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Abstract
Support Vector Machines (SVMs) are a leading tool in clas-
sification and pattern recognition and the kernel function
is one of its most important components. This function is
used to map the input space into a high dimensional feature
space. However, it can perform rather poorly when there
are too many dimensions (e.g. for gene expression data) or
when there is a lot of noise. In this paper, we investigate
the suitability of using a new feature weighting scheme for
SVM kernel functions, based on receiver operating character-
istics (ROC). This strategy is clean, simple and surprisingly
effective. We experimentally demonstrate that it can signif-
icantly and substantially boost classification performance,
across a range of datasets.
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1 Introduction
Support Vector Machines (SVMs) are learning systems
based on statistical learning theory and the principle of
structural risk minimization (SRM). The SVM is very
powerful, evidenced by the fact that within a few years
of its introduction, it is in wide use and commonly
outperforms other classifiers for a range of classifica-
tion and recognition tasks [7]. Examples include iso-
lated handwritten digit recognition, object recognition,
speech recognition, and spatial data analysis.

The SVM is a supervised learning system where the
training data is mapped into a high dimensional feature
space, in which an optimal separating hyperplane be-
tween the two classes of the labeled data is obtained
using quadratic programming. The hyperplane is then
mapped back to the input space via an inverse mapping
function and thus it becomes a non-linear decision sys-
tem to separate/classify the input data. The kernel trick
helps avoid explicit mapping [7], reducing unnecessary
computation.

Although SVMs have been applied for classification
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in many domains, they tend to suffer from poorer
classification accuracy when i) there are very many
features, or ii) the data is very noisy. These weaknesses
make it difficult to use SVMs for datasets such as
gene expression data [25], which are very noisy and
typically have thousands of features, but only tens or
at most hundreds of instances. Indeed despite their
popularity, in the gene expression domain there is still
substantial room for improvement when using SVMs.
Developing a clean and simple strategy for improvement
is the main theme of this paper. E.g., for the gene
expression dataset first discussed in [30], a massive
accuracy improvement from 47.62% (for standard SVMs
with polynomial kernel) to 96.48% (using our techniques
with polynomial kernel) can be achieved.

Our aim is to test the validity and effectiveness of
using a new feature weighting scheme for SVM kernel
functions. Our proposed method has a number of
desirable properties:

• It is clean, simple and intuitive.
• It is easy to implement and requires minimal

change to any existing SVM implementation.
• It has a negligible effect on the time required

for training an SVM or using it for test instance
classification.

• It can substantially boost classification accuracy.
• It outperforms other possible feature weighting

schemes, such as chi squared, information gain,
mutual information and Fisher’s criterion.
Our weighting for each feature is computed by con-

sidering the area under the Receiver Operating Char-
acteristics (ROC) curve [15]. Interestingly, this value is
equivalent to the Mann-Whitney U statistic normalized
by the number of possible pairings of positive and neg-
ative values, also known as the two sample Wilcoxon
rank-sum statistic [17]. The area under the ROC curve
(AUC) actually represents the probability that a ran-
domly chosen positive example is correctly ranked with
greater suspicion than a randomly chosen negative ex-
ample. Moreover, this probability of correct ranking
is the same quantity estimated by the non-parametric
Wilcoxon statistic [2].
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Related Work: To the best of our knowledge there
is only one work which used feature weighting for
computing kernel functions for SVMs. Kertész-Farkas
and Kocsor [22] presented a method which weights
the features according to their importance instead of
removing the negligible ones via kernel functions. They
used several feature ranking technique (i.e., standard
deviation, Fisher’s criterion, entropy) to weight features
and showed that weighting kernel functions obtained a
significantly better classification performance than that
using the usual unweighted method. Although fuzzy
or “weighted” SVMs do exist [24], the weights there
are not applied to features, but are applied to instances
from the dataset, to reflect the degree of confidence in
membership.

Feature weighting has instead played more of a role
in k-nearest neighbor classifiers, where it has been used
by Vivencio et al. [34], who proposed a feature weighting
method based on the χ-squared test. In another study,
Kohavi et al. [23] investigate the use of a weighted
Euclidean metric in which the weight for each feature
comes from a small set of options. They described an
algorithm that directs search through a space of discrete
weights using cross-validation error as its evaluation
function. Recent related work by Hassan et al. [18] has
shown the benefits of considering ROC-characteristics in
the context of distance functions for k-nearest neighbor.

Furlanello et al. [11] ranked features using a wrap-
per algorithm based on recursive feature elimination
(RFE) using entropy of the relevant feature. This was
based on work by Guyon et al. [16] who developed the
baseline RFE technique for SVMs. A similar wrapper
approach was also developed by Shieh and Yang [29]
for multiclass scenarios using SVM-RFE. As these are
all wrapper approaches, their effectiveness can vary ac-
cording to the choice of classifier.

Brank and Milic-Frayling [3] proposed a framework
for characterizing feature weighting methods and se-
lected features sets and exploring how these character-
istics account for the performance of a given classifier.
They illustrated the use of two feature set statistics:
cumulative information gain of the ranked features and
the sparsity of data representation that results from the
selected feature set.

Weston et al. [35] introduced a method of feature
selection for SVMs, which is based upon nding those
features using gradient descent that minimize bounds on
the leave-one-out error. They have shown the resulting
algorithms to be superior to some standard feature
selection algorithms.

