with a more “data

mining”, or prediction model based philosophy to clustering. Consider the following

quote from [31] that helps explain the spirit of this philosophy:
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A clustering is a hypothesis to suggest (or explain) groupings in the data. ... It

becomes a model for the data and can potentially constitute a mechanism to

classify unseen instances of the data.

Here, the user views a clustering as a set of prediction (decision) functions or

a hypothesis generator. Clustering is performed to group objects. The clusters then

correspond to groups sharing common factors (features) of the data. For each cluster

(group), one can summarise it by inferring rules, in order to suggest specialized models.

Under this philosophy, two clusterings are considered to be similar if they are likely to

give rise to similar types of prediction models. Measuring this kind of similarity clearly

requires knowledge about the feature space, since it is the basis for expressing and

developing prediction models.

Such a philosophy to clustering is also in line with the data recovery approach to

clustering [32], in which one first uses the observed data to form clusters, and then uses

these clusters as a basis to recover the unobserved data.

We next provide a brief toy example to further illustrate the difference between

clustering comparison using a partition based philosophy and clustering comparison

using a prediction model based philosophy.

Example 1 Consider the dataset

Object ID Name

1 Bob

2 Bob

3 Alice

4 Alice

which has four instances (objects) and a single attribute Name. Assume that Object ID

here is just listed for convenience and should not be regarded as an underlying attribute

(feature) of the data.

Let clustering C = {c1, c2}, where c1 = {1, 3} and c2 = {2, 4}. Let clustering

C′ = {c′1, c′2}, where c′1 = {2, 3} and c′2 = {1, 4}. If using the ADCO measure, then

ADCO(C, C′) = 1, because the two clusterings are indistinguishable when just using

the Name attribute to describe points. i.e. Both C and C′ are considered to be equivalent

in terms of the type of prediction model(s) that could be derived from the clusterings.

On the other hand, if using a membership (partition) based similarity measure (e.g.

the Rand Index), then sim(C, C′) = 0.33. This indicates that the two clusterings are

rather dissimilar, since the mixes of objects (object IDs) in each cluster vary between

the clusterings.

In general, there there a number of factors for the user to consider, in deciding

what type of clustering similarity measure to choose:

– Flexibility: Can the measure be used to compare clusterings of different datasets ?

Can it be used to compare clusterings which have been reduced or summarized in

some way (e.g. by sampling points) ?

– Soundness as a Partition Measure: Given two clusterings (partitions) C and C′ of

a collection of objects O, is it true that (Sim(C, C′) = 1) ⇔ (C = C′) ?

– Complexity: What is the runtime complexity of the measure (in terms of the num-

bers of points N , of clusters K, of attributes R and of bins Q) ? How does it scale

for large datasets ?
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Table 2 Comparison of ADCO with Membership-based Measures

ADCO Measure Membership Based Measures

Philosophy Data mining Partitioning
Flexibility High Low
Soundness No Yes
Complexity O(NRQ) + O(K3

min) O(N2K2)
Objective Function Potential Good Unclear

– Use as an Objective Function: Can the similarity measure be used as the basis for

an objective function within the problem of alternate clustering ?

In Table 2, we classify ADCO and the membership based measures according

to these factors. We see that, relatively speaking, advantages of ADCO are 1) High

flexibility, 2) Good complexity in terms of N , the number of data points (discussed

further in Section 5) and 3) clear ability to be used as an objective function in alternate

clustering. A disadvantage of ADCO is that it is not sound as a partition measure.

Observe that there is an inherent tension, between a measure possessing partition

soundness and a measure possessing flexibility. Achieving flexibility means that prop-

erties of the feature space must be used, which in turn means that a more general

definition is required for what it means for two clusterings to be “equal” (i.e. C = C′

doesn’t just mean that C and C′ are equal partitions).

3.5 Relationship to Cosine Similarity and the Handling Bias in Dataset Sizes

We next discuss the relationship of ADCO to cosine similarity and also consider how to

use ADCO appropriately when comparing clusterings taken from datasets of different

sizes.

Cosine similarity is a widely used similarity measure in information retrieval for

finding a relevant set of documents given a query. It is calculated by the scalar product

between two vectors (i.e. representing a query and a document) normalized by the

magnitudes of the vectors. Given two vectors C1 and C2, the cosine similarity is given

as

COSINESIM(C1, C2) =
C1 · C2

|C1||C2|
= cos(x) (where x is the angle between C1 and C2)

Thus, this measure evaluates the cosine of the angle between two vectors. i.e. The

extent to which the vectors are pointing in the same direction (regardless of their

magnitudes).

Let us compare this against our expression for ADCO from equation 7. That can

be written as ADCO(C1, C2) = (|C1|/|C2|) × cos(x) (Assuming |C2| ≥ |C1|). So

mathematically speaking ADCO(C1, C2) = (|C1|/|C2|)×COSINESIM(C1, C2) and

since (|C1|/|C2|) ≤ 1, we have ADCO(C1, C2) ≤ COSINE(C1, C2). It can be seen

from this that ADCO computes both the (cosine of) the angle between C1 and C2, as

well as the ratio of their magnitudes. In contrast, COSINESIM only computes the

(cosine of) the angle. From a user perspective, the value |Ci|, which is the magnitude

of clustering Ci, measures the degree of imbalance of Ci. If Ci has some highly dense
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regions (e.g. its instances are densely concentrated into a few components of the density

profile), then |Ci| will be very high. Conversely, if the instances are near uniformly

spread across clusters and bins, then |Ci| will be low. Thus, the ratio |C1|/|C2| might

be viewed as a kind of balance ratio between the two clusterings. It assesses the degree

to which they differ in terms of their overall density concentrations.

Example 1 Consider the following simple example illustrating the difference between

ADCO and COSINESIM . We have three clusterings, with their density profiles using

1 cluster, 1 attribute and 10 bins.

C1 = (800, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

C2 = (700, 40, 0, 0, 0, 60, 40, 0, 0, 0, 60)

C3 = (400, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50)

We have ADCO(C1, C2) = 0.88 and ADCO(C1, C3) = 0.51. So ADCO recog-

nises a significant difference in the two similarities. This seems reasonable and in-

tuitive, based on the large difference between the count for the first density dimen-

sion in C1 versus its count in C3. In contrast, COSINESIM(C1, C2) = 0.99 and

COSINESIM(C1, C3) = 0.94. So although there is the same ordering between simi-

larities, COSINESIM is not very sensitive to the large difference in density concen-

trations between C1 and C3. �

Another difference between ADCO and COSINESIM is the use of permutations.

ADCO computes a dot product based on finding a vector permutation to produce

a good alignment between the different sets of clusters. The COSINESIM measure

does not use any permutations, since it was not originally developed with clustering

comparison in mind. However one might envisage extending COSINESIM to also

allow permutations.

We next note a possible pitfall in using the ADCO measure. We have stated that

ADCO may be used for comparing clusterings for different datasets. If each clustering

contains the same number of instances, then there is no difficulty. However, if one

clustering contains many more instances than the other, then the comparison may

suffer from bias.

For example, if we compare a clustering C1 with density profile (1, 1) against a

clustering C2 with density profile (100, 100), then the ADCO value will be 0.01. Al-

though this is understandable from the containment perspective we discussed in Section

3.2 “There is 1% of clustering C2 in clustering C1”, it may not be a fair measure of

comparison, due to the bias in magnitudes between the clusterings. Instead, the user

may only wish to know about how similar C1 and C2 are in terms of the directions

of their density profile vectors. To address this difficulty, there are a couple of natural

possibilities. If C1 and C2 contain different numbers of instances, we can either

– Use a measure like COSINESIM to measure the similarity between C1 and C2.

