
Efficient Mining of Platoon Patterns in Trajectory DatabasesI

Yuxuan Li, James Bailey, Lars Kulik
Department of Computing and Information Systems
The University of Melbourne, VIC 3010, Australia

Abstract

The widespread use of localization technologies produces increasing quantities of trajectory data. An important task
in the analysis of trajectory data is the discovery of moving object clusters, i.e., moving objects that travel together
for a period of time. Algorithms for the discovery of moving object clusters operate by applying constraints on the
consecutiveness of timestamps. However, existing approaches either use a very strict timestamp constraint, which
may result in the loss of interesting patterns, or a very relaxed timestamp constraint, which risks discovering noisy
patterns. To address this challenge, we introduce a new type of moving object pattern called the platoon pattern.

We propose a novel algorithm to efficiently retrieve platoon patterns in large trajectory databases, using several
pruning techniques. Our experiments on both real data and synthetic data evaluate the effectiveness and efficiency
of our approach and demonstrate that our algorithm is able to achieve several orders of magnitude improvement in
running time, compared to an existing method for retrieving moving object clusters.

Keywords: spatial clustering, trajectory database, moving object cluster, spatial pattern mining, data mining

1. Introduction

With the increasing availability of position-aware devices such as GPS receivers and mobile phones, it is now
possible to collect and analyze large volumes of location databases that describe the trajectories of moving objects.
Well known examples include taxi position data [1], animal movement data [2] and eye tracking data [3].

We address an important data mining challenge for trajectory data: discovering groups of spatial objects that
move together for a certain period. We propose a new type of patterns, platoon patterns, that describe object clusters
that stay together for time segments, each with some minimum consecutive duration of time. Figure 1 (a) shows an
example of a platoon pattern. Wedding party vehicles o2, o3, o4 and o5 move together as a platoon at consecutive
timestamps t1, t2, as well as consecutive timestamps t4 and t5.

The discovery of platoon patterns has a range of real-world applications. The identification of common routes
among convoys may lead to more effective traffic control and the early discovery of truck platoons may assist traffic
planning to avoid congestion. In eye tracking applications [3], the identification of common areas being viewed by
a group of viewers can be used in advertising design and movie filming. In ecology, platoon patterns may provide a
deeper understanding of animal migrations and in security may assist police to identify suspicious crowd movements.

1.1. Current Techniques
Several recent approaches for discovering moving object clusters have been reported in the literature, but they are

not directly applicable for mining platoon patterns. We use “moving object cluster” as a generic term in our paper.

IThis research is supported under the Australian Research Council’s Discovery Projects funding schema (project number DP110100757).
Email addresses: yuxuan.li@unimelb.edu.au (Yuxuan Li), baileyj@unimelb.edu.au (James Bailey), lkulik@unimelb.edu.au

(Lars Kulik)

Preprint submitted to Data & Knowledge Engineering March 1, 2015

t1

t2

t3

t4

o1 o2 o4o3 o5 o6 o1 o2 o3 o4 o5 o6

t5

o1

o2

t1 t3 t5
time

o3

…t2 t4 t6 t103 t200t36 t37 t38 … t104 …t102

(a) (b)

Figure 1: (a) A platoon pattern example. Vehicles o2, o3, o4 and o5 travel together as a platoon at timestamps t1, t2, t4 and t5. Existing patterns
such as flock and convoy fail to capture the co-location behavior of this pattern due to their strict constraint on timestamp consecutiveness. (b) The
pattern that moving objects o2 and o3 travel together at isolated and non-consecutive timestamps t5, t37 and t103 is a swarm when k = 3.

Previous work has proposed mining of moving objects that travel together for a minimum number of k consecutive
timestamps such as flock [4, 5, 6] and convoy patterns [7, 8]. These patterns commonly require that all timestamps
are strictly (or globally) consecutive. As pointed out in [9], enforcing timestamp consecutiveness may lead to the loss
of interesting patterns. For instance, in Figure 1 (a) with k = 3, there are no convoy or flock patterns, since the four
objects split into two clusters at t3 due to a red traffic light, before coming together again at t4. In our opinion, these
four objects are an interesting moving object cluster.

Secondly, swarm patterns [9], take an opposite approach and remove any consecutiveness constraint on times-
tamps. Whilst this provides more latitude with regard to movement of clusters, it may also mine patterns that are
overly “loose”. Consider the example in Figure 1 (b) and assume we require at least k = 3 timestamps. Two vehicles
(moving objects o2 and o3) might randomly encounter each other at some isolated and non-consecutive times (t5, t37
and t103), e.g. refilling fuel at the same petrol station, or stopping at the same car park. This does not imply the drivers
have a strong association with each other. Although one might avoid outputting this type of pattern by imposing
a larger threshold value for the minimum number of timestamps (e.g. k = 4 timestamps), this would risk missing
patterns with two objects that do move together over shorter consecutive durations (such as t2, t3 and t4). Another
alternative would be to first mine all swarm patterns and then filter the interesting ones. Such an approach is time
consuming, however, since the post processing constraints are not pushed inside the swarm mining task. Indeed, our
experiments will show that the number of swarm patterns can be extremely large but contain only a small proportion
of platoon patterns.

1.2. Platoon Patterns
Motivated by these issues, we propose a new definition for a moving object cluster called the platoon pattern,

which allows the user to control the behavior of the consecutive time constraint to suit particular applications. Com-
pared to the globally consecutive timestamp constraint of the convoy pattern [8], a platoon only requires that the
timestamps are locally consecutive. Platoon patterns allow gap(s) in timestamps, but the consecutive time segments
must have a minimum length (be locally consecutive). Given (1) a trajectory database with a timestamp-annotated
history for moving objects, (2) a threshold for the minimum number of objects mino that must appear in the platoon,
(3) a threshold for the minimum number of timestamps mint for which those objects travel together and (4) a thresh-
old for the minimum number of consecutive timestamps minc, a platoon pattern is an objectset and an associated
timestamp sequence, denoted as {O : T}, such that |O| � mino, |T | � mint and the timestamps in T are at least minc
locally consecutive. Intuitively, minc denotes the minimum duration of a time segment in which objects stay together
consecutively. In addition, platoon patterns do not rely on a particular clustering technique for deciding the spatial
closeness of objects, which are instead modeled as preprocessing steps (c.f. Section 3 for our problem definition).
The objects are required to be clustered.

Compared to the swarm query, with the combination of mint and minc, a platoon query is able to catch the
patterns with consecutive timestamps without returning loose patterns. For example, if we set mino = 3 and mint = 3

2

(a) Convoy (b) Swarm (c) Platoon

Figure 2: Snapshot of a movie showing a dialog between two characters. Eye tracking data is represented as a heat map and eye movements
of viewers focus on three dense regions: R1, R2 and R3. (a) Convoy queries fail to identify interesting regions R1 and R3 due to the globally
consecutive timestamp constraint. (b) Swarm queries erroneously consider R2 to be interesting. (c) Platoon queries correctly identify R1 and R3 as
interesting, using the locally consecutive timestamp constraint. Red color indicates high density of viewing, yellow indicates medium density and
green indicates low density.

and minc = 2, then Figure 1 (a) contains the platoon pattern {o2,o3,o4,o5 : t1, t2, t4, t5}. Objects are not considered
forming a platoon pattern at timestamp t3 since the spatial distance between o3 and o4 is greater than the maximum
distance enforced by the used clustering algorithm. To avoid redundancy in the set of platoon patterns, we employ
the notion of a closed platoon pattern. (O : T) is a closed platoon if there is no platoon (O0,T 0) for which either i)
O✓ O0 and T = T 0 or ii) O = O0 and T ✓ T 0. For example, {o2,o3,o4 : t1, t2, t4} is not a closed platoon, since there is
the platoon {o2,o3,o4,o5 : t1, t2, t4, t5}.