Cheng et al. [6] developed an incremental train-
ing algorithm for SVMs where the data samples were
preclustered using a k-means algorithm. Although us-

ing a clustering algorithm could help eliminate outliers
in the training data, significant instances might still be
overlooked due to erroneous choices of the cluster pa-
rameter k.

Contributions: Our main contributions in this paper
are as follows:

• Presenting an ROC-based feature weighting metric
for SVM kernel functions to improve classification.
This scheme is clean and simple, does not degrade
SVM running time and is very easy to incorporate
into existing implementations.

• An experimental investigation which demonstrates
that our new algorithm (known as ROC-SVM)
can deliver very substantial improvements com-
pared to standard SVMs. These improvements are
strongest when applied to gene expression datasets.
ROC-SVM also often outperforms a range of exist-
ing classifiers such as C5.0, its predecessor C4.5,
Random Forest, Ferri et al.’s [10] AUCsplit tech-
nique for decision trees, Näıve Bayes and SVMs us-
ing three different kernels: linear, polynomial and
RBF.

• The experimental investigation also demonstrates
that our new algorithm outperforms other possible
SVM weighting techniques, such as chi-squared,
information gain, mutual information and Fisher’s
criterion.

2 Preliminaries
In this section, we briefly introduce SVMs and ROC.

2.1 Support Vector Machine (SVM): Let us
consider, we have n vectors �x0, �x1, �x2, . . ., �x(n−1) from
the vector space R

m which belong to either of the two
classes +1,−1. The data are labeled as follows:
(2.1)
(�xj , yj) : j = 0, . . . , (n − 1), where yj ∈ {+1,−1}.

Our goal is to find a hyperplane as in Eq. (2.2), which
would classify the input vector effectively:

(2.2) �wT �xj + b = 0,

where �w = weight vector and b = bias. Thus it
is assumed that the two classes can be separated by
considering two hyperplanes of the margin parallel to
the hyperplane described by Eq. (2.2) [31]:

�wT �xj + b � 1, for yj = +1(2.3)

�wT �xj + b � −1, for yj = −1

where j = 0, . . . , (n − 1).
By combining above two constraints we get:

(2.4) yj(�wT �xj + b) � 1, for j = 0, . . . , (n − 1).
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Constraint (2.4) is valid for a dataset which is linearly
separable. For such linearly separable data, the goal for
an SVM is to find the optimal weight and bias values
such that the obtained hyperplane separates the two
classes of training data with a maximum margin. For
a dataset which is not completely separable (i.e., data
instances are badly scattered), a classification violation
is allowed in the SVM formulation. For this case, (2.4) is
modified to (2.5), where n non-negative (slack) variables
ξj are introduced.

(2.5) yj(�wT �xj + b) � 1− ξj , for j = 0, . . . , (n−1).

In (2.5), those vectors �xj , for which the value of ξj

is greater than zero, does not satisfy Eq. (2.4). To
compute the width γ(�w, b) of the margin the following
equation is used:

(2.6) γ(�w, b) = min
{�x|y=+1}

�wT �x

‖�w‖ − max
{�x|y=−1}

�wT �x

‖�w‖ .

An optimal hyperplane is found for the SVM by opti-
mizing the following equations:

minimize τ(�w, ξ) =
1
2
‖�w‖2 + C

n−1∑
j=1

ξj

(2.7)

subject to yj(�wT �xj + b) � 1 − ξ, for j = 0, . . . , (n − 1),

where C is a constant called as the regularization
parameter. By adjusting this parameter value, we can
maximize the performance of the SVM. By using the
saddle point of the following Lagrange function, we can
solve the minimization problem defined in Eq. (2.7).

(2.8) LP (�w, b, α) =
1
2

�wT �w−
n−1∑
j=0

αj(yj(�wT �xj + b)− 1),

where αj � 0 are Lagrange multipliers. We compute
the gradient of LP (�w, b, α) with respect to �w and b to
obtain the optimized weight �w∗:

(2.9)
δLP

δ �w
= 0,

δLP

δb
= 0.

By solving Eq. (2.9), we obtain the optimized weight
�w∗:

(2.10) �w∗ =
n−1∑
j=0

αjyjxj

considering the following constraint

(2.11)
n−1∑
j=0

αjyj = 0.

Using Eq. (2.10) and Eq. (2.11) into Eq. (2.8), we get

(2.12) LD(α) =
n−1∑
i=0

αi − 1
2

n−1∑
i=0

n−1∑
j=0

αiαjyiyj�x
T
i �xj

where the constraints are:
(2.13)
n−1∑
j=0

αjyj = 0 and αj � 0, where j = 0, . . . , (n − 1).

The optimized bias b∗ is computed using Eq. (2.14)
(2.14)

b∗ = −1
2

(
min

{�xj |yj=+1}
�w∗T �xj + max

{�xj |yj=−1}
�w∗T �xj

)
.

The solution is found by minimizing LP and maximizing
LD. The points on the margin given by LP and LD

exhibiting non-zero values for αj are called the support
vectors. Once the support vectors and values of bias
b∗ are determined the two classes are separated by
investigating the signs of Eq. (2.15):

(2.15) f(x) = sign

⎛
⎝n−1∑

j=0

αjyj�xj
T �x + b∗

⎞
⎠ .

2.1.1 Kernel functions: The above mentioned
solution aims to linearly separate the dataset. For a
non-linear decision system, one extends the method by
mapping the data points into a high dimensional space,
called the feature space, as in Eq. (2.16) [7].