This is insensitive to the magnitudes of C1 and C2. Or

– For the clustering which has more instances (say C1), perform stratified sampling

across its clusters, to yield a new clustering C1′ which has the same number of

instances as C2. Then compute ADCO(C1′, C2).
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Fig. 5 Two groups of clusterings on synthetic data sets

4 Experiments to Evaluate the ADCO Measure

We carried out an experimental analysis for evaluating the behavior of ADCO on both

synthetic and real world data sets. We compared ADCO against four existing clustering

comparison measures : Rand index [33], Jaccard index [7], clustering error [11] and

variation of information [34] (described in section 2). We emphasize here that the

standard experimental methodology for validating such comparison metrics is to apply

them to a set of clusterings and accompany the returned quantitative results with visual

2D projections of the data sets [7,33,35]. While such visual aids cannot qualitatively

authenticate the comparison, they do offer a general ‘feel’ of the similarity between

clusterings and they allow the reader to make an intuitive judgement about how well

the measures performed.

All comparison measures, except variation of information, define the similarity to be

between 0 and 1, where a higher value indicates higher similarity between clusterings;

for variation of information, a higher value signifies higher dissimilarity.

4.1 Synthetic data sets

Three synthetic data sets are shown in Figures 1 and 5; each data set is associated

with three clusterings: a pre-defined clustering plus two others (clusterings P and S).

The number of data points clustered differently in P and S compared to the pre-
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Table 3 Comparing clusterings in figures 1 and 5

Comparisons ADCO Rand Jaccard Clustering Variation of
index index error metric information

figures 1(a) vs. 1(c) 0.84 0.83 0.59 0.83 0.16
figures 1(a) vs. 1(b) 0.53 0.83 0.59 0.83 0.16
figures 5(a) vs. 5(c) 0.94 0.56 0.55 0.68 0.15
figures 5(a) vs. 5(b) 0.67 0.56 0.55 0.68 0.15
figures 5(d) vs. 5(f) 0.92 0.82 0.85 0.90 0.52
figures 5(d) vs. 5(e) 0.90 0.82 0.85 0.90 0.52

Table 4 Characteristics of data sets used in experiments

data sets instances classes dimensions
Credit 1000 2 10

Diabetes 768 2 8
Eucalyptus 736 5 19

Glass 798 7 10
Ionosphere 351 2 34

Vehicle 946 4 18

defined clustering is the same. As argued earlier in section 1.1, in Figure 1, the pair of

clusterings in 1(a) and 1(c) are more similar than the pair 1(a) and 1(b). Similarly in

Figure 5, 5(a) and 5(c) are more similar than are 5(a) and 5(b). Lastly, clustering 5(f)

is more similar to 5(d) than 5(e) is to 5(d). Table 3 shows the values returned by the

similarity measures. We note that ADCO is the only measure that can recognise the

variation in similarity in each of those pairs; all the other measures fail to distinguish

the clustering comparisons, returning the same value for each of those pairs.

4.2 Real World data sets

We used six real world data sets (credit, diabetes, eucalyptus, glass, ionosphere and

vehicle) taken from the UCI machine learning repository [36]; their characteristics are

shown in Table 4.1. Each data set came with pre-defined class labels, which can be used

as the pre-defined clustering. We used three different clustering algorithms to cluster

these data sets, after first removing the class labels: K-Means, EM and average link-

age (henceforth referred to as AL). Together, these algorithms span several different

approaches to clustering, representing partitional, model-based and hierarchical tech-

niques respectively. We then compared the clusterings discovered by these algorithms

to the pre-defined clustering, using our five clustering comparison measures. The re-

sults of these comparisons are given in Table 5, with accompanying Figures 6, 7, 8, 9,

10 and 11, which show 2-D projections of each of the three clusterings of each data set.

The features of these projections were selected manually by human judgement. Note

that for some data sets, portions of the data were removed when plotting the figures,

for readability.

Consider Table 5, which shows the results of all clustering comparisons for these

data sets. Looking first at the results for data set ‘Credit’, the ADCO values imply

that both the K-Means and the EM algorithms generated clusterings which were highly

similar to the pre-defined clustering, whereas the result of the AL algorithm was rather
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less similar to the pre-defined clustering. Looking at a 2-D visualization of this data

set in Figure 6, we can indeed verify that the output of Figure 6(d) (generated by

AL) is significantly different compared to the pre-defined clustering in 6(a) since one

of its clusters (cluster 2) has many more points than the other, while 6(b) and 6(c) are

considerably more similar to 6(a). Thus, the ADCO values seem to provide an intuitive

picture of the relative similarities and dissimilarities. On the other hand, the values

of the other measures fail to recognize these aspects. In fact, they provide a rather

different picture, implying that the AL clustering is closer to the pre-defined clustering

than the EM clustering.

Looking next in Table 5 at the data set ‘diabetes’, the ADCO values indicate that

the comparison between the pre-defined clustering and that of EM is higher than the

comparison between AL and the pre-defined clustering. This is intuitively reasonable,

looking again at the 2-D projections in Figure 7 (the AL clustering there has clusters

that are not as well separated as the pre-defined). However, the Rand and Jaccard

measures are not able to distinguish the two comparisons and return similar values

for both. This type of anomaly was made by all the membership based measures at

least once in all data sets (by CE for ‘eucalyptus’, by JI for ‘glass’, by CE for ‘vehicle’).

Figures 8, 9, 10 and 11 give 2-D projections for these other data sets - glass, ionosphere

and vehicle. Broadly speaking, the ADCO values correspond with intuition about two

clusterings being similar when the shapes and distributions of their clusters are similar.

In contrast, the values of the three membership based measures are often difficult to

interpret, since they cannot recognize differences in point feature distributions, and

they are only able to recognize differences in point memberships.

4.3 Stream Clustering Analysis

As mentioned in section 1.1, clustering similarity measures can be very useful in scenar-

ios where data changes over time and clusterings at different time periods need to be

compared to analyze the characteristics of data evolution. However, existing similarity

measure are not applicable in this type of situation, since they require both clusterings

to be over exactly the same set of data points. We tested the power of ADCO in this

kind of scenario on the ‘KDD network intrusion detection’ data set, taken from the

UCI repository [36].

This data set contains approximately 300,000 objects, 41 attributes and 38 classes

(intrusion types). Treating it as a data stream, we took four contiguous snapshots, each

over a different time period. Each snapshot contained 1000 points, which were clustered

according to the different intrusion types (i.e. one clustering for each snapshot, with

each cluster corresponding to an intrusion type). We ensured there were no common

points between any of the snapshots. The mix of different intrusion types for each

clustering contained is provided in Table 6, where the proportion of points belonging

to each type is shown as a percentage. The snapshots were extracted in such a way

that some shared similar distributions of intrusion types, while others were different.

Our objective was to test the following intuition: The ADCO value should be

relatively high if the two clusterings contain similar distributions of intrusion types.

On the other hand, if the two clusterings contain very different mixes of intrusion types,

then the ADCO value should be relatively low.

The results of our comparisons are presented in Table 7.