1.2.1. Motivational Example: Eye Tracking
Platoon patterns can capture the co-location behavior of moving objects for eye tracking datasets. We first explain

the nature of an eye tracking dataset. Figure 2 (a) shows a snapshot of a movie containing a dialog between two
characters. An eye tracking dataset records trajectories of the viewers eye movements during the movie. A heat map
represents eye tracking data and omits time information. The density in the heat map indicates on which areas users
focus their eyes and is shown in Figure 2 (b). Red (dark gray in B&W) areas are those where viewers looked most at
the time, green (light gray in B&W) areas received little attention, and non-colored areas were not looked at.

For eye tracking data, the viewers’ eye positions equate to objects, whilst the time dimension of the movie de-
scribes how the viewers’ gaze varies (how the objects move). Figure 2 shows that there are three dense regions R1, R2
and R3: where viewers frequently focus their attention. During a conversation between the two characters in a movie,
the viewers switch their focus between these two characters. Since there is nothing interesting in the background, we
would expect that R1 and R3 should be considered as the “interesting” regions. Region R2 is unlikely to be of interest,
as it is simply the result of eye movements between the two characters. The discovery of common eye movement
patterns (moving object patterns) has applications in advertising, since they can guide product placement.

Compared to platoon patterns, convoy and swarm patterns are less suitable for eye tracking. Convoy patterns are
determined by a globally consecutive timestamp constraint, and regions R1 and R3 would be missed, as it is unlikely
that viewers look at the same region consecutively for the whole period (Figure 2 (a)). Swarm patterns have no time
consecutiveness constraint, and region R2 will be output (Figure 2 (b)), since it has been visited frequently (but not
continuously). Platoon patterns use a local consecutive timestamp constraint, and only patterns in R1 and R3 are output
(Figure 2 (c)), since they attract continuous focus.

1.2.2. Contributions
Efficient mining of platoon patterns in a large trajectory database is challenging. As the number of objects in-

creases, the number of candidate patterns grows exponentially. We propose a platoon closed pattern mining algorithm
called PlatoonMiner to address this issue. Four pruning techniques: Frequent-Consecutive pruning, Object pruning,
Subset pruning and Common prefix pruning reduce the search space. The common prefix pruning rule is also able
to directly extract closed platoons during the computation of platoon queries. Our experiments will demonstrate the
effectiveness and the scalability of our proposed algorithm. In summary, we make the following contributions:

• We introduce a more flexible type of moving object cluster pattern, the platoon pattern.

3

• We propose a novel efficient algorithm PlatoonMiner for mining platoon patterns.

• We experimentally show the scalability of PlatoonMiner using real-world and synthetic datasets. Our algorithm
can be several orders of magnitude faster compared to a swarm pattern mining algorithm.

2. Related work

We survey existing work on discovering moving cluster patterns and describe representative methods.

2.1. Approaches to Mine Moving Object Clusters
The flock pattern was proposed in [4]. A group of spatial objects moving together within a disk of a given radius

r forms a flock. Later studies by Gudmundsson et al. [10, 5] introduced the minimum consecutive time period k as a
parameter, instead of considering each time snapshot separately. Objects in the same group must stay together at all
times during the period k (globally consecutive constraint): no object may leave or join the cluster. The disk shape
constraint that is imposed for flock pattern may decrease its generality, e.g., a convoy of cars could travel in a line
(instead of a disk). In comparison, the platoon pattern does not restrict the shape of moving object clusters.

A moving cluster [11] is a group of objects that are together for a certain time duration and fulfill two constraints:
(1) there at least MinPts objects in the group at all times and (2) objects together in the same set satisfy a spatial
density value e . A moving cluster also requires a minimum percentage of common objects between two consecutive
timestamps q , i.e., |ct\ct+1|

|ct[ct+1| � q , 0 < q 1, where ct is a cluster at timestamp t. A moving cluster does not require
objects from the same cluster to be present at all times in the cluster. Unlike platoon patterns, there is no constraint on
the minimum number of timestamps (mint).

Jeung et al. [7, 8] proposed the convoy pattern, which uses the number of common objects m, rather than the
proportion q between two consecutive timestamps, as a constraint for specifying the convoy pattern. In addition,
convoy patterns enforce a minimum duration of consecutive timestamps, similar to the flock pattern.

A common property of flock, moving object and convoy patterns is that the timestamps are globally consecutive.
In contrast, platoon patterns use a locally consecutive constraint: e.g. if we set minc = mint ⇥ 0.5, only half of the
timestamps of the minimum duration need to be consecutive (locally consecutive). On the other hand, a platoon query
with minc = mint is capable of retrieving the convoy patterns of fixed duration (all the timestamps in the fixed duration
are consecutive, i.e., is globally consecutive).

The swarm pattern [9] is directly related to our work and it is connected with the MoveMine project [12]. In
fact, swarm patterns may be considered as special case of platoon patterns when we set minc = 1, i.e., the locally
consecutive time constraint is removed. Swarm pattern mining considers the timestamps as an unordered set, rather
than a sequence. There are some major differences between a platoon pattern and a swarm pattern query. The platoon
pattern query can directly retrieve the moving object clusters with consecutive timestamps (Figure 2 showed why this
can be important for eye tracking). It can also handle datasets with overlapping clusters (c.f. Section 4.6). Moreover,
a platoon pattern query with minc = 1 can retrieve all the swarm patterns, but not vice versa. We will use the swarm
mining algorithm ObjectGrowth [9] as a baseline for evaluating the efficiency of PlatoonMiner.

Table 1 summarizes different moving object cluster patterns: only our approach can directly extract moving ob-
ject clusters with locally consecutive timestamps. In addition, the flexibility of our approach enables users to mine
different types of patterns proposed in the previous work. By setting mint = mintc (global consecutive timestamps),
PlatoonMiner can be used to discover convoy patterns. If we set minc = 1 (no consecutiveness requirement), we also
can use PlatoonMiner to mine swarm patterns. Therefore, PlatoonMiner can simulate the previous approaches by
using different parameters but not vise versa.

2.2. Clustering of Spatial Trajectories and Moving Objects
In spatial trajectory clustering, Lee et al. [13] introduced a partition-and-group framework to find the common

paths of a set of sub-trajectories. The trajectories are first partitioned into segments and then grouped into clusters
according to distance. Compared to platoon mining, the focus is a geometric rather than a moving object perspective,
and the temporal properties of trajectory data are not considered.

4

Table 1: Summary of moving object cluster patterns. Globally (locally): a pattern can be mined with a globally (locally) consecutive timestamp
constraint.

Pattern Globally Locally Minimum Arbitrary
duration shape

Flock
p

⇥
p

⇥
Moving cluster

p
⇥ ⇥

p

Convoy
p

⇥
p p

Swarm ⇥ ⇥
p p

Platoon
p p p p

There are also studies on clustering moving objects [14, 15, 16]. In [14], micro-clustering is applied to group
moving objects into clusters. Both current and near future positions of moving objects are considered during cluster-
ing. Kriegel et al. [15] also modified the DBSCAN algorithm [17] using fuzzy distance functions. Jensen et al. [16]
proposed an approach for incrementally computing object clusters across a period of time. The major focus of these s-
tudies was about reducing the cost of computing and maintaining the object clusters, whilst the goal of platoon pattern
mining is to discover the co-location patterns from the time changing object clusters for trajectory data.