(2.16) �xT
i �xj → 〈φ(�xi).φ(�xj)〉.

To explicitly map the input space to a suitable feature
space is troublesome and hence a kernel function is
introduced where the mapping is done implicitly. The
kernel function between two vectors �xi and �xj is defined
as follows:

(2.17) K(�xi, �xj) = 〈φ(�xi).φ(�xj)〉.
Using Eq. (2.16) and Eq. (2.12) we get:

(2.18) LD(α) =
n−1∑
i=0

αi − 1
2

n−1∑
i=0

n−1∑
j=0

αiαjyiyjK(�xi, �xj).

The goal is to maximize the value of LD(α) to optimize
the SVM for a non-linear dataset. Solutions are avail-
able via quadratic programming. However, a proper
choice of Kernel function is also necessary to obtain a
better SVM. In fact, the kernel function determines the
degree of similarity between two data vectors/instances.
There have been many kernel functions proposed. The
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most popular and widely used kernels are the linear,
polynomial and RBF kernels.

Consider two instances �xi ≡ 〈xi1, xi2, . . . , xim, Yi〉
and �xj ≡ 〈xj1, xj2, . . . , xjm, Yj〉 comprising (m + 1)
features each and the last feature being the class label.
Some different kernel functions are described below.

Euclidean Distance: The function for Euclidean dis-
tance is given in Eq. (2.19):

ED(�xi, �xj) =

√√√√ m∑
k=1

(xik − xjk)2, where k = 1, . . . , m.

(2.19)

Linear Kernel: The function for linear kernel is given
in Eq. (2.20):

LK(�xi, �xj) = �xi · �xj

=

√√√√ m∑
k=1

(xik · xjk), where k = 1, . . . , m.(2.20)

Polynomial Kernel: The function for polynomial ker-
nel is given in Eq. (2.21):

PK(�xi, �xj) = (�xi · �xj + 1)d

= (LK(�xi, �xj) + 1)d,(2.21)

where d is the degree of the polynomial equation.

Radial Basis Function (RBF) Kernel: In RBF
kernel, the similarity between two vectors �xi and �xj is
calculated using Eq. (2.22):

RK(�xi, �xj) = e(−γ‖�xi−�xj‖2)

= e(−γED(�xi,�xj)
2), for γ > 0,(2.22)

where γ is the width of the Gaussian.

2.2 Receiver Operating Characteristic Curves:
The Receiver Operating Characteristic (ROC) curve

was first used in signal detection theory [15]. In
machine learning, the ROC curve is used to evaluate
the discriminative performance of binary classifiers.
This is obtained by plotting the curve of the true
positive rate (Sensitivity) versus the false positive rate
(1 – Specificity) for a binary classifier by varying the
discrimination threshold. Figure 1 shows an example
ROC curve.

Prior to plotting the ROC curve, the sensitivity and
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Figure 1: A typical ROC curve

specificity need to be calculated as follows:

Sensitivity =
TP

TP + FN
(2.23)

Specificity =
TN

FP + TN
,(2.24)

where TP = True Positive, TN = True Negative, FP
= False Positive and FN = False Negative.

It is to be noticed that, all the calculations above
are attained when using a particular classifier threshold.
By varying the threshold, a set of values for these
measurements is obtained. This set of values is plotted
in a two-dimensional Cartesian graph to yield the ROC
curve. The ROC curve indicates the performance of the
binary classifier, as it takes into account all the possible
solutions by varying the discriminative threshold. The
best performance would be produced, if the ROC curve
meets the upper left corner of the ROC space (which
yields 100% sensitivity and 100% specificity).

An ROC curve is a two dimensional illustration of
classifier performance. Reducing ROC performance to
a single scalar value to represent expected performance
helps compare classifiers. An often used method is to
calculate the area under the ROC curve (AUC) [17], [2].
There are several ways to calculate AUC. Of these, one
way is to calculate using trapezoidal integration shown
in Eq. (2.25) [28].

AUC =
∫ b

a

f(α)dα

≈
n∑

i=1

h

2
(f(a + (i − 1)h) + f(a + ih)),(2.25)

where α = (1 − Specificity), a = 0, b = 1,
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n = size to increase, and h = b−a
n .

Prior to calculating the AUC, the set of the values
of sensitivity and specificity is normalized to the range
[0, 1]. The AUC, being a part of the area of the unit
square, has a value between 0 and 1. Since random
guessing could produce the diagonal line between (0, 0)
and (1, 1) with an area of 0.5, a classifier with an AUC
less than 0.5 is undesirable [9]. A value of AUC equal
to 1.0 represents that the performance of the binary
classifier is 100%, i.e., the classifier can discriminate the
dataset accurately.

3 Distance Weighting using ROC Information

We now describe the steps in our algorithm.

3.1 ROC for Feature Weighting: Previous
work [20] has established the use of an ROC curve for
feature ranking and selection. First, the ROC curve is
plotted for each of the pairs formed by each of the fea-
tures and the class label. This, in turn, means treating a
single feature as a classifier and calculating the classifi-
cation performance in terms of the sensitivity and speci-
ficity by varying the operating point. We shall build on
this kind of idea to derive a feature weighting method
to use in distance functions. For each feature, the AUC
is calculated.