1
9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70  80

C
re

di
t A

m
ou

nt

Duration

Cluster 1
Cluster 2

(a) Pre-defined

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70  80

C
re

di
t A

m
ou

nt

Duration

Cluster 1
Cluster 2

(b) K-Means

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70  80

C
re

di
t A

m
ou

nt

Duration

Cluster 1
Cluster 2

(c) EM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  10  20  30  40  50  60  70  80

C
re

di
t A

m
ou

nt

Duration

Cluster 1
Cluster 2

(d) Average Linkage

Fig. 6 Clusterings of ‘credit’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘duration’ and ‘credit amount’.
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(d) Average Linkage

Fig. 7 Clusterings of ‘diabetes’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘plasma glucose concentration’ and ‘body mass index’.
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(d) Average Linkage

Fig. 8 Clusterings of ‘eucalyptus’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘rainfall’ and ‘height’.



2
2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

M
ag

ne
si

um

Sodium

Cluster 1
Cluster 2
Cluster 3
Cluster 5
Cluster 6
Cluster 7

(a) Pre-defined

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

M
ag

ne
si

um

Sodium

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(b) K-Means

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

M
ag

ne
si

um

Sodium

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(c) EM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

M
ag

ne
si

um

Sodium

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

(d) Average Linkage

Fig. 9 Clusterings of ‘glass’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘refractive index’ and ‘sodium’.
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(d) Average Linkage

Fig. 10 Clusterings of ‘ionosphere’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘predictive attribute 5’ and ‘predictive attribute 6’.
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(d) Average Linkage

Fig. 11 Clusterings of ‘vehicle’ from K-Means, EM and Average Linkage algorithms and its pre-defined clustering. Data is projected onto attributes:
‘compactness’ and ‘scaled variance minor’.
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Table 5 Dissimilarity values measured by ADCO, Rand index (RI), Jaccard index (JI), Clus-
tering error (CE) and variation of information (VI) when clusterings from K-Means, EM and
average linkage (AL) algorithms are compared against the pre-defined clusterings

data set measures K-means EM Average Linkage

Credit

ADCO 0.97 0.93 0.76
RI 0.70 0.53 0.59
JI 0.77 0.68 0.71
CE 0.82 0.63 0.71
VI 0.91 1.24 0.80

diabetes

ADCO 1 0.83 0.71
RI 1 0.57 0.55
JI 1 0.70 0.69
CE 1 0.69 0.66
VI 0 1.11 0.75

Eucalyptus

ADCO 0.82 0.63 0.51
RI 0.74 0.67 0.53
JI 0.79 0.75 0.68
CE 0.50 0.36 0.31
VI 2.46 2.62 2.27

Glass

ADCO 0.87 0.79 0.53
RI 0.86 0.72 0.64
JI 0.88 0.78 0.73
CE 0.68 0.48 0.50
VI 1.13 1.99 1.17

Ionosphere

ADCO 0.91 0.87 0.69
RI 0.61 0.63 0.54
JI 0.72 0.73 0.68
CE 0.74 0.75 0.64
VI 1.12 0.99 0.67

Vehicle

ADCO 0.47 0.40 0.25
RI 0.62 0.62 0.49
JI 0.73 0.72 0.66
CE 0.21 0.21 0.19
VI 2.54 2.52 1.95

In order to interpret the validity of these results, we first need to understand some

background about what is known about these attacks from the intrusion detection

literature [37–39].

– The ‘neptune’, ‘smurf’, ‘waremaster’ and ‘mailbomb’ attacks are similar kinds of

attacks, all being denial of service attacks, which abuse a legitimate feature of the

operating system. The ‘neptune’ attack creates excessive connections, ‘waremaster’

transfers excessive amounts of data using anonymous ftp, ’smurf’ floods the host

with excessive echo request packets and ‘mailbomb’ overflows the system mailqueue

by sending excessive emails. They generally can be characterized by the action of

excessive packets being sent to a specific port on a given host, to abuse or overflow

a system resource.

– The ‘mscan’ attack is a different type of attack, called a surveillance or probing

attack, which involves lots of requests to a range of ports on a given host, searching

for known vulnerabilities. These requests all occur within a short period of time

and originate from some outside machine.

We now discuss a selection of the results from Table 7, which should be read in

conjunction with the snapshot information in Table 6.
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Table 6 Four snapshots from the KDD network intrusion detection data set. Each snapshot
had 1000 points and was taken from a different time period. Snapshots have no common points
and each had a dominant intrusion type.

Snapshot Included intrusion types and their percentage
KDD-A ‘normal (70%)’, ‘snmpgetattack (10%)’, ‘named (0.2%)’, ‘xlock (0.5%)’,

‘smurf (18%)’, ‘neptune (0.2%)’
KDD-B ‘normal (83%)’, ‘snmpgetattack (13%)’, ‘warezmaster (3.6%)’, ‘xterm (0.4%)’
KDD-C ‘smurf (27%)’, ‘mscan (50%)’, ‘warezmaster (11%)’, ‘normal (12%)’,

‘buffer-overflow (0.01%)’, ‘neptune (0.01%)’
KDD-D ‘normal (2.3%)’, ‘neptune (97%)’, ‘snmpgetattack (0.7%)’
KDD-E ‘normal (2.4%)’, ‘snmpgetattack (0.3%)’, ‘warezmaster (97.3%)’
KDD-F ‘normal (0.1%)’, ‘snmpgetattack (18%)’, ‘mailbomb (97.4%)’,

‘portsweep (0.1%)’, ‘warezmaster (0.6%)’

– KDD-A versus KDD-B: These two snapshots had similar proportions of attack

types ‘normal’ and ‘snmpgetattack’, which accounted for a large fraction of the

data in the snapshot. So it is reasonable that they have a high ADCO similarity

value.

– KDD-C versus KDD-D: These two snapshots did not share any intrusion types,

except a small percentage of ‘normal’. Moreover, the dominant intrusion type in C

was ‘mscan’, which is quite a different class of attack from the dominant intrusion

type in D, which was ‘neptune’. So it is reasonable that they have low ADCO

similarity (0.418).

– KDD-A versus KDD-D: Snapshot A contained a very large percentage of ‘normal’

and a moderate percentage of ’smurf’ whereas D contained mostly ’neptune’, so

it is reasonable that the ADCO similarity is not high (0.566). The fact that the

similarity isn’t as low as the C versus D comparison (which was 0.418), is because

there is still a fair degree of similarity between the ‘smurf’ cluster in D and the

’neptune’ cluster in D. Recall that ‘neptune’ and ‘smurf’ are similar types of attacks.

– KDD-D versus KDD-E: These shared a small percentage of ‘normal’ in each, but

the dominant intrusion type in D was ‘neptune’ and the dominant type in E was

’warezmaster’. Although these are different attacks, they have very similar be-

haviour, being both denial of service attacks. It is therefore reasonable that the

ADCO similarity is relatively high (0.736).

– KDD-D versus KDD-F: These shared a small percentage of each, but the dominant

intrusion type in D was ‘neptune’ and the dominant type in F was ’mailbomb’.

Again, although these are different attacks, they have very similar behaviour, being

both denial of service attacks. It is therefore reasonable that the ADCO similarity

is high (0.998).

So overall, the ADCO behaviour is quite reasonable, returning high and low simi-

larity values which can explained with reference to the semantics of the dataset.
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Table 7 Result of comparing different KDD subsets to each other.

KDD-B KDD-C KDD-D KDD-E KDD-F
KDD-A 0.852 0.627 0.566 0.682 0.566
KDD-B 0.499 0.665 0.813 0.665
KDD-C 0.418 0.394 0.418
KDD-D 0.736 0.998
KDD-E 0.759

4.4 Discretization Pre-processing for ADCO

It was briefly mentioned in Section 3.1 that computing the ADCO measure relies upon

a discretization pre-processing step being performed for every continuous attribute 2.