2.3. Frequent Itemset Mining
Although we use a similar notation to the frequent itemset mining problem [18, 19, 20, 21], there are aspects that

differentiate platoon pattern mining: (1) Platoon mining treats the sequential ordering of timestamps as significant,
e.g., the number of consecutive timestamps in the temporal object cluster C1 = {o1,o2 : t1, t2, t3} is three, while there
are only two consecutive timestamps in the temporal object cluster C2 = {o1,o2 : t1, t6, t7}. If we set minc = 3, the
cluster C2 is not a platoon. In contrast, support (frequency) is the only measurement for an itemset in frequent itemset
mining. Treating a moving object as an item C1 and C2 are identical in the previous example, i.e., {o1,o2 : 3}.
However, the objects in clusters could change over time. (2) In the spatial context, cluster overlapping is allowed,
which means that measurement of support is not directly applicable. (3) There is a threshold for the minimum number
of objects in the platoon mining problem, while the size of itemset is not a concern in the frequent itemset mining
problem. For example, if we set mino = 2, {o1 : T} cannot be a platoon regardless of |T |. (4) The popular pruning
techniques used in frequent itemset mining are item merging, sub-itemset pruning and item skipping. However, the
pruning rules used in platoon pattern mining are Frequent-Consecutive pruning, Object pruning rule, Subset pruning
rule and Common prefix pruning rule. The former two pruning rules do not apply to frequent itemset mining. The
Subset pruning rules can be seen as a generalized version of sub-itemset pruning, which can handle overlapping
clusters. Compared to item skipping, the Common prefix pruning rule is implemented by subtree substitution and it
also has a minimum object constraint. More details will be given in Section 4.3.

2.4. Frequent Sequential Pattern Mining
Another closely related research topic is the problem of frequent sequential pattern mining which was first in-

troduced in [22], followed by later extensive studies in [23, 24, 25, 26, 27, 28]. Given a sequence database and a
frequency threshold, the task is find all frequent subsequence patterns from the database. There were three algo-
rithms [22] proposed to address this task. The algorithms AprioriSome and DynamicSome focus on solely mining
the maximal frequent subsequence patterns whereas AprioriAll does not use the maximality constraint. A maximal
subsequence pattern A is a pattern such that there is no other pattern B with A ⇢ B. AprioriAll works as follows. It
first scans the database D once to compute all frequent single items (1-sequence). Then it combines every pair of
frequent candidate a and b to generate 2-sequences ab and ba. Another scan on D is performed to obtain the frequent
patterns of length 2. Next, the algorithm merges two frequent (k�1)-patterns A and B that share the first k�2 items,
to generate a k-candidate. The first k�1 items of the candidate are the same as A and the k-th item is the same as the
last item of B. AprioriAll generates all k-candidates in this way from frequent k�1-patterns and tests them against D
to get all frequent k-patterns. The candidate generation step and database scan and check step are executed alternately
until no new candidate can be generated.

5

o5

o4

o1

t1 t2 t3
time

o2

t4 t5

o3

o4

o1

o2

o3

o4

o1

o2

o3

o4

o1

o2

o3

o5

o4

o2

o3

o1

t object clusters

t1 {o1,o2},{o3,o4},{o3,o5}

t2 {o1,o2},{o2,o3,o4}

t3 {o1},{o2,o3,o4 }

t4 {o1,o2,o3,o4 },{o3,o5}

t5 {o1,o2,o3},{o2,o3,o4}

closed platoons

(o3,o4: t1,t2,t3,t4,t5)

(o2,o3,o4: t2,t3,t4,t5)

(o1,o2,o3: t4,t5)

(o1,o2: t1,t2,t4,t5)

Figure 3: An example scenario.

These methods have been proven to work efficiently in classical sequence databases. Similar to the frequent
itemset mining, the interestingness of a sequential pattern is only assessed by its occurrence frequency. The order of
these occurrences is seen as irrelevant.

Moving object clusters can be considered as an extension of sequential patterns to trajectory databases. Compared
with classical sequential patterns, moving object clusters take the spatial property of an object (item) into account.
Compared to classical sequential pattern mining, only objects that are spatially close to each other are considered as
interesting. This requires the computation of spatial closeness between objects. In particular, our approach allows
users to control the duration of consecutive timestamps at which objects stay together. This can be described as the
length of subsequences of a sequential pattern. Novel techniques are required to check the consecutiveness constraint
in the context of timestamp-based data.

3. Problem definition

Let TS = {t1, t2, ..., tn} be a linearly ordered set of timestamps of a trajectory history (called time space). Let
OS = {o1,o2, ...,om} be a collection of objects that appear in TS (called object space). An object oi 2 OS is observed
at (possibly nonconsecutive) timestamps T ✓ TS. We refer to T as a timestamp sequence and its length is |T |. A
trajectory database stores the trajectories of individual objects at distinct time points. A set of moving objects O
(called objectset) that travel together as a cluster for a timestamp sequence T is denoted as C = (O : T) and called a
temporal object cluster, where O ✓ OS and T ✓ TS. For each timestamp, an object oi can belong to more than one
cluster, i.e., overlapping clusters are allowed.

Given a minimum number of object threshold mino, a temporal object cluster C = (O : T) is significant if |O| �
mino. Two timestamps ti, t j 2 T are consecutive if | j� i|= 1. For T 0 ✓ T let tmax be the largest timestamp and tmin be
the smallest timestamp in T 0. T 0 is a consecutive timestamp sequence if 8t 2 T, tmin t tmax,9t 0 2 T 0 such that t and
t 0 are consecutive. We say T 0 ✓ T is maximally consecutive if @T 00 ✓ T , such that T 0 ⇢ T 00 and T 00 is a consecutive
timestamp sequence. Let Sl�con(T) = {T 0 | T 0 ✓ T ^T 0 is maximally consecutive ^ |T 0|� l}, i.e. Sl�con(T) is the set
of all maximally consecutive timestamp sequences T 0 of T with length at least l.

Given a minimum number of timestamps threshold mint and minimum number of consecutive timestamps thresh-
old minc, C = (O : T) is frequent if |T | � mint ; C is minc locally consecutive, if 8t 2 T , there exists a T 0 such that
T 0 2 Sminc�con(T) and t 2 T 0. i.e. T decomposes into consecutive segments, each of length at least minc. Also,
C = (O : T) is minc globally consecutive, if T 2 Sminc�con(T).

For example, given a temporal object cluster C = (O : T) and thresholds mint = 5 and minc = 2, where T =
{t1, t2, t4, t5, t6}. There are two maximally consecutive timestamp sequences in T : T 01 = {t1, t2} and T 02 = {t4, t5, t6}.
S2�con(T) = T 01[T 02 = {{t1, t2},{t4, t5, t6}}. Now |T |= 5�mint and C is frequent. Since |T 01 |, |T 02 |�minc, C is locally
consecutive. We formally define a platoon pattern. Therefore, if we set minc < mint , only partial timestamps of the
minimum duration need to be consecutive (locally consecutive). On the other hand, a platoon query with minc = mint
can mine the platoon pattern that all the timestamps of the minimum duration are consecutive (globally consecutive).

Definition 1. A platoon is a temporal object cluster C = (O : T) that is significant, frequent and locally consecutive.