Let us consider a dataset D of N instances, where
each instance comprises m features: x1, x2, x3, . . . , xm.
Each of the m features has a differing discriminative
power reflected by its respective AUC. To calculate the
discriminative power that is expressed in terms of AUC,
we plot the ROC curve for each feature paired with the
class label, (i.e., {xi, Yi}, where 1 � i � m and �Y is
the vector of class labels). I.e., we draw an ROC curve
showing the performance of feature xi as a classifier to
predict the class label �Y . We then calculate the AUC
of this ROC curve, which yields a measure of the power
of feature xi.

As described earlier, there is a strong mathematical
justification for using the ROC to measure discrimina-
tive power. It is equivalent to the Mann-Whitney U Test
(also known as Wilcoxon Rank sum), a non-parametric
statistical test. Not employing any distributional as-
sumptions makes it especially useful for small sample
size, noisy datasets [8], such as gene expression microar-
rays.

3.2 Weighted Distance Metrics: For computing
the distance between two instances, we modify the
standard distance measure using the AUC scores as
weights.

Consider two instances �xi ≡ 〈xi1, xi2, . . . , xim, Yi〉
and �xj ≡ 〈xj1, xj2, . . . , xjm, Yj〉 comprising (m + 1)

features each and the last feature being the class label.
Let, αk be the AUC value of the k-th feature, for
k = 1, . . . , m. Then, the feature weighted different
kernel functions are:
Weighted Euclidean distance,

(3.26) EDα(�xi, �xj) =

√√√√ m∑
k=1

αk(xik − xjk)2.

Weighted linear kernel,

(3.27) LKα(�xi, �xj) =

√√√√ m∑
k=1

αk(xik · xjk).

Weighted polynomial kernel,

(3.28) PKα(�xi, �xj) = (LKα(�xi, �xj) + 1)d,

where d is the degree of the polynomial equation.
Weighted RBF kernel,

(3.29) RKα(�xi, �xj) = e(−γEDα(�xi,�xj)
2), for γ > 0,

where γ is the width of the Gaussian.
Note that if α = 1 for all features, then all

features are equally important and no feature weighting
is actually being employed.

3.3 Weighted Distance with Threshold Func-
tion: To avoid using noisy features with lower pre-
dictive power and to put more importance on the fea-
tures with higher discriminative power, we next define a
threshold function Uδ(α), to assist with feature pruning.
The domain of this function is the set of feature weights
and the range is a revised weight for each feature.

(3.30) Uδ(α) =
{

0, if α � δ,
α, if α > δ;

where α = the level of importance for a feature. This
is given by either by the feature’s AUC value or by
using the same default level of importance for each
feature (e.g., 1). δ is an AUC-based quality threshold
parameter, where 0 � δ � 1.

Using the same weighting framework as earlier, we
can now further modify the feature weights to be Uδ(αk)
instead of αk in Eq. (3.26), (3.27), (3.28) and (3.29). So
the modified kernels then become:
Weighted Euclidean distance,

(3.31) EDδ(�xi, �xj) =

√√√√ m∑
k=1

Uδ(αk)(xik − xjk)2.
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Figure 2: Variation of Uδ(α) to obtain different SVM classifiers, where the x-axis represents all features ranked on their
AUC value and the y-axis represents the AUC value for the features. A line parallel to the x-axis for some arbitrary value
of δ is drawn to find a cut-off point from the weighted-ranked list (Case 4) and a line orthogonal to the δ-line is used to get
a cut-off point from the ranked feature list (Case 3).

Weighted linear kernel,

(3.32) LKδ(�xi, �xj) =

√√√√ m∑
k=1

Uδ(αk)(xik · xjk).

Weighted polynomial kernel,

(3.33) PKδ(�xi, �xj) = (LKδ(�xi, �xj) + 1)d,

where d is the degree of the polynomial equation.
Weighted RBF kernel,

(3.34) RKδ(�xi, �xj) = e(−γEDδ(�xi,�xj)
2), for γ > 0,

where γ is the width of the Gaussian.
As discussed earlier, an AUC value closer to 1

indicates that the selected feature can be considered
more important in discriminating the dataset, while a
smaller AUC value indicates lower importance. So, the
varying weights can be associated with the respective
features to improve the performance of a classifier.

For the same setup, let αk be the AUC value of
k-th feature, where k = 1, . . . , m. Now, this threshold
function, Uδ(α), can be represented by four main cases,
according to the input that is passed to it.
Case 1: U0(1): if δ = 0 and α = 1 ⇒ No Weighting, No

Pruning,
Case 2: U0(αk): if δ = 0 and α = αk ⇒ ROC
Weighting,
Case 3: Uδ(1): if δ 
= 0 and α = 1 ⇒ ROC-based
Feature Pruning,
Case 4: Uδ(αk): if δ 
= 0 and α = αk ⇒ ROC-based
Feature Weighting and Pruning.

A graphical representation of these cases is shown
in Fig. 2, which shows the effect of ROC-based feature
weighting and how the feature pruning is done. Note
that the grayed region is only for reference purposes.
The actual features used by the classifier are presented
by the bold line above the grayed region.