We now discuss and analyse this aspect in more detail.

ADCO requires the range of each attribute to be discretized, so that density profile

vectors can be created describing the density of each attribute for sub-ranges. The

nature of these density profiles in turn influences the result of the similarity calculation

between clustering vectors. i.e. The (absolute) similarity of two clusterings may change,

according to how the density profile is represented. This is both an advantage and a

disadvantage. The advantage of allowing different discretizations is that ADCO is more

flexible and can be adapted to different datasets and feature spaces. The disadvantage

is that non-expert users may require some guidance on default discretization settings.

The process of discretization is a well studied pre-processing technique in data

mining and machine learning [22,23,21,25,26]. It is particularly popular for use with

algorithms that require discrete or symbolic data, such as association rule mining,

frequent or sequential pattern discovery and logical learning algorithms. As with many

tasks in machine learning, there is no universally ‘correct’ method and the discretization

choice will depend on domain knowledge about the feature space. This is analogous to

other activities in clustering, such as feature selection, choosing the number of clusters

and choosing a distance function.

Throughout the experiments in this paper, we mainly focus on equi-width binning

as the default method to discretize each attribute, because it is both conceptually sim-

ple and also very efficient to compute. Figure 12 shows the effect of varying the number

of equi-width bins from 1-100 for the six datasets previously considered. Observe that

the ADCO value asymptotes as Q → ∞, since in the limit, points cannot be separated

any further by using finer grained bins. Also observe that across the six datasets, the

relative ordering between the curves is maintained as the number of bins is increased

(except only for Figure 12 d)). This is important, since clustering comparison is often

done in a context where several clusterings are being compared against a gold standard,

or pre-defined clustering. In this situation, it is the relative similarities which are of

importance, not their absolute values.

In addition to examining the varying behavior of ADCO for a single discretiza-

tion algorithm, it is also interesting to compare the ADCO values across different

algorithms. One popular alternative to equi-width binning is equi-frequency binning,

where all bins formed are required to contain the same number of points (have the

same density). Another popular alternative is to use class based discretization, such

2 Note that if any nominal attributes exist in the feature space, they need not be discretized
and density profiles can be directly constructed for each nominal value.
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Table 8 The table lists the ADCO values between the pre-defined clustering and the cluster-
ings from K-means, EM and Average Linkage algorithms, when ADCO implements entropy-
based discretization technique as discussed in [40].

Data Set K-means EM Average Linkage
Credit 0.99 0.96 0.70

Diabetes 0.91 0.93 0.91
Eucalyptus 0.89 0.71 0.68

Glass 0.82 0.87 0.43
Ionosphere 0.86 0.92 0.59

Vehicle 0.72 0.62 0.26

Table 9 The table lists the ADCO values between the pre-defined clustering and the clus-
terings from K-means, EM and Average Linkage algorithms, when ADCO implements equal-
frequency discretization technique (with 10 bins)

Data Set K-means EM Average Linkage
Credit 0.98 0.96 0.71

Diabetes 0.79 0.88 0.79
Eucalyptus 0.74 0.54 0.49

Glass 0.71 0.72 0.45
Ionosphere 0.63 0.91 0.63

Vehicle 0.61 0.51 0.26

as ‘Minimum Description Length (MDL)’ discretization [40]. This technique requires

a class label to be associated with each point. For our purposes, we can choose one of

the two clusterings being compared as a reference clustering and then associate a class

with each of its clusters, so that the class label for a point indicates which cluster the

point belongs to.

Table 9 shows the ADCO values for our 6 datasets when using equi-frequency

binning with 10 bins and Table 8 shows the ADCO values when using the entropy

technique, where the number of bins is automatically chosen for each attribute. Com-

paring Tables 8, 9 and Table 5 (which uses equi-length discretization), some differences

in absolute values are apparent. Significantly though, the three discretization choices

yield consistent behavior with regard to the Credit, Glass and Vehicle datasets, all re-

porting that the Average Linkage Clustering is substantially different to the pre-defined

clustering.

Another way to assess the influence of discretization on ADCO behavior is to com-

pare its behavior for an alternate clustering task, when the ADCO measure is used as

an objective function under a given discretization. We discuss results for this experi-

ment in Section 7.2, after the MAXIMUS alternate clustering approach is presented.

5 Complexity of ADCO

The runtime complexity of ADCO depends on the number of objects, attributes, bins

and clusters. Given N objects, Kmin clusters, R attributes and Q bins per attribute,

ADCO requires O(NRQ) operations for finding the density profile for each clustering.

An additional O(K3
min) operations are required when calculating permutations for the

scalar product using the Hungarian algorithm. The computation of the normalizing

factor takes O(NRQ) operations, since permutation is not necessary. So, the overall
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Fig. 12 Changes in ADCO values as the number of (equi-width) bins per attribute increases
from 1 to 100
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Fig. 13 Computing time of ADCO when the number of bins (13(a)), attributes (13(b)) and
clusters (13(c)) and instances (13(d)) are changed.

complexity of ADCO is O(NRQ) + O(K3
min). On the other hand, other comparison

measures discussed in section 2 typically require O(N2K2) operations, since they need

to examine point-pairs in cluster pairs.

We experimentally tested the runtime scalability of ADCO by separately increasing

the number of bins, attributes, clusters and instances. The results are given in Figure 13,

where the two different clusterings being compared were generated from the ‘diabetes’

data set. The data set includes 768 instances, 8 attributes and 2 clusters and the

number of bins per attribute was set to 10. When varying one of these parameters, all

other values remained constant. When changing the number of clusters and instances,

we also compared ADCO’s performance against other measures.

In Figure 13, we observe that increasing the value of Q has little impact on the

running time of ADCO. The reason is: as Q increases (causing the range of values each

bin can take to get narrower), the number of points per attribute-bin region would also

decrease. In fact, the density of each region would be either 0 (i.e. empty) or equal to

the total number of points sharing exactly the same attribute values and will remain

constant as Q increases infinitely.

The complexity of ADCO is O(K3
min) in the number of clusters, since the cluster

order of the second clustering C′ needs to be permuted to determine the best matching

between the two clusterings. In practice though, despite the cubic worst case complex-

ity, the Hungarian algorithm is a highly efficient heuristic, as seen by the curve of Figure

13(c). We can also see that other measures behaved quite similarly when changing the

number of clusters. The occasional fluctuations in time were small differences in test
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initialization times. Figure 13(b) shows that the performance time does increase as the

size of the feature space grows, yet the overall amount of time taken is still quite low.

When tested with bigger data sets (e.g. ‘splice’ with 3190 instances and 62 attributes),

similar observations were made. Finally, when increasing the number of instances, we

see in Figure 13(d) that other measures are much more impacted than ADCO, since

they have O(N2) complexity in the number of instances.

6 An Application of ADCO to Multiple Alternate Clustering Generation

In this section, we show how ADCO can be used to help discover multiple alternate

clustering solutions, given an initial pre-defined clustering. The key idea is that the

ADCO measure can be used an objective function for this task, which can be encoded

as an integer linear program. Alternate clustering algorithms [41,3,42] are frequently

utilized in exploratory data analysis, where users wish to gain a deeper understanding of

their data by retrieving several clusterings. Our method is embodied in an algorithm we

call MAXIMUS (MAXimized DIssimilarity in MUltiple ClusteringS), which employs

ADCO as its clustering similarity objective function to generate multiple alternate

solutions.