Intuitively, a platoon is a cluster of a number of objects that travel together for some consecutive segments of time. In
Figure 1, for mino = mint = minc = 2 the platoon C1 = (o2,o3,o4,o5 : t1, t2, t4, t5) is returned. The derived platoons

6

C2 = (o2,o3 : t1, t3, t4) and C3 = (o2,o3,o4,o5 : t1, t2) contain less information than C1 since O2 ✓ O1 and T3 ✓ T1. A
platoon C = (O : T) is considered as object-maximal if there is no other platoon C0 = (O0 : T 0) such that O ⇢ O0 and
T = T 0; C is considered as time-maximal if there is no other platoon C0 = (O0 : T 0) such that T ⇢ T 0 and O = O0. The
maximal objectset and maximal timestamp sequence of C are denoted as Omax(C) and Tmax(C), respectively.

Definition 2. A platoon C = (O : T) is closed if and only if C is both object-maximal and time-maximal.

Pre-processing of Input: Given a trajectory database, our problem is to mine the complete set of closed platoon
patterns. As a preprocessing step, any spatial clustering algorithm (e.g. DBSCAN [17]) and distance metric (e.g.
Euclidean distance) can be used to obtain the clusters at each snapshot of the trajectory database. The output is a
temporal object cluster database, denoted as CDB. Example scenario 1 is used throughout the paper.

Example 1. Figure 3 shows the example scenario will be using throughout the paper, where TS = {t1, t2, t3, t4, t5} and
OS = {o1,o2,o3,o4,o5}. At each timestamp, objects are assigned to different clusters with some maximum diameter
and cluster overlapping is allowed. e.g. o3 belongs to two different clusters at t1. Our task is to retrieve the complete
set of closed platoons where mino = mint = minc = 2.

Definition 3. (Problem definition) Given a pre-processed trajectory database D and thresholds mino, mint and minc,
our task is to mine the complete set of closed platoon patterns from D.

4. Retrieval of Closed Platoons

The definition of closed platoons suggests a simple way to retrieve all closed platoon patterns. First build an
enumeration tree of either the object or the time space, and then traverse this tree. The tree contains every combination
of objects (or timestamps) in depth-first search order (DFS) or breadth-first search (BFS) order. The enumeration tree
has 2|OS| (or 2|TS|) nodes and this exhaustive search has time complexity of O(2|OS| · |TS| · |OS|), since at each node we
need to scan TS (OS) to calculate Tmax (Omax). Additional time is also needed to filter out non-closed patterns from the
pattern output set quadratic in the number of candidate patterns).

As the naive (brute force) approach is impractical for large datasets, we propose four pruning rules to narrow
the search space. We expect the number of timestamps to be larger than the number of moving objects and the
clustering process to be used for grouping moving objects instead of timestamps. We thus construct the enumeration
tree based on the object space and traverse it depth first. The first pruning rule is Frequent-Consecutive pruning and
removes patterns that are not frequent and/or locally consecutive. The Object pruning rule prunes patterns that are
not significant. The Subset pruning rule avoids unnecessary extensions of the current objectset. The Common prefix
pruning rule directly extracts the closed platoon based on a subtree substitution technique, avoiding the need for post
processing of patterns.

4.1. Main Ideas
Figure 4 provides an overview of our approach. It contains two modules.

• In preprocessing, objects at each timestamp of the trajectory database are clustered into groups, yielding clusters
for each timepoint. As mentioned before, platoon patterns do not rely on a particular clustering technique for
deciding the spatial closeness of objects. This new representation is denoted as CDB.

• PlatoonMiner retrieves the complete set of closed platoons from CDB using depth first search in the object space.
We use prefix tables (c.f. Section 4.2) to efficiently store candidates at each step. The upper-left part of Figure 5
shows an example of the search tree. The search proceeds from left to right and top to bottom. In each iteration,
each node is associated with a candidate C that has an objectset O and a timestamp sequence Tmax at which the
objectset occurs. Four punning rules are used to speed up the mining process (c.f. Section 4.3). Unqualified
Candidates will be removed and the search will not continue down to their subtrees. Any closed platoon found
in current iteration will be directly extracted.

7

Temporal Object Cluster Database CDB and suffix X

Trajectory Database

Cluster the objects at each timestamp into group
Preprocessing

(Spatial clustering)

Remove infrequent or non locally consecutive or
common prefix objects from PTX

(Frequent-Consecutive pruning and Common prefix pruning)

Extend each object o remained in PTX

(Object pruning and Subset pruning)

Construct prefix table PTX for CDB

Search in OS

(PlatoonMiner)

Output closed platoon if any

CDB !PLo and X !{o} U X

Figure 4: Structure of the PlatoonMiner algorithm.

The use of notations is summarized in Table 2.
In the PlatoonMiner algorithm, we consider an objectset as an object string, ordered according to lexicographical

order. Consider an objectset O and an object oi in O. Then O0 is called the prefix of oi, if 8o j 2 O, j < i we have
o j 2O0. For example, for the objectset O = {o1,o2,o3}, the set {o1,o2} is the prefix of o3 (and likewise o3 is the suffix
of {o1,o2}). Each objectset in the node of the search tree is the suffix X of its children. Therefore, each objectset O
consists of two parts: the current object o and its suffix X , where O = {o}[X and X is the objectset of its parent node.
For example, in Figure 5, the current object o and the suffix X of objectset {o3,o4,o5} are o3 and {o4,o5} respectively.
In order to use our pruning algorithms, we also store the number of occurrences of a cluster C, which is denoted as
N (N � |T |). In Figure 3, objectset {o2,o3} at timestamp t5 is in two different clusters and hence counted twice, but
there is only one actual cluster {o2,o3}. A temporal object cluster C can be written as (O : T : N), in situations where
it is important to specify the number of occurrences.

During enumeration, one challenging task is to calculate Tmax of the current candidate C with objectset O. A naive
approach is to perform a full scan on CDB every time to obtain the timestamps that the objectset O appears. Therefore,
the number of points that need to be scanned for computing the Tmax is (|TS| · |OS|) (if all moving objects exist in the
whole timestamp history). As shown below, in our approach, only one full scan on CDB is needed.

4.2. Prefix Table
In PlatoonMiner, Tmax of the current objectset O = {o}[X is obtained by the prefix table of their parent X , where

8o 2 (OS �X). The prefix table is a data structure with a two-level hash index which allows fast computing for
Tmax. Each prefix table is associated with a suffix X , denoted as PTX . The prefix table stores Tmax (later updated as
Sminc�con(Tmax) via Algorithm 3), Ncon (number of occurrence of locally consecutive timestamps) and PrefixList PLo
of objectset O = {o}[X (8o 2 (OS�X)), where o is the first level hash index. In addition, PLo records the set of
prefix {P} of objectset O as well as the variables Tp and Np. P is the second level hash index and Tp and Np are the
timestamp sequence and the number of occurrences of objectset P[O in TS respectively. For example, in Figure 5,
PTo4 records Sminc�con(Tmax) and Ncon of objectsets {o1,o4}, {o2,o4} and {o3,o4}, as well as their prefixes. {o1} is
the prefix of {o2,o4} in PTo4 .

When the search commences, we first scan the input CDB to count Tmax for objectset O = {o}[f , where X = f

and 8o 2 OS. Meanwhile, we collect the prefix of o of each object cluster. These results are stored in PT
f

. Next, we
extend the object in PT

f

and construct PTo where 8o 2 PT
f

. The PrefixList of o in PT
f

then becomes the input C0DB
of PTo. After that, we construct the prefix table for the object in PTo in the same way. This process repeats recursively
until there is no object to be extended in the last prefix table. Let P be the prefix of O, since |P| < |O|, we have
|C0DB|< |CDB|. Thus, only one full scan on CDB is needed for constructing the PT

f

.