4 Experimental Setup and Datasets

We investigate the four cases for Uδ(αk) and compare
the accuracy using a paired t-test (corrected) [12]. The
kernels we use are linear, polynomial and RBF. We
filter out all those features having an AUC score equal
to or less than a quality threshold, δ. We started
from 0.4 and kept increasing this threshold value by 0.1
and noted the classification performance on a separate
validation set (not the test set) for both SVM and ROC
weighted feature pruned SVM classifiers. For a 10-fold
cross validation, we split the dataset into 10 random
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Table 1: Properties of the datasets used in this study

Dataset No. of No. of Collected from First used by
Attributes Instances

GE1 24,481 97 Integrated Tumor Transcriptome Array van ’t Veer et al. [33]
and Clinical data Analysis database [1]

GE2 3,226 22 National Human Genome Research Institute Hedenfalk et al. [19]
GE3 12,533 181 Division of Thoracic and Surgery [32], Gordon et al. [14]

Brigham Women’s Hospital, Boston
GE4 12,600 21 Cancer Program [5], Singh et al. [30]

Broad Institute of MIT and Harvard
GE5 12,600 136 Cancer Program [5], Singh et al. [30]

Broad Institute of MIT and Harvard
GE6 7,129 72 Cancer Program [4], Golub et al. [13]

Broad Institute of MIT and Harvard
Hepatitis 19 155 UCI ML Repository [26] –
Ionosphere 34 351 UCI ML Repository [26] –
Pima 8 768 UCI ML Repository [26] –

WBC 9 699 UCI ML Repository [26] –
WDBC 30 569 UCI ML Repository [26] –
WPBC 33 198 UCI ML Repository [26] –

folds, and trained the classifier with 8 folds, kept 1
fold for internal validation (i.e., finding the best value
for parameters) and 1 fold for the final testing of the
classifier performance. Figure 3 shows how the accuracy
of the ROC weighted SVMs was affected by varying
the value of this parameter, for a number of datasets
(datasets described shortly).

We also used four popular methods: χ2 [34], in-
formation gain (IG) [21], mutual information (MI) [36]
and Fisher’s criterion (signal-to-interference ratio) [27],
which have been used in the literature to weigh fea-
tures, and compared their performance against our fea-
ture weighting technique for SVMs. In addition to com-
paring against traditional SVMs, we compared ROC-
SVM against twelve other classifiers. These are: ROC-
kNN, ROC-tree [20], k-NN, Ferri et al.’s [10] AUCsplit
technique for decision trees, C5.0, its predecessor C4.5,
ADTree, REPTree, Random Tree, Random Forest and
Näıve Bayes. Where applicable, each of these classi-
fiers was run multiple times on each dataset by varying
its parameters. We report the best result of each such
classifier on each dataset across the variation of its pa-
rameters.

Each of the classifiers was applied on 12 datasets,
of which 6 were gene expression datasets and 6 are
non-gene expression datasets having rather different
characteristics. The properties of the datasets are
illustrated in Tab. 1. For each classifier and dataset,
a 10-fold cross validation scheme was used 10 times.

Using a fixed 10-fold cross validation scheme, we
also conducted a win-draw-loss analysis based on a
paired t-test (corrected) [12] with 5% significance level,

for the classifiers.

5 Results and Discussion

The classification accuracies of the polynomial and RBF
kernels for the four cases are presented in Tab. 2 and
Tab. 3. The linear kernel, too, has similar performances
(not shown) for the four cases. The classification
results for all techniques on the considered datasets are
presented in Tab. 4 and 5 and in those two tables, for
ROC-SVM, the presented results were obtained using
the best of three kernels, quality threshold and other
SVM parameters (e.g., the margin of the model (C) for
all SVMs, the degree of polynomial for the polynomial
kernel, and the width of the Gaussian (γ) for RBF
kernel).

Four Cases of ROC-effected SVMs: The classifica-
tion performance of ROC-SVM (Case 4) shows remark-
able improvement over the traditional SVM techniques
(see Tab. 2 and 3). For most datasets and the three
different kernels, ROC-SVM has a statistically signifi-
cant improved accuracy over SVM (Case 1). For exam-
ple, on GE2 and GE4 datasets (see Tab. 4), the clas-
sification accuracy increased from 68.18% and 61.90%
(for SVM) to 92.73% and 97.14 (for ROC-SVM), re-
spectively; which is about 24.55% and 35.24% higher
accuracy.

The classification accuracies of ROC-weighted SVM
(Case 2) and ROC feature pruned SVM (Case 3)
are better than that of SVM (Case 1). However,
they are not always statistically significant within 5%
significance level. Though the classification accuracies
of ROC-weighted SVM (Case 2) and ROC feature
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Table 2: Comparison of accuracy results from 10 × 10-fold cross validation on all datasets for all 4 cases for Polynomial
kernel

Datasets SVM ROC-weighted SVM ROC feature pruned SVM ROC-weighted and feature pruned
(Case 1) (Case 2) (Case 3) SVM (ROC-SVM) (Case 4)

GE1 68.04 ± 2.14 70.31 ± 1.98∗ 79.17 ± 1.91∗• 80.62± 1.34∗•◦
GE2 59.09 ± 2.98 65.00 ± 5.61∗ 90.48 ± 0.0∗• 92.73± 2.49∗•◦
GE3 99.45 ± 0.11 99.39 ± 0.17 99.50 ± 0.32 100 ± 0.0
GE4 47.62 ± 5.63 53.00 ± 3.50∗ 96.00 ± 4.59∗• 96.48± 0.0∗•
GE5 91.18 ± 3.12 91.63 ± 0.99 90.96 ± 0.58 92.15± 0.40∗◦
GE6 98.61 ± 1.26 98.03 ± 0.73 98.59 ± 0.0 98.61± 0.0