Although a number of alternate clustering algorithms exist [4,43,41,42,16], many

of them do not emphasize the uniqueness of each solution compared to others. There-

fore, clusterings generated by these techniques are often redundant. Moreover, previous

methods introduced in [4,43,41] are limited to generating only a single alternate clus-

tering and are somewhat inefficient in their runtime performance. On the other hand,

MAXIMUS is able to generate a user-specified number of alternate clusterings, while

maximizing the overall dissimilarity and quality, which are two core requirements in

alternate clustering algorithms [41]. We define these requirements below.

Definition 3 Dissimilarity & Overall Dissimilarity : Let C′
u and C′

v be two clus-

terings of D. The dissimilarity between them is determined by a function Diss(C′
u, C′

v),

where 0 ≤ Diss(C′
u, C′

v) ≤ 1. Larger values of Diss(C′
u, C′

v) indicate higher dissim-

ilarity. Let C
′ = {C′

1, C′
2, .., C′

M} be a set of M clusterings. The overall (average)

dissimilarity C
′ is defined as ODC ′ =

PM
u=1

PM
v=2 Diss(C′

u,C′

v)
M(M−1)/2 , which is the average

pairwise dissimilarity between all clusterings in C
′.

Definition 4 Quality & Overall Quality : The quality of a clustering C′
u is a func-

tion Qual(C′
u), where 0 ≤ Qual(C′

u) ≤ 1. Larger values of Qual(C′
u) indicate higher

quality. The overall quality OQC ′ of a clustering set C
′ =

˘

C′
1, C′

2, .., C′
M

¯

is the

average of the quality values of all the clusterings in C
′: OQC ′ =

PM
u=1 Qual(C′

u)
M .

With these definitions, the target problem of MAXIMUS can be roughly stated as

follows.

Problem definition : Given a data set D and an existing clustering C′
p, generate an

alternate clustering set C
′ containing M alternate clusterings C

′ = {C′
1, C′

2, .., C′
M},

such that OQC ′ and ODC ′ are simultaneously high.
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6.1 MAXIMUS Algorithm Description

The MAXIMUS algorithm generates one clustering at a time, in three stages. Initially,

it calculates the maximum dissimilarity between any currently available clusterings

and a potential target alternate solution, by forming an integer programming model

(we refer to this as IP hereafter). The objective of this IP model is to minimize the

scalar product between density profiles between the known clusterings and the unknown

target alternate clustering C′
u.

A solution of the IP model yields the number of points that should be distributed

to each cluster of C′
u in each attribute-bin region (i, j). This distribution information is

then utilized as constraints to guide the clustering of the points in each region (i, j), via

a constraint-based K-means style algorithm. Compared to more traditional constraint-

based techniques [6,44,45], which utilize instance-based constraints, we implement a

new type of constraint, called a ‘distribution constraint’, which specifies the number

of points that should be assigned to different regions of the feature space. The output

of this stage is a set of ‘localized’ clusterings, which in the final step are combined to

create an overall consensus clustering. In the following sections, we describe each of

these stages in more detail. We first present the process of generating one alternate

clustering given the pre-defined clustering C′
p and in section 6.5 we explain how further

alternate clusterings can be created.

6.2 Maximizing Dissimilarity via Integer Programming

Recall equation 2, in which the maximum scalar product between density profiles of

two clusterings was used. In order to create a new clustering C′
u with maximal dissim-

ilarity to an existing (known) clustering C′
p, we require the value of sim(C′

p, C′
u) to be

minimum. Since the density profile of C′
p is known, each density value in the vector

VC′

p
is some constant value, while the density values in VC′

u
are unknown (integer)

variables. Based on equation 2, we can formulate a minimization objective as

min

2

4max
ρ

Kmin
X

k=1

R
X

i=1

Q
X

j=1

densC′

p
(k, i, j) × densC′

u
(ρ(k), i, j)

3

5 (9)

where the values of densC′

p
(k, i, j) are constants and densC′

u
(k, i, j) are variables. This

objective function then needs to be restricted according to the following two constraints.

Attribute-Bin Density Constraint : The attribute-bin density constraint en-

sures that the solutions of the IP model, which correspond to the number of points

distributed to each cluster of C′
u in each (i, j) region, is limited by the total number

of points located in that area. More formally, let dens(i, j) denote the total number

of points located in (i, j) and let densC′

u
(k, i, j) refer to the number of points in (i, j)

that belong to the kth cluster of C′
u. The value of dens(i, j) is known from the data set

and must satisfy dens(i, j) =
PK

k=1 densC′

u
(k, i, j). In the IP model, this constraint is

represented as a matrix of the form Ax = b, where A and b are defined as:
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A =

2

6

6

6

6

6

6

6

6

6

6

6

4

densC′

u
(1, 1, 1) densC′

u
(2, 1, 1) . . . densC′

u
(K, 1, 1)

densC′

u
(1, 1, 2) densC′

u
(2, 1, 2) . . . densC′

u
(K, 1, 2)

...
...

. . .
...

densC′

u
(1, 1, Q) densC′

u
(2, 1, Q) . . . densC′

u
(K, 1, Q)

densC′

u
(1, 2, 1) densC′

u
(2, 2, 1) . . . densC′

u
(K, 2, 1)

...
...

. . .
...

densC′

u
(1, R, Q) densC′

u
(2, R, Q) . . . densC′

u
(K, R, Q)

3

7

7

7

7

7

7

7

7

7

7

7

5

bT =
ˆ

dens(1, 1), dens(1, 2), .., dens(1, Q), dens(2, 1), .., dens(R,Q)
˜

(10)

Permutation Inequality Constraint : In equation 9, we must choose a specific

permutation ρs of the possible cluster orderings in C′
u, that returns the maximum

scalar product value when clusters of C′
u are paired up with clusters of C′

p. Suppose

that P = {ρ1, ρ2, .., ρL} is the set of possible permutations (say L of them) that

is possible for C′
u. Since the values of density profile densC′

u
are unknown, we can

set ρ1 for example, as the permutation that gives the maximum scalar product value

compared to other permutations using the following constraint:

VC′

p
· ρ1(VC′

u
) > VC′

p
· ρj(VC′

u
), for all j s.t. (2 ≤ j ≤ L) (11)

Using the objective function in equation 9 and the constraints in equations 10 and

11, an IP solver can be used to find the unknown variables, corresponding to the density

value of each attribute-bin region. In practice, we used the LP Solve package version

5.5.1, which is available from [46]. Note that some attribute-bin regions may be empty

and they are discarded when determining the density profiles of clusterings.

6.3 Generating Localized Clusterings using Distribution Constraints

The integer solutions of the IP model correspond to the number of points that should

be assigned to each cluster c′k of the alternate clustering C′
u in each attribute-bin region

(i, j). These distributions ensure that C′
u will have maximal dissimilarity when com-

pared to C′
p. The integer solutions themselves, however, do not indicate the physical

point-to-cluster memberships. That is, we do not know which points are assigned to

which clusters. Furthermore, while the dissimilarity between two clusterings is maxi-

mized, we have not yet considered the additional requirement that C′
u also needs to be

of high quality. Therefore, in order to assign cluster labels to data objects, while still

maintaining high dissimilarity, we treat the solutions of the IP model as ‘distribution

constraints’, to be imposed on clusters in each attribute-bin region. These constraints

specify the number of points that can be assigned to a particular cluster. It is defined

as follows.