8

Table 2: Summary of the use of notations.

OS Object space.

TS Timestamp history.

O, O0 Objectset that is contained in OS.

T , T 0 Timestamp sequence that is contained in TS.

Tmax (Tmax(C)) The maximum timestamp sequence of C.

N The number of occurrences of timestamps.

Ncon The number of occurrences of locally consecutive timestamps.

Sl�con(T) The set of all maximally consecutive timestamp sequences T 0 of T with length at least l.

Sminc�con(T) The set of all maximally consecutive timestamp sequences T 0 of T with length at least minc.

PTO The prefix table of O.

PLo PrefixList of O = {o}[X (8o 2 (OS�X)).

4.3. Pruning Rules
As mentioned before, the number of nodes in the search tree based on the object space is in the worst case |2|OS||,

thus requiring pruning strategies to narrow down the search space. There are three well known pruning strategies in
mining closed frequent itemsets [19, 20, 21]: item merging, sub-itemset pruning and item skipping. These pruning
strategies have been proven to be effective in avoiding searching redundant candidates patterns but they do not di-
rectly support the closed platoon query as shown in the previous section. Instead, the four pruning rules used in the
PlatoonMiner algorithm are as follows.

4.3.1. Frequent-Consecutive Pruning Rule
For suffix X , after construction of prefix table PTX , we may derive Tmax of each child of X from PTX . Lemmas 1

and 2 show that if a child does not satisfy the mint or minc threshold, then its descendants cannot be platoons.

Lemma 1. If a temporal object cluster C = (O : T) is not frequent and O✓ O0, then C0 = (O0 : T 0) is not frequent.

The proofs of lemmas can be found in Appendix A.

Lemma 2. If a temporal object cluster C = (O : T) is not locally consecutive, then any C0 = (O0 : T 0) such that O✓O0
cannot be locally consecutive.

Using these lemmas, we have the following pruning rule.

Rule 1. If a current candidate C = (O : T) is not frequent or not locally consecutive, then we can prune the subtree
from O because there is no (closed) platoon for any descendant.

Example 2. In Figure 5, for the candidate pattern associated with objectset {o5}, we have |S2�con({t1, t4}) = f |< 2
then the whole subtree of {o5} can be pruned.

Frequent checking on |T | requires constant time. To calculate Sminc�con(T), requires linear time to scan T from
left to right. During calculation, we extract those T 0 such that, T 0 is consecutive ^ |T 0|�minc from T (see Algorithm
3). If the threshold is not met, the whole subtree of current node can be pruned. In practice, we test the two thresholds
by performing frequent checking on Sminc�con(Tmax) since it ensures all its timestamp segments are consecutive. Thus
any record in PTX such that |Sminc�con(Tmax)|< mint can be removed to avoid redundant search.

9

ϕ o5 o4o5 o3o4o5 o2o3o4o5 o1o2o3o4o5
o1o3o4o5

o2o4o5 o1o2o4o5
o1o4o5

o3o5 o2o3o5 o1o2o3o5
o1o3o5

o2o5 o1o2o5
o1o5

o4 o3o4 o2o3o4 o1o2o3o4
o1o3o4

o2o4 o1o2o4
o1o4

o3 o2o3 o1o2o3
o1o3

o2 o1o2
o1

ϕ

ϕ

{t1,t4} {}

{t1,t2,t3,t4,t5}

{} {} {}

4
{}

{}

{}

{}

{t1,t4} {} {}

o{}

{} {}

{}

{t1,t2,t3,t4,t5}

{t1,t2,t3,t4,t5}

{t1,t2,t3,t4,t5}

{t1,t2,t3,t4,t5} {t2,t3,t4,t5} {t4}

{t4}

{t2,t3,t4,t5} {t4}

{t4}

{t2,t3,t4,t5} {t4,t5}

{t4,t5}

{t1,t2,t4,t5}

ϕ

ϕ

Extract common prefix {o3} (subtree substitution)

ϕ

Frequent-Consecutive pruning

Common prefix pruning
Subset pruning

1

2 3

4 5 6

7
8

1

2

3

4

5

7

2

6

8

3

4

5

ϕ 6

8

7

Object pruning

prefix Tp Np

o1 t4 1

o2 t2 t3 t5 3

o1 o2 t4 1

suffix = o2 o3 o4;T= t2,t3,t4,t5 ; N = 4

ø

prefix Tp Np

o1 t4 t5 2

suffix = o1 o2 o3;T= t4,t5 ; N = 2

ø

suffix = o1 o2;T= t1,t2,t4,t5 ; N = 4

ø

√ Closed platoons

√

√

√ √

suffix = ø; T = t1,t2,t3,t4,t5 ; N = 11

object Sminc-con(Tmax) Ncon PrefixList

o1 {t1,t2,t3,t4,t5} 5

o2 {t1,t2,t3,t4,t5} 7

o3 {t1,t2,t3,t4,t5} 8

o4 {t1,t2,t3,t4,t5} 5

o5 ø 0

suffix = o3 o4;T= t1,t2,t3,t4,t5 ; N = 5

object Sminc-con(Tmax) Ncon PrefixList

o2 {t2,t3,t4,t5} 4

suffix = o3;T= t1,t2,t3,t4,t5 ; N = 8

object Sminc-con(Tmax) Ncon PrefixList

o1 {t4,t5} 2

o2 {t2,t3,t4,t5} 5

suffix = o2 o3;T= t2,t3,t4,t5 ; N = 5

object Sminc-con(Tmax) Ncon PrefixList

o1 {t4,t5} 2

suffix = o2;T= t1,t2,t3,t4,t5 ; N = 7

object Sminc-con(Tmax) Ncon PrefixList

o1 {{t1,t2},{t4,t5}} 4

suffix = o4;T= t1,t2,t3,t4,t5 ; N = 5

object Sminc-con(Tmax) Ncon PrefixList

o1 ø 0

o2 {t2,t3,t4,t5} 4

o3 {t1,t2,t3,t4,t5} 5

prefix Tp Np

o1 t1 t2 t4 t5 4

o2 t2 t3 t5 3

o1 o2 t4 t5 2

o3 t1 1

o2 o3 t2 t3 t5 3

o1 o2 o3 t4 1

o3 t1 t4 2

Figure 5: PlatoonMiner algorithm example scenario. 8 nodes are visited and 8 prefix tables are constructed. Each node is the suffix of its children,
and each suffix X is associated with a prefix table. The closed platoon (o3,o4 : t1, t2, t3, t4, t5) is output in step 2 by Common prefix pruning rule
(the subtree of {o3,o4} substitutes the subtree of {o3}).

4.3.2. Object Pruning Rule
Another constraint for a (closed) platoon is the minimum objects threshold mino. Opposite to Tmax, the objectset

of a child node is always larger than the objectset of its parent. Thus, the Frequent-Consecutive Pruning rule is not
applicable to the minimum object threshold. However, for any node {o}[X of the search tree, the largest objectset
of its descendant is determined by the index of first o and |X |. Lemma 3 proves the correctness of this rule. Similar to
the frequent checking rule on T , the object pruning rule also only takes constant time.

Lemma 3. In a depth-first search order tree, let C = (O : T) be the current candidate and oi be the first object of O,
where 1 i |OS|. If C is not significant and (i�1)+ |O|< mino, then any descendant of C is not significant.

Rule 2. Let oi with a suffix X to be an object under consideration to be extended, if i+ |X | < mino, then the whole
subtree of oi[X can be pruned.