Hepatitis 76.77 ± 4.23 81.11 ± 1.66∗ 83.90 ± 0.85∗• 85.21± 0.72∗•◦
Ionosphere 88.60 ± 2.43 90.60 ± 0.81∗ 92.69 ± 0.69∗• 95.05± 0.46∗•◦
WBC 96.85 ± 1.07 96.78 ± 0.22 96.56 ± 0.24 97.44± 0.34∗•◦
WDBC 97.72 ± 1.04 97.84 ± 0.17 97.96 ± 0.15 98.87± 0.05∗•◦
WPBC 76.26 ± 4.78 78.33 ± 0.79∗◦ 76.14 ± 0 78.86± 0.38∗◦
Pima Indian 77.34 ± 5.01 77.09 ± 0.82◦ 76.90 ± 0.26 79.45± 0.66∗•◦

∗ statistically significant within 5% significance level over SVM
• statistically significant within 5% significance level over ROC-weighted SVM
◦ statistically significant within 5% significance level over ROC feature pruned SVM

Table 3: Comparison of accuracy results from 10 × 10-fold cross validation on all datasets for all 4 cases for RBF kernel

Datasets SVM ROC-weighted SVM ROC feature pruned SVM ROC-weighted and feature pruned
(Case 1) (Case 2) (Case 3) SVM (ROC-SVM) (Case 4)

GE1 67.01 ± 2.36 69.59 ± 2.50∗ 80.63 ± 1.72∗• 81.65± 1.13∗•
GE2 63.64 ± 0.94 65.90 ± 0.0∗ 83.33 ± 8.33∗• 88.38± 2.79∗•◦
GE3 98.34 ± 1.41 98.39 ± 0.18 99.26 ± 0.39∗• 99.34± 0.25∗•
GE4 61.90 ± 1.39 65.00 ± 0.0∗ 86.50 ± 2.42∗• 97.14± 2.61∗•◦
GE5 69.12 ± 5.31 91.26 ± 0.84∗◦ 90.67 ± 0.89∗ 91.77± 0.61∗◦
GE6 80.56 ± 2.18 95.63 ± 1.68∗ 98.45 ± 0.45∗• 98.61± 0.0∗•

Hepatitis 84.52 ± 4.02 84.16 ± 0.76◦ 83.57 ± 1.59 85.38± 1.02∗◦
Ionosphere 91.74 ± 5.15 94.80 ± 0.37∗ 94.77 ± 0.49∗ 95.05± 0.40∗•◦
WBC 96.85 ± 1.29 96.85 ± 0.18 96.85 ± 0.18 97.98± 0.73
WDBC 96.07 ± 3.12 97.83 ± 0.27 97.99 ± 0.38 98.87± 0.35∗
WPBC 77.02 ± 2.36 78.78 ± 1.01◦ 76.60 ± 0.37 78.78± 0.33∗◦
Pima Indian 77.47 ± 3.73 77.35 ± 0.38 87.34 ± 0.50∗• 89.74± 0.81∗•◦

Same legends as in Tab. 2.

pruned SVM (Case 3) are often very similar, they can
vary greatly for some gene expression datasets with a
very large feature space. This is due to the presence of
some irrelevant features, which affects negatively to the
distance calculation, even though we try to minimize
their effects by weighting the features. ROC-SVM
(Case 4) improves the accuracy significantly within 5%
significance level over the ROC-weighted SVM (Case
2) and ROC feature pruned SVM (Case 3) for most
datasets. Therefore, it becomes obvious that using both
feature weighting and pruning is a better choice than
using nothing at all when computing distances for the
kernel function.

ROC-SVM versus other feature weighted SVMs:
Looking at the top half of Tables 4 and 5, we can
compare standard SVMs against SVMs using a varierty

of different weighting techniques. In general, using
some kind of weighting can increase accuracy. However,
ROC-weighted SVMs are consistently the best overall.
A win-draw-loss analysis of all classifiers shown in
Table 6 also confirms the edge that ROC-weighting has
over the other forms of feature weighting.

ROC-SVM versus non-SVM Classifiers: Surpris-
ingly and pleasingly, the classification performance of
ROC-SVM on all twelve datasets is the best (see Tab. 4
and 5). It outperforms all the other classifiers used in
this study. This provides some evidence that ROC-SVM
is a classifier which is able to surpass mainstream state-
of-the-art techniques in these circumstances.

Statistical Significance Tests: We also carried out
win-draw-loss analysis based on paired (corrected) t-
test with 5% significance level for the considered clas-
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Table 4: Comparison of accuracy results from 10 × 10-fold cross validation on six gene expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6

ROC-SVM 83.30± 1.99 92.73± 2.49 100 ± 0.0 97.14± 2.61 92.15± 0.40 98.61± 0.0
χ2-FW-SVM 69.11 ± 0.11 63.64 ± 0.0 98.34 ± 0.74 61.90 ± 0.0 91.21 ± 0.55 97.78 ± 0.76
IG-FW-SVM 68.04 ± 1.07 63.64 ± 0.0 99.45 ± 0.0 61.90 ± 0.0 91.18 ± 0.89 98.61± 0.0
MI-FW-SVM 76.29 ± 0.98 86.36 ± 1.28 99.45 ± 0.0 76.19 ± 2.74 91.18 ± 1.01 98.61± 0.0
Fisher’s Criterion 78.44 ± 4.56 86.36 ± 2.33 99.45 ± 0.0 61.90 ± 0.59 91.18 ± 0.28 98.61± 0.0
SVM 68.04 ± 1.98 68.18 ± 1.18 100 ± 0.0 61.90 ± 1.39 91.18 ± 3.12 98.61± 0.76