Definition 5 A Distribution Constraint has the form nc′
k
(i, j) = densC′

u
(k, i, j),

which specifies the total number of points to be assigned to the cluster c′k in the target

alternate clustering C′
u =

˘

c′1, c′2, .., c′K
¯

for the attribute-bin region (i, j).
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For MAXIMUS, each constraint nc′
k
(i, j) is derived from the solutions of the IP

model. As mentioned above, this is quite different from the instance-based ‘must-link’

and ‘cannot-link’ constraints discussed in [6], which explicitly declare a set of points

that must be together or separated.

Using these constraints, we distribute points to clusters in each attribute-bin region

separately (for a total of RQ regions) via what we call a “distribution-constraint K-

means algorithm”. The objective is to assign points to their closest cluster centroid

(according to Euclidean distance) whilst also satisfying the distribution constraints.

The Euclidean distance function allows us to refine the clustering C′
u in terms of

quality while maintaining the maximum dissimilarity achieved through the IP model.

The output of this step is a set of RQ ‘localized’ clusterings (i.e. one clustering for each

attribute-bin region)3.

Algorithm 2 describes this process. For each attribute-bin region (i, j), we find a

subset D(i,j) of data set D (line 3), which is the set of all points belonging to (i, j) and

we generate K random, initial centroids W(i,j) (line 4). We then generate a 2D distance

matrix between points in D(i,j) and the centroids in W(i,j). Each cell in the matrix is,

therefore the distance between a point and a cluster centroid. This matrix is computed

so that points which are closest to the centroids take the priority for the assignment

according to the distribution constraints. The partitioning step continues by finding a

point xmin and cluster centroid wmin pair, which has the minimum distance in the

distance matrix (lines 8 to 15).

If the distribution constraint for (i, j) restricts the assignment of xmin to c′min

(whose centroid is wmin), this indicates that the cluster has reached its density limit

and therefore its distribution constraint can no longer be satisfied. Therefore, we specify

the distance between xmin and wmin in the distance matrix as null (line 19), so that

no more points would be assigned to this cluster. The assignment of points to clusters

concludes when all points have their corresponding cluster labels, at which point the

centroids of clusters are recalculated before repeating the assignment process. Once

a localized clustering is generated in (i, j), we add this to the localized clustering set

LCC′

u
(line 26). Finally, each localized clustering is guaranteed to converge, since the

sum of points specified by the distribution constraints in each attribute-bin region is

equal to the total number of points in that region (i.e.
PK

k=1 nc′
k
(i, j) = dens(i, j) =

|D(i,j)|), which ensures that all points in (i, j) are assigned to clusters.

6.4 Consensus Clustering

Each localized clustering from the previous stage is for a region of the data set D and

every point in D occurs in exactly R regions. Hence each point will have R labels, one

for each localized clustering. Depending on how partitioning was conducted, the labels

for a point may be different. So, in this final step, we perform a consensus process in

which all localized clusterings are combined via a majority voting technique [47], to

generate a final alternate clustering C′
k, so that each point has exactly one cluster label.

Majority voting is a technique that is well known for creating a robust and reliable

clustering [17,48,49]. This technique observes the cluster labels assigned to each point

in each of the localized clusterings and evaluates their consistency across all clusterings.

3 In practice, the total number of local clusterings generated is less than RQ, since some
attribute-bin regions are vacant.
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Algorithm 2 Distribution-constraint K-Means algorithm

Require: density profile vector of alternate clustering C′

u, VC′

u
, acquired from the IP solutions

Ensure: a set of localized clusterings LCC′

u
is returned

1: for i = 1 to R {build a localized clustering C′

(i,j)
from all attribute-bin regions} do

2: for j = 1 to Q do

3: D(i,j) = findPoints(i, j) {returns all points located in (i, j)}
4: W(i,j) = {w1, w2, .., wK} = randomCentroids(K, (i, j))
5: distanceMatrix = findDistance(D(i,j), W(i,j)) {A distance matrix containing dis-

tances between all points in D(i,j) and all centroids in W(i,j)}

6: converged = false, c′min = null, minDistance = null, xmin = null
7: while converged = false do

8: for k = 1 to |D(i,j)| {find a point and a centroid sharing minimum distance} do

9: for m = 1 to K do

10: distance = findDistance(xk, wm)
11: if distance < minDistance then

12: minDistance = distance, c′min = c′m, xmin = xk

13: end if

14: end for

15: end for

16: if |c′min| < densc′
min

(i, j) then

17: c′min = c′min ∪ xmin {add xmin to c′min if constraint is satisfied.}
18: else

19: distanceMatrix(c′min, xmin) = null {if constraint fails, set the distance to null}
20: end if

21: end while

22: centroidnew = generateCentroids(K) {recalculate centroids after assigning points}
23: if test(converged) = true then

24: exit
25: end if

26: LCC′

u
= LCC′

u
∪ C′

(i,j)

27: end for

28: end for

Since the cluster labels have the same meaning across all the localized clusters, the label

for each point can be determined by just choosing the one which occurs the most times.

When two labels share the same number of votes, we have randomly selected one label.

Once this process finishes, we are left with a single, final alternate clustering C′.

6.5 Extracting Multiple Clusterings

We now describe how further alternate clustering solutions can be generated. Specif-

ically, suppose we are looking for the M -th solution, given a current set of alternate

clusterings C
′ =

˘

C′
1, C′

2, .., CM−1

¯

. The minimization function we used earlier needs

to change to reflect the more complex overall dissimilarity definition, so that the new

alternate clustering will have maximized pairwise dissimilarity compared to all of the

currently available clusterings in C
′.

min

2

4max
ρ

M−1
X

h=1

K
X

k=1

R
X

i=1

Q
X

j=1

densC′

h
(k, i, j) × densC′

u
(ρ(k), i, j)

3

5 (12)

The above equation calculates the lowest average similarity between the target

clustering C′ and all known clusterings in C′. In conjunction with this objective func-

tion, the attribute-bin density constraint used earlier remains the same, but we must
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modify the permutation constraint in equation 11, to include all the known values of

previously found clusterings.

A =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

densC′

1
(1, 1, 1) densC′

1
(2, 1, 1) . . . densC′

1
(K, 1, 1)

densC′

1
(1, 1, 2) densC′

1
(2, 1, 2) . . . densC′

1
(K, 1, 2)

...
...

. . .
...

densC′

1
(1, 1, Q) densC′

1
(2, 1, Q) . . . densC′

1
(K, 1, Q)

densC′

1
(1, 2, 1) densC′

1
(2, 2, 1) . . . densC′

1
(K, 2, 1)

...
...

. . .
...

densC′

1
(1, R,Q) densC′

1
(2, R,Q) . . . densC′

1
(K, R, Q)

...
...

. . .
...

densC′

M−1
(1, R, Q) densC′

M−1
(2, R, Q) . . . densC′

M−1
(K, R, Q)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

bT =
ˆ

dens(1, 1), dens(1, 2), .., dens(1, Q), dens(2, 1), .., dens(R,Q)
˜

(13)

The minimization objective and the permutation constraint must be updated each

time a new alternate clustering is added to the set.