Example 3. In Figure 5, the suffix of objectset {o2,o5} is {o5}. The maximum number of objects for the descendent
of {o2,o5} is 2+ |{o5}|= 3, if we set mino > 3, the subtree of {o2,o5} can be pruned.

4.3.3. Subset Pruning Rule
In the extreme case for a platoon query, we have mino = mint = minc = 1 and the previous two pruning rules will

have no effect on the enumeration tree. However, we can introduce another rule, the subset pruning rule, to shrink the
search space.

Lemma 4. In a depth-first search tree, if O⇢O0 and T = T 0 and N = N0, where C0 = (O0 : T 0 : N0) is a platoon found
previously. Then neither C = (O : T : N) nor its descendants cannot be a closed platoon.

Rule 3. Let C0 be a found previously platoon and C = (O : T : N) be a candidate. If O is a proper subset of O0, T = T 0
and N = N0, then the subtree of O can be pruned.

10

Example 4. In Figure 5, C0 = (o1,o2,o3 : t4, t5 : 2) is returned as a closed platoon in step 6. C = (o1,o3 : t4, t5 : 2)
is not a closed platoon. Assume that there is another object o0 in Figure 5, and C’s descendant C00 = (o0,o1,o3 :
t4, t5 : 2), which means o0 is always with {o1,o3}. Since T = T 0 and N = N0, o0 must be also always with {o2}, thus
(o0,o1,o2,o3 : T : N) is also a platoon which have been found before (DFS order).

When performing subset checking on the current candidate C = (O : T : N), let R be the patterns found so far.
There are three possible outcomes: (1) 9C0 2 R such that O⇢O0 and T = T 0 and N = N0; (2) 9C0 2 R such that O⇢O0
and T = T 0 and N > N0; (3) otherwise. In (1), the Subset pruning rule takes effect and the whole subtree of current
node can be pruned. Case (2) may happen when there are overlapping clusters in the dataset. e.g. In Figure 5, when
we perform the subset checking on C = (o2,o3 : t2, t3, t4, t5 : 5), we have C0 = (o2,o3,o4 : t2, t3, t4, t5 : 4), where C0 2 R,
O⇢ O0, T = T 0 and N > N0. In such a case, C is not a closed platoon according to the definition, but closed platoons
may exist in the descendants. In this example, N > N0 suggests that there must exist another objectset O00 that contains
O but not {o4}= O0 �O in some timestamp of T . In fact, O = {o2,o3} and {o1} are also in the same cluster at t4 and
t5, where {o1,o2,o3} is the child of {o2,o3} and {o1,o2,o3 : t4, t5} forms a closed platoon. In case (3), C is a closed
platoon if |O|�mino and there is no common prefix of O (see the next section). To speed up subset checking, we can
build a hash index on T for the patterns in R.

4.3.4. Common Prefix Pruning Rule
Let R = {C0} be a set of patterns found so far, the subset checking ensures that there is no pattern C such that

O⇢ O0 and T = T 0 will be added into R. However, we also need to ensure that @C0 2 R such that O� O0 and T = T 0.
A naive approach is to perform the closure checking to remove the non-closed platoon after the search, which yields a
time complexity of O(R2). Lemma 5 shows that we can directly extract closed platoons during the query computation.

Lemma 5. Given a temporal object cluster C = (O : T : N), if there is an objectset O0 (and @O00 � O0) occurs in the
every prefix of O, then (1) (O0 [O : T : N) forms a closed platoon (if |O0 [O| > mino) and (2) there is no closed
platoon in the subtree of O that does not contain O0.

Rule 4. In the prefix table PTX , any object o that has the same number of occurrences as X should be added into CP
(a set of common prefix) to forms a closed platoon (CP[X : T : N) if CP[X > mino. Additionally, any subtree of
objectset X that does not contain CP can be pruned.

Example 5. In Figure 5, we have Ncon(o3) = N = 5 in the prefix table of {o4}, thus (o3,o4 : T : N) forms a closed
platoon. Subtrees {o1,o4} and {o2,o4} can be pruned.

The common prefix pruning rule can be seen as a modified version of the item-merging [19] by adding the min-
imum object constraint. However, in PlatoonMiner, this rule is implemented by subtree substitution. In Example 5,
we extract common prefix {o3} to form a new suffix {o3,o4}. Then, we use the subtrees of {o3,o4} to substitute
the subtree of {o4}. That is, we search {o2,o3,o4} and {o1,o3,o4} (and their descendants) instead of {o2,o4} and
{o1,o4} (and their descendants). Comparing the number of occurrences requires O(1) extra time.

4.4. PlatoonMiner Algorithm
The pseudocode of the PlatoonMiner algorithm based on the above lemmas is presented in Algorithms 1 - 5 (refer

to Appendix C). Figure 5 illustrates the execution steps of the PlatoonMiner algorithm in our example scenario. The
algorithm takes a temporal object cluster database as input and the number of occurrences of each cluster is initialized
as 1. The entry of the algorithm is to call PlatoonMiner(CDB,f ,TS, |CDB|,mino,mint ,minc,0), where mino = mint =
minc = 2 for the example scenario.

In Algorithm 1, the first task is to build the prefix table PT for given CDB with suffix X (line 1 - 5), which is
done by Algorithm 2. First, the objectset of each temporal object cluster C in CDB is scanned from left to right
and inserted into the prefix table PTX . For each object o in O, Tmax is merged with T (line 3, Alg.2). Here we
use symbol “�” instead of “[” as we allow duplicate timestamps in Tmax in order to use Algorithm 3 to extract
Sminc�con(Tmax). We then update the PrefixList of o if PT contains a record for o (line 4 - 8, Alg.2). If o is new
to PT , we insert o into PT and put the prefix of o into PLo (line 9 - 11, Alg.2). After that, we call Algorithm 2

11

recursively if o is not the last object (rightmost) of O. Once PT is built, the common prefix of suffix X as well as the
objects that cannot satisfy time constraints are detected (line 8 - 15, Alg.1). We first use Algorithm 3 to obtain the
locally consecutive timestamps Sminc�con(Tmax) as well as its number of occurrence Ncon. Consider an example where
Tmax = {t1, t2, t2, t4, t7, t8} and minc = 2. The computation is performed by scanning Tmax from left to right (line 5 -
15, Alg.3). Tcon keeps growing as long as the adjacent timestamps are consecutive. Meantime, c records the number
of occurrence of consecutive timestamps including those are duplicate. When it encounters a gap, Tcon is added into
Sminc�con and Ncon increases by c if |Tcon| � minc (line 11, Alg.3). Tcon and c are then reset (line 12, Alg.3). For this
example, we have Sminc�con(Tmax) = {{t1, t2},{t7, t8}}. Sminc�con and Ncon are returned to Algorithm 1 for pruning
tests. According to lemma 5, (CP[X : T : N) forms a closed platoon if CP is not empty. The next step extends the
prefix of the objects in PT by calling Algorithm 4 (line 23, Alg.1). We process the objects in PT in reversed order. If
the current object cannot be extended to be a significant objectset, this object and the rest in PT will stop extending
according to lemma 3 (line 2 - 4, Alg.4). Then, the suffix X is extended to X 0 = {o}[X (line 5, Alg.4), where X 0
is the objectset of the child of X . After performing subset checking on candidate C, the whole subtree of X 0 can be
pruned if s = 0 according to lemma 4. Otherwise, we call Algorithm 1 recursively using C0DB and X 0 as input.

Appendix B shows how PlatoonMiner works on the example scenario (Figure 5).