ROC-tree 72.16 ± 4.32 77.27 ± 2.45 98.34 ± 0.89 38.10 ± 5.95 88.24 ± 2.33 94.44 ± 2.96
ROC-kNN 63.29 ± 3.13 71.07 ± 4.22 98.66 ± 0.39 61.49 ± 2.12 84.65 ± 1.22 90.33 ± 0.89
k-NN 58.45 ± 2.88 61.82 ± 6.14 94.64 ± 0.27 57.14 ± 3.89 82.35 ± 1.80 88.89 ± 0.93
AUCsplit 63.58 ± 4.59 74.39 ± 1.63 96.14 ± 1.36 34.01 ± 2.87 82.47 ± 3.96 81.61 ± 3.28
C5.0 64.95 ± 6.21 59.09 ± 4.52 92.82 ± 1.21 23.81 ± 4.65 81.62 ± 4.12 80.55 ± 3.74
C4.5 62.89 ± 3.11 72.73 ± 1.36 95.03 ± 1.05 33.33 ± 4.59 79.42 ± 5.45 79.17 ± 4.87
ADTree 61.86 ± 4.28 68.18 ± 5.68 92.82 ± 2.19 32.86 ± 3.44 86.76 ± 2.63 86.11 ± 3.77
REPTree 52.18 ± 5.45 59.09 ± 3.92 95.03 ± 1.28 32.86 ± 3.46 80.88 ± 3.33 81.94 ± 4.26
Random Tree 55.67 ± 3.54 63.64 ± 2.58 79.56 ± 2.69 32.86 ± 3.12 62.50 ± 5.23 75.00 ± 3.90
Random Forest 62.89 ± 6.43 50.00 ± 5.33 93.92 ± 1.22 38.10 ± 5.27 80.88 ± 2.56 79.17 ± 2.36
Näıve Bayes 54.64 ± 3.38 59.09 ± 4.58 98.34 ± 0.03 33.33 ± 0.78 55.88 ± 4.76 98.61 ± 1.03

Table 5: Comparison of accuracy results from 10 × 10-fold cross validation on six non-gene expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima

ROC-SVM 85.38± 1.02 95.05± 0.40 97.98± 0.73 98.87± 0.05 78.86± 0.38 89.74± 0.81
χ2-FW-SVM 84.00 ± 2.11 92.76 ± 0.32 96.71 ± 0.25 97.96 ± 0.16 77.02 ± 0.21 77.47 ± 0.31
IG-FW-SVM 81.29 ± 1.29 91.74 ± 2.38 97.00 ± 0.05 97.72 ± 0.06 77.78 ± 0.28 77.86 ± 1.47
MI-FW-SVM 81.29 ± 1.11 88.89 ± 2.13 97.00 ± 0.0 97.72 ± 0.04 76.26 ± 0.08 77.86 ± 1.55
Fisher’s Criterion 81.93 ± 0.98 88.89 ± 1.11 97.00 ± 0.21 97.89 ± 0.33 78.79 ± 0.22 77.86 ± 1.16
SVM 84.52 ± 4.02 91.74 ± 5.15 96.85 ± 1.07 97.72 ± 1.04 77.02 ± 2.36 77.47 ± 3.73

ROC-tree 78.71 ± 7.65 84.05 ± 9.87 92.56 ± 5.43 90.69 ± 6.78 69.67 ± 8.33 63.54 ± 8.65
ROC-kNN 82.98 ± 0.87 88.60 ± 0.12 97.07 ± 0.14 97.47 ± 0.24 77.02 ± 0.68 86.60 ± 1.09
k-NN 82.58 ± 0.80 87.35 ± 0.59 96.88 ± 0.39 97.24 ± 0.29 76.21 ± 1.31 85.28 ± 1.87
AUCsplit 82.10 ± 3.43 86.00 ± 7.31 95.88 ± 1.94 93.75 ± 3.39 70.53 ± 9.67 73.82 ± 5.35
C5.0 76.13 ± 2.35 89.46 ± 1.23 93.64 ± 1.65 93.29 ± 2.23 70.70 ± 4.12 73.94 ± 2.76
C4.5 80.00 ± 4.45 91.45 ± 3.36 93.84 ± 2.63 93.15 ± 1.26 75.25 ± 3.32 73.83 ± 2.89
ADTree 76.13 ± 2.96 93.16 ± 1.65 95.14 ± 1.77 94.02 ± 1.06 77.78 ± 5.42 72.92 ± 3.23
REPTree 78.71 ± 4.23 89.46 ± 1.46 93.99 ± 2.14 92.44 ± 2.33 73.74 ± 4.85 75.39 ± 4.55
Random Tree 72.91 ± 9.21 87.75 ± 3.64 94.13 ± 2.85 89.46 ± 3.67 68.18 ± 5.45 67.97 ± 6.49
Random Forest 81.94 ± 1.26 92.59 ± 3.26 95.99 ± 1.45 95.25 ± 1.37 78.28 ± 3.47 73.70 ± 4.98
Näıve Bayes 83.87 ± 1.71 82.62 ± 3.48 95.99 ± 0.74 92.97 ± 2.58 67.68 ± 5.08 76.30 ± 3.49

sifiers (see Table 6). In this analysis, ROC-SVM ar-
guably outperforms all the other techniques, as it has a
significant number of wins and no losses at all, com-
pared to the other classifiers. Against other 4 fea-
ture weighted SVMs, ROC-based weighting has 5 wins
over 12 datasets. Of which, three for gene expression
datasets, namely, GE1, GE2 and GE4 and two for non-
gene expression datasets (Ionosphere and Pima indi-
ans). No other feature weighting scheme has any wins
over the other feature weighted SVMs at all.