The total number of variables created in MAXIMUS is MKRQ, where RQ is the

number of attribute-bin regions, K is the number of clusters for each alternate clus-

terings and M is the total number of solutions to be found. Generating each localized

clustering takes O(IK(dens(i, j)) operations, where I is the number of iterations re-

quired and dens(i, j) is the total number of points in each region. Therefore, it takes

O(RQIK(dens(i, j)) to generate all the localized clusterings. Finally the consensus

clustering will take O(NRQ) to perform its majority voting and to determine the final

cluster labels for the points.

7 Experiments to Evaluate the MAXIMUS Algorithm

For our experimental analysis, we chose 13 real world data sets and compared the

output of MAXIMUS against existing single and multiple alternate clustering algo-

rithms. We validated the output alternate clustering(s) in terms of dissimilarity using

the popular Jaccard index [7] (JI) due to its simplicity and robustness compared to

the Rand index (defined in Table 1). The quality was evaluated using the generalized

Dunn index [50] as defined in equation 14 below.

GDI(C) =
mini6=j

˘

δ(ci, cj)
¯

max1≤l≤k {∆(cl)}
, (14)

where δ is the inter-cluster distance and ∆ is the intra-cluster distance; GDI is a

reliable measure as tested in [51].

The two measures are also combined to give an overall quality-dissimilarity score

as described in [41] and given as follows.

DQ(C, C′) =
2JI(C, C′)GDI(C′)

JI(C, C′) + GDI(C′)
(15)

For all three measures - JI , GDI and DQ - higher values indicate better results.
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7.1 Comparing Against Single Alternate Clustering Algorithms

Thirteen real world data sets taken from the UCI repository [36] were used. These data

sets all have pre-defined class labels which can be used to form pre-defined clusterings.

We compared MAXIMUS against CIB [4], CondEns [43] and COALA [41], which are

algorithms that generate only a single alternate clustering with respect to a pre-defined

clustering. We describe each of these algorithms below and then present results of

experiments comparing their dissimilarity, quality, overall DQ-Measure and time taken.

Conditional Information Bottleneck was introduced in [4] and is based on the

notion of information bottleneck (IB) [52]. The general idea of the IB method is that

given two variables (i.e. X representing objects, Y representing the features), the goal

is to keep the shared information between these two variables maximum (mutual in-

formation), while one variable is compressed through another variable. CIB extends

this by introducing another variable (i.e. Z representing the pre-defined class labels)

where the new objective is to find the optimal assignment of X to C, while preserving

as much information about Y conditioned on the information provided by the Z. The

above concept is embodied in a conditional information bottleneck algorithm [4], which

takes a sequential clustering approach. Here, K clusters are first randomly formed and

each data object is moved around clusters in order to maximize the overall conditional

mutual information, which effectively factors out the known structure Z. CIB requires

an initial parameter for the number of iterations to refine the resultant clustering and

we set this to 5 in our experiments.

CondEns extends the concept of CIB and utilizes the cluster ensembles, which can

be generated by any clustering algorithm (e.g. K-Means, EM, Average-Linkage). It

consists of three steps. In the first stage, given a pre-defined clustering Z, local clus-

terings are generated for each of the clusters in Z. The second stage extends the local

solutions by assigning each instance to the possible clusters of the global clustering

solution, which depends on the specific base clustering method employed. Finally, the

conditional mutual information equation is used for combining these clusterings to gen-

erate a final consensus clustering, which is different to the pre-defined structure. We

used the K-means algorithm as its base clustering algorithm in our experiments.

COALA is a hierarchical algorithm, which achieves clustering dissimilarity through a

set of cannot-link constraints established between all pairs of points belonging to the

same clusters in the pre-defined clustering. In each cluster merge step, a pair of closest

clusters and a pair of closest clusters that satisfy the constraints (i.e. any pair of points

in two clusters do not belong to the same clusters in the input clustering) are compared

against ω threshold, which effectively controls the trade-off between dissimilarity and

quality. This value was set to 0.6 in our experiments.

The results in Figure 14 and Table 10 show that MAXIMUS is overall, a high

performing algorithm compared to others in terms of dissimilarity, quality, the overall

DQ-Measure and time taken. Looking at Figure 14(a) and the overall DQ-Measure, we

see that MAXIMUS is best in 7 out of 13 datasets. For individual comparisons on the

DQ measure, MAXIMUS has 12 wins and 1 loss against CIB, 9 wins and 4 losses against

CondEns, 7 wins and 6 losses against COALA. Behind MAXIMUS, COALA is the next

best algorithm in terms of performance on the overall DQ-Measure. However we can

see in Table 10 that COALA is generally at least 100 times slower than MAXIMUS,

making it impractical for large datasets.
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Looking again at Figure 14, while MAXIMUS sometimes created lower quality clus-

terings compared to the other techniques for some data sets, it compensated by gener-

ating highly dissimilar clusterings. In contrast, CIB and CondEns generally performed

poorly compared to COALA and MAXIMUS. From our experiments, CIB performed

the worst overall since it could not find any new alternate clusterings for ‘eucalyptus’

and ‘hepatitis’ (indicated by 0 dissimilarity and DQ-Measure values). Moreover, CIB

was quite slow. Although CondEns was overall the fastest technique, in comparison to

MAXIMUS, it failed to create high quality and highly dissimilar solutions for all data

sets. We also found the solutions of CondEns inconsistent, perhaps because it is based

on a K-means algorithm and has a random initialization.

For our second experiment, we tested the performance of MAXIMUS against the

MetaClusterer [42], to evaluate its ability to discover multiple alternate clusterings.

Note that the COALA, CondEns and CIB algorithms cannot generate multiple alter-

nate clusterings. MetaClusterer takes a sampling-based approach to finding multiple

clusterings. It also defines a ‘clustering distance’ metric so that a comparative analysis

can be performed before presenting users with the final set of solutions. The technique

consists of two stages, where a large number of qualitatively different clusterings (called

base-level clusterings) are first generated using two approaches: 1) repeated K-means

method and 2) attribute-weighting via Zipf distribution law. Since the standard K-

means algorithm selects random initial centroids, it is possible to create a number of

clusterings by ensuring that each execution of the algorithm is initiated with differ-

ent centroids. Once these base clusterings are generated, they are considered as ‘data

objects’ and supplied to a hierarchical algorithm. The clusterings are then merged iter-

atively using a clustering distance function called ‘Cluster Difference’ (which is a slight

variation of Rand index and Jaccard index) until there remains a single clustering. The

resultant hierarchy of clusterings then provides a ‘meta level’ view of clusterings.

For each data set, we generated two alternate clusterings to supplement the given,

pre-defined clustering. Overall scores for quality, dissimilarity and DQ value were then

computed. The results are shown in Figure 15. Firstly, the values of the DQ-Measure

demonstrate that MAXIMUS performs far better than MetaClusterer for all data sets

except ‘eucalyptus’. Indeed, the clusterings generated for ‘chess’, ‘sonar’ and ‘splice’

were relatively poor for MetaClusterer, whereas MAXIMUS was able to form rather

better sets of clustering solutions. When comparing dissimilarity and quality, MAX-

IMUS again scored better GDI and JI values. Although there were a few data sets

where MetaClusterer scored better dissimilarity or quality, we found that apart from

‘chess’ and ‘eucalyptus’ data sets, it never scored better than MAXIMUS in both cri-

teria. Finally, the performance of MetaClusterer was inconsistent compared to MAX-

IMUS. For ‘sonar’ and ‘splice’, the alternate clusterings generated were at times exactly

the same as one of the existing clusterings.

Overall then, we can see that MAXIMUS is generally a high performing algorithm

and an important new tool for alternate clustering. We can see from the experiments

it has the following desirable properties:

– It is one of the best two algorithms for finding a single alternate clustering (COALA

being the other), in terms of overall performance (DQ-Measure).