Theorem 1. The set of closed platoon patterns returned by the PlatoonMiner algorithm is correct and complete.

4.5. Time and Space Complexities Analysis
For each node of search tree, the memory usage of PlatoonMiner to build the prefix table is O(|OS| · |TS|). The

upper bound only holds for building PT
f

. Afterwards, the CDB shrinks to the PrefixList of each object in the previous
prefix table. PlatoonMiner requires O(|OS| · |TS|) to compute the Tmax for current candidate.

4.6. Handling of Overlapping Clusters
Overlapping clusters are common in many real-world applications. Later, we compare our work to the fastest

known algorithm for mining swarm patterns: ObjectGrowth [9]. The work of [9] implicitly assumes that cluster
overlaps can only occur for the first object. In more detail: in ObjectGrowth, the maximal timeset for current objectset
O = {oi, · · · ,o j,o j+1} is extracted from the maximal timeset of O0 = {oi, · · · ,o j} by removing the timestamps where
o j+1 is not in O0. o j+1 is considered as getting together at timestamp t with O0 if o j (i.e. the last object of O0)
and o j+1 occurs in at least one cluster at t. This works correctly when there are no overlapping clusters or the
overlap of clusters coincides with the first object of the search tree. However, the maximal timeset will be incorrectly
calculated if the overlap of clusters contains other objects than the first object. For example, in Figure 5, the maximal
timeset (timestamp sequence) of O = {o1,o2,o3} and O0 = {o1,o2} should be {t4, t5} and {t1, t2, t4, t5} respectively.
In ObjectGrowth, the maximal timeset of {o1,o2,o3} is extracted from {t1, t2, t4, t5}. At t2, o2 and o3 are in one
cluster (O00 = {o2,o3}), and o2 and o1 also are in another cluster, but o1 is not with o3 in any cluster (o1 2 O0 but
o1 < O00). However, objects o1, o2 and o3 are still considered being together at t2 since o2 and o3 are in the same
cluster. Thus, the maximal timeset of {o1,o2,o3} computed by ObjectGrowth is {t2, t4, t5} instead of the correct
answer {t4, t5}. The reason is that the use of the occurrence of o j as the occurrence of O0 causes problems when
ObjectGrowth computes the maximal timeset. At timestamp t, if o j and o j+1 are in another objectset O00 such that
{9o2O0 : o <O00}, o j+1 is still considered in the same cluster with O0 = {oi, · · · ,o j} (denoted as Ct(o j)\Ct(o j+1), f

in [9]), where o j = o2 and o j+1 = o3 in this example. No problem will occur if o j = o1 because O0 = {o1} and o1
have the same occurrence. Otherwise, the maximal timeset is not correct. This issue can be addressed by considering
the occurrence of the objectset rather than only the occurrence of the last object, but it potentially slows down the
execution speed of ObjectGrowth since it requires extra time to match an objectset rather than an individual object.
We call this modified version of ObjectGrowth as ObjectGrowth*. To compare the efficiency of PlatoonMiner against
ObjectGrowth, we assign each moving object to at most one cluster at each timestamp in the datasets to ensure that
ObjectGrowth correctly computes all (swarm) patterns. The datasets used in our experiment are non-overlapping by
default unless we explicitly specify.

12

11 7 2

6
1 5
9 12

3 10

 4 8

12
11
10 │ │
9 │ │ │
8 │
7 │ │ │ │ │
6 │ │ │ │ │ │ │
5 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
4 │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
3 │ │ │ │ │ │ │ │
2 │
1 │

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

12 A={22}
11 B={35}

10 │ │ C={11, 22}
9 │ │ │ D={32, 35}
8 │ E={11, 22, 24}

7 │ │ │ F={6, 10, 11, 22, 30}
6 │ │ │ │ G={3, 6, 10, 11, 14, 22, 28, 30, 32, 35}

5 │ │ │ │ │ │
4 │ │ │ │ │ │
3 │ │ │ │ │

2 │
1 │

 A B C D E F G

T T

UserID (a) (b) (c)

Positions of Flashing Points

Figure 6: (a) Position of flashing point on the screen as a 3 by 3 matrix. The number in the cell represents the position of the flashing point for
each of 12 timestamps. (b) Closed platoon patterns for each individual user (marked by the vertical line). Parameters: mino = 1, mint = minc = 2.
Each column of the matrix represents how an individual behaves during the whole period of the experiment. Swarm patterns are colored as grey.
(c) Seven patterns (A-G) found based on all users except for cluster G. Each pattern (column) is a cluster of users having similar eye trajectories
over a period of timestamps. Parameters: mino = 1, mint = 4 and minc = 2. Patterns A-F are platoons and pattern G is a swarm.

5. Experiments

We conducted extensive experiments to evaluate the performance of PlatoonMiner by using both real-world
and synthetic datasets. The efficiency of PlatoonMiner was mainly compared against ObjectGrowth [9] for non-
overlapping datasets in Sections 5.1 and 5.2. ObjectGrowth is adopted as the baseline in our experiments as it is
the fastest known algorithm that can mine swarm patterns. In Section 5.3, we compare PlatoonMiner versus Ob-
jectGrowth* (c.f. Section 4.6) for overlapping datasets (and for traffic data in the non-overlapping case). We chose
ObjectGrowth as our main baseline for two reasons: (1) both PlatoonMiner and ObjectGrowth require pre-clustered
objects; (2) ObjectGrowth does not have any constraint on the consecutiveness of timestamps which means maxi-
mum patterns will be retrieved. This allows us to fully test the scalability of approach while performing a direct
comparison with ObjectGrowth by setting minc = 1. In Section 5.4, we further compare our approach with MC2 and
CuTS* for mining moving object clusters with global consecutive timestamps. We did not compare PlatoonMiner
with those algorithms that mine flock patterns due to their strict constraints on the shape of patterns (c.f. Section 2).
The datasets we tested were not limited to having a disk shape which is required by flock patterns. All algorithms were
implemented in Java (JDK 1.6) on MAC OS X 10.7.1 using an Intel Core i5 2.3 GHz machine with 8GB memory.

5.1. Evaluation On Real Datasets
We investigated the interpretability of Platoon patterns using eye movement data, and the efficiency of Platoon-

Miner using traffic data.

5.1.1. Eye Movement Data
We used an eye movement dataset [29] whose original task was to predict users’ identities based on their eye

movements. It consists of 652 labeled samples from 37 users. Eye tracking equipment obtained 2048 measures for
each sample. Sampling frequency was 250Hz and measurements lasted 8192 ms. The screen the user looked at
is modelled as a 3⇥ 3 matrix. A jumping flashing point on the blank screen was used as stimulus with a varying
position, yielding a sequence of 12 point positions as shown in Figure 6 (a). The 8192 ms period was divided into 12
frames, with each frame lasting ⇠ 550 ms, except for the first and last frames which were 1600 ms and 1100 ms. At
timestamps t1, t5, t9 and t12, the flashing point was in the center of the blank screen and directly ahead of the user’s
eyes. Ideally, a user’s sequence of eye movements and the flashing point movements are similar trajectories. We call
a transition of the flashing point between two consecutive timestamps a local jump if the change of position involves
two adjacent cells in the 3⇥3 matrix, and otherwise, a global jump. Both t7! t8 and t10! t11 are global jumps.