Comparison of AUC Values: We also computed the
overall AUC values of all SVM-based classifiers and non-
SVM classifiers (not shown), resulting from the 10×10-
fold cross validation over all twelve datasets. The trends

of the results for the AUC metric are quite similar to
the accuracy.

Influence of the δ parameter: Figure 3 shows the ef-
fect on classification performance for varying the quality
threshold (δ) for different kernels on the validation set
of GE2 dataset along with the improvement over SVM,
which is represented by a dotted line in the figures. We
have, in fact, performed similar experiments on all con-
sidered datasets and observed similar behaviors.

Though the effect of δ is not entirely the same on
every dataset, there are some clear trends. For gene
expression data, 0.7 � δ � 0.9 is (unsurprisingly)
always the best choice, due to the small number of
instances in this type of data and classification accuracy
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Figure 3: The effect of δ on classification accuracy for the GE2 dataset
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Figure 4: Comparison of the accuracies of the classifiers: ROC-SVM and SVM with linear, polynomial and RBF kernels
on gene expression datasets

Table 6: Win-Draw-Loss results for the seventeen classifiers
using paired t-test (corrected) on 192 test combinations for
each classifier

Method Win Draw Loss

ROC-SVM 111 81 0
χ2-FW-SVM 57 119 16

IG-FW-SVM 56 118 18
MI-FW-SVM 75 110 7
Fisher’s Criterion 79 105 8
SVM 57 118 17
ROC-tree 58 118 16
ROC-kNN 73 109 10
k-NN 49 98 45
AUCsplit 30 118 44
C5.0 16 103 73
C4.5 24 111 57
ADTree 22 106 64
REPTree 10 104 78
Random Tree 4 68 120
Random Forest 18 113 69
Näıve Bayes 23 100 69

increases monotonically with increasing δ, except when
it prunes too many important features. Furthermore,

by taking some even smaller interval from the specified
range, it was observed that ROC-SVM delivers very
high accuracy. Therefore, it can be expected that by
picking any value from this range for δ will provide good
classification accuracy.

Sensitivity Analysis: By noting the classification
accuracy of classifiers trained by using noisy data of
different noise levels, we can tell how robust a classifier
is. To simulate the effect of noise, we replace the feature
values of all training instances as follows:

(5.35) f ′ = f × (1 + r × λ),

where f and f ′ are the original and new attribute
values, r is a random value in the range [−1, 1] and λ
is the percentage of noise. We leave the testing data
intact. Using these training datasets with noise, we
build the standard SVM and our ROC-SVM classifiers
and compare their performance.

The comparison of a few selected classifiers on four
datasets is shown in Fig. 4. (We have performed similar
experiments on all considered datasets and observed
similar behaviors.) The graphs in Fig. 4 show that the
classification accuracy of the ROC-SVM drops less than
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those of the standard SVMs (for all the kernels) in the
presence of noise. For example, on the GE3 dataset
(see Fig. 4(b)), the classification accuracy of the ROC-
SVM with polynomial kernel decreases from 100% to
only 69.82% when the noise level increases from 0%
to 40%, while that of the SVM with polynomial kernel
decreases from 100% to 54.14%. The standard deviation
of the performance degradation measures the degree of
degradation (effect of noise) on the classifiers. A smaller
deviation indicates that the classifier is more tolerant
to the noise. For example, on the GE3 dataset, the
standard deviation of the performance degradation of
ROC-SVM with polynomial kernel is 12.41 as opposed
to SVM with polynomial kernel, which is 19.49. This
indicates that our ROC-SVM is can be more tolerant to
noise than a standard SVM classifier.

Execution Time: With an increasing δ, the execution
time for the ROC-SVM becomes less than that of
the standard SVM. E.g., for GE1 dataset, the ROC-
SVM (δ = 0.5) takes about 3.39 seconds to build a
classification model using all data, while the standard
SVM takes about 5.16 seconds. However, without
feature pruning the feature weighted SVM takes about
a fraction of second more (5.78 seconds) than that of
the standard SVM to run.

6 Conclusion

This paper has investigated a new technique for im-
proving the classification accuracy of support vector ma-
chines. It is based on applying feature weights in the
kernel function, based on consideration of the receiver
operating characteristics (ROC) for each feature. The
technique, known as ROC-SVM, is simple to describe
and easy to incorporate within existing SVM implemen-
tations. It has negligible effect on running time.

Most importantly, this technique can significantly
improve classification accuracy. Experimental analysis,
using three metrics (i.e., accuracy, AUC and t-test), con-
firms that ROC-SVM can substantially improve over
standard SVMs, particularly for the challenging sce-
nario of gene expression data. Furthermore, it is able to
outperform a range of other state-of-the-art classifiers,
in a range of circumstances. Comparisons against other
forms of feature weighting, such as information gain,
mutual information, Fisher’s criterion and chi-squared,
also show that the use of ROC weighting is able to de-
liver better accuracy.

Overall, we strongly believe that ROC-SVM is a
highly promising enhancement to existing SVM tech-
nology.
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