– It is considerably faster than COALA, usually around 100 times.

– It performs considerably better than the only other algorithm that exists for finding

multiple alternate clusterings (MetaClusterer).
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Table 10 Time taken (in seconds) to find alternate clusterings. The first four columns compare
MAXIMUS with other single alternate clustering algorithms (CIB, CondEns and COALA) for
generating one alternate clustering. The last two columns, on the other hand, are relevant to
times taken for extracting multiple clusterings for MetaClusterer and MAXIMUS.

data sets CIB CondEns COALA MAXIMUS
Meta

MAXIMUS
Clusterer

Cars 173.035 1.45 1140.28 3.11 19.7 6.15
Chess 2598.81 3.75 8131.94 20.49 80.28 49.76
Colic 368 2 3.82 0.66 35.34 0.98

Hepatitis 1.3 0.39 0.25 0.41 30.12 0.58
Mushroom 14406.95 11.94 89975.26 269.94 257.45 154.58

Post
0.33 0.22 0.08 0.38 13.56 0.49

Operative
Sick 1865.61 2.87 41772.09 26.18 80.64 53.99

Splice 1923.78 5.19 6067.45 50.69 118.45 94.05
Tic-tac-toe 19.41 0.45 292.92 0.75 17.39 1.11

Titanic 45.67 1.15 16555.43 1.52 21.26 3.06
Waveform 3443.95 6.92 207868.82 47.44 191.21 122.89

Table 11 Comparing the DQ-Measures of MAXIMUS on seven data sets with three different
discretization methods applied.

Data Set Equi-width 10 bin MDL-Discretized (variable bin) Equal Frequency 10 bin
Colic 0.47 0.46 0.48

Hepatitis 0.49 0.49 0.5
Mushroom 0.47 0.45 0.47

Post-Operative 0.52 0.51 0.53
Sick 0.44 0.48 0.49

Splice 0.43 0.44 0.43
Waveform 0.49 0.5 0.56

7.2 Influence of Discretization Method on MAXIMUS Performance

Recall that in Section 4.4, we discussed how choice of discretization can influence the

ADCO similarity value. We now report in Table 11 how the DQ measure obtained by

MAXIMUS varies for the three discretization techniques discussed.

We can see from this table that the DQ measures for all three discretizations are

quite similar, with perhaps marginally better DQ performance resulting from the use of

equal-frequency discretization in four of the datasets. This suggests that discretization

methods do not have a strong impact on the performance of MAXIMUS.

7.3 Alternate Clustering Using Membership-Based Measures ?

Lastly, a possible question to consider is whether the other membership-based cluster-

ing measures, such as the Rand or Jaccard Index, could be employed instead of ADCO

as an objective function for alternate clustering generation. i.e Could they be encoded

by constraints whose solution corresponds to a desirable alternate clustering ? We leave

this as an open problem. However, there appear to be two major difficulties. Firstly,
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each data point would need to be represented as a variable, meaning a huge number

of variables would be required for large datasets. Secondly, it appears that the natu-

ral encoding would lead to a non-linear integer program, which is considerably more

difficult to solve than an integer linear program. This is because membership based

techniques require counting of the number of pairs of points occurring in the same or

different clusters. The natural constraint to encode membership of pair is nonlinear (a

product of variables): pc
1 × pc

2, where pc
i is a boolean variable indicating membership

of point pi in cluster c.

8 Future Work - Extensions of ADCO

We now provide some brief discussion about possible enhancements or extensions of

the ADCO measure.

More Complex Density Profiles: As described, the ADCO measure uses univariate pro-

files of each attribute, to form a density profile vector for a clustering. One might

envisage the construction of more complex and detailed profiles to extend ADCO.

In particular, consider all possible pairs of features and for each pair, represent their

joint density as a 2 dimensional grid and record this in the density profile. Such an

idea offers the potential advantage of capturing extra semantics of the feature space

to more accurately represent a clustering. However, it has the disadvantage of mak-

ing the computation of ADCO more complex, increasing from O(NRQ) + O(k3) to

O(NR2Q2) + O(K3). Also, density profile vectors need to have more dimensions and

as a consequence, would rapidly become much sparser as the number of bins increases.

Implicit Consideration of Non-linear Feature Spaces: The definition of the ADCO mea-

sure in equation 6 uses a dot product operator in both the numerator and the denom-

inator. This opens the door to implicit consideration of non-linear features spaces, via

the use of the well known ’kernel trick’, for transforming a linear algorithm into a non

linear algorithm, without explicitly needing to enumerate the non-linear space. Namely,

instead of computing the dot product VC · ρ(VC′), one replaces it by φ(VC , ρ(VC′)),

where φ is a kernel function. Any of the well known kernel functions might be used,

such as polynomial or RBF kernel. In the case of the polynomial kernel with degree 2,

the kernel function would be

φ(VC , ρ(VC′) = (VC · ρ(VC′) + 1)2

which implicitly transforms a feature space (x, y) into the non linear feature space

(1,
√

2x,
√

2y, x2, y2,
√

2xy). The use of such a kernelized ADCO could be useful in

situations where the clusterings and/or dataset exhibit highly non linear structure.

More Flexible Matching: Similar to the description in [15], an explicit one-to-one map-

ping between clusters of the two clusterings might be ‘softened’ so that even the un-

matched cluster pairs may contribute toward the similarity. One possible approach

would be to determine every possible pairwise mapping and assign appropriate weights

so all pairs contribute to the final value. Alternatively, one could merge similar clusters

together, to obtain an equal number of clusters in each clustering.



43

9 Summary and Conclusions

We have introduced a new density-based clustering similarity measure called ADCO,

which addresses some important limitations of existing methods.

In particular, ADCO adopts a flexible approach to clustering comparison, by con-

sidering aspects of the feature space. This allows clustering similarity comparison to

follow a data mining style philosophy, whereby similarity is judged according to prop-

erties of the clustering as a ‘predictor’ or a ‘hypothesis’. It also means that one can for

the first time, compare clusterings derived from different datasets.

We also established the usefulness of ADCO for the alternate clustering genera-

tion problem. By formulating alternate clustering as an integer programming problem,

ADCO can be used as an objective function that drives the discovery of a dissimilar

solution. We embodied this approach in a new alternate clustering algorithm called

MAXIMUS, which can deliver multiple, high quality alternate clusterings, with good

efficiency.

A Appendix

Proof of Theorem 1: Metric properties 1, 2 and 3 follow straightforwardly from the non-
negativity, symmetry and identity of indiscernibles of ADCO. For property 4, we we need to
prove that D′

ADCO
(C1, C2) ≤ D′

ADCO
(C1, C3)+D′

ADCO
(C3, C2). Noting that ADCO(Ci, Cj) ≤

1 for any Ci and Cj , we can derive as follows:

ADCO(C1, C3) + ADCO(C3, C2) ≤ 1 + 1

ADCO(C1, C3) + ADCO(C3, C2) ≤ 2 + ADCO(C1, C2)

2 + ADCO(C1, C3) + ADCO(C3, C2) ≤ 2 + 2 + ADCO(C1, C2)

2 − ADCO(C1, C2) ≤ 2 − ADCO(C1, C3) + 2 − ADCO(C3, C2)

D′

ADCO(C1, C2) ≤ D′

ADCO(C1, C3) + D′

ADCO(C3, C2)

�
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