In our experiments, we consider user eyes as moving (objects) and each frame as a timestamp. Our aim is to
discover how strictly the users follow the test, i.e., whether their eye positions follow the transitions of the flashing
point. We calculate the average coordinates of each user’s eye positions for each frame. At each timestamp we say
that user followed the test, if at least half of the samples of the user are in the same cell as the flashing point. Although
the eye movement data is a relatively small dataset, its primary propose is to show there are many significant patterns
that cannot be directly obtained by existing methods.

13

 Bus Truck

#objects 145 276
#timestamps 1713 2449
#data points 29202 75579
mino 10 10
mint 20 20
minc 1~20 1~20
#Platoons
closed; minc =1

103247 37147

#Platoons
closed; minc =20

911 1282

Bus Truck

Real dataset

El
ap

se
d

tim
e

(s
ec

.)

0
50

0
10

00
15

00
20

00

12.8

382.1
551.9

67.5

1361.5

1955.6PlatoonMiner
ObjectGrowth
ObjectGrowth*

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

LoC %

El
ap

se
d

tim
e

(s
ec

.)

● Bus
Truck

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

LoC %

N
um

be
r o

f p
at

te
rn

s
fo

un
d

(th
ou

sa
nd

)

● Bus
Truck

(a) Configuration (b) Elapsed time (c) Elapsed time w.r.t. LoC (d) #Patterns w.r.t. LoC

Figure 7: (a) & (b) Configuration and elapsed time for traffic datasets. (c) & (d) Effect of LoC on platoon queries.

To understand how individuals performed, we applied PlatoonMiner for each of the 37 users (its runtime was
negligible due to the small size of the dataset). The result is shown in Figure 6 (b). We set the parameters as mino = 1,
mint = minc = 2. The returned platoon patterns are marked by vertical lines. To compare the Platoon patterns with
swarm patterns, we also applied ObjectGrowth using mino = 1 and mint = 2. The returned swarm patterns are colored
as grey. For these parameters, all the platoon patterns are swarm patterns but not vice versa. We see that about half of
the cells in the matrix are colored (timestamps for swarm patterns), but less than half of the colored cells are marked
with a cross. We observe that several of users were able to follow many transitions of the flashing point (contiguous
series of crosses in a column). Notice that the swarm patterns often correspond to widely separated time points (users
4, 9, 12 and 34). Only one user obeys the test for the transition t7 ! t8 and no one follows on t10 ! t11. Local
jumps like t4 ! t5 and t5 ! t6 are more popular. An application that might benefit from this finding is placement
of advertisements that would be best placed in adjacent cells. An analysis based solely on swarm patterns could
not distinguish local jumps and global jumps, since patterns with non-consecutive time points are treated equally to
patterns with consecutive time points.

In addition, Figure 6 (c) columns A-F are the complete set of closed platoons obtained by applying PlatoonMiner
to all users, with the aim of discovering those behaving similarly. The right side of this figure shows the objects in
each of the patterns. The parameters were set as mino = 1, mint = 4 and minc = 2. Setting mino = 1 allows us to
detect a pattern consisting of a single user having many timestamps satisfying the constraint. We observe that users in
patterns C, D, E and F have similar trajectories over some certain timestamps. Also, user22 and user35 obey the eye
test the most, perhaps indicating they have the best attention span.

It is unlikely users would follow the test on the entire sequence of consecutive timestamps, as required by the
convoy pattern. Lowering the threshold to mint = 4 as the “same” setting as PlatoonMiner, the timestamp sequence
for cluster A becomes t1 ! t5 which loses the information that they follow the transition of t9 ! t10. Furthermore,
cluster B will be ignored entirely, as there are fewer than 4 consecutive timestamps in this pattern. On the other
hand, some loose patterns like users in cluster G (which is a swarm pattern) that follow the flashing point at five
isolated timestamps would be returned. Such a pattern is less informative, since isolated timestamps do not contain
information about the transition of the jumping point.

5.1.2. Traffic Data
Two real-world vehicle traffic datasets were used1. (1) A bus dataset recording 2 school buses collecting (and

delivering) students around Athens for 108 days and consisting of 145 trajectories. (2) A truck dataset recording 50
trucks delivering concrete to construction sites around Athens over 33 days and consisting of 276 trajectories.

To increase the size of moving objects, we considered each distinct trajectory as the ID of an object, yielding
145 buses and 276 trucks. This is a common method and has been used elsewhere [8]. The timestamp update
frequency was set to every 30 seconds. Any second of a timestamp falling into the range [0”, 30”) was normalized
to 15”. Otherwise, it was normalized to 45”. For example, the timestamp 23:22:22 gets normalized to 23:22:15,
while 23:22:58 gets normalized to 23:22:45. The clusters at each timestamp are obtained by DBSCAN [17] with

1http://www.rtreeportal.org

14

6 8 10 12 14 16
MinObject

El
ap

se
d

tim
e

(s
ec

.)
10

10
0

10
00

10
00

0

●

●

Bus(PM)
Truck(PM)
Bus(OG)
Truck(OG)

6 8 10 12 14 16

0
10

0
20

0
30

0
40

0

MinObject

N
um

be
r o

f p
at

te
rn

s
fo

un
d

(th
ou

sa
nd

)

● Bus
Truck

5 10 15 20 25 30
MinTime

El
ap

se
d

tim
e

(s
ec

.)
10

10
0

10
00

10
00

0

●

●

Bus(PM)
Truck(PM)
Bus(OG)
Truck(OG)

5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

MinTime

N
um

be
r o

f p
at

te
rn

s
fo

un
d

(th
ou

sa
nd

)

● Bus
Truck

(a) Elapsed time w.r.t.
mino

(b) #Patterns w.r.t. mino (c) Elapsed time w.r.t.
mint

(d) #Patterns w.r.t. mint

Figure 8: Effect of mino and minc on elapsed time and number of patterns (PM = PlatoonMiner, OG = ObjectGrowth). Y-axis of elapsed time is
logarithmic.

MinPoints = 3 and e = 0.05, where MinPoints denotes the minimum number of objects in a cluster with a radius of e .
Figure 7 (a) details the information about these two datasets. To compare with ObjectGrowth, we use the consecutive
timestamp constraint of minc = 1. Thus, both methods return the complete set of platoon/swarm patterns. We set
mino = 10 and mint = 20. The elapsed times of PlatoonMiner and ObjectGrowth for the bus and truck datasets are in
Figure 7 (b). The number of closed platoons/swarms returned is equal for both methods. Compared to ObjectGrowth,
PlatoonMiner is at least 20 times faster as shown in Figure 7 (b). ObjectGrowth* has relatively small overhead
compared to ObjectGrowth, due to the extra time for objectset matchings.

Explanation for the performance difference
The key reason that is responsible for the performance difference between PlatoonMiner and ObjectGrowth when

mining swarm patterns is the following: ObjectGrowth computes Tmax for an objectset O = O0 [{o j} by exhaustively
enumerating each timestamp of the maximum timeset of O0 and calculating the intersection of clusters that contain
o j and clusters that contain oi (where oi is the last object of O0). In PlatoonMiner, however, prefix tables are used to
incrementally obtain the maximum timeset for an objectset. Other reasons including different pruning techniques are
also contributing the performance difference. For example, ObjectGrowth has no pruning rule based on the threshold
for the minimum number of objects. We will see in Section 5.2 that the performance difference between PlatoonMiner
and ObjectGrowth will significantly increase for larger numbers of objects.

Effect of mino and mint thresholds
The effect of mino and mint on running time and number of patterns found by PlatoonMiner and ObjectGrowth

is reported in Figure 8. We vary mino (mint) with fixed mint = 20 and minc = 1 (mino = 10 and minc = 1). The
number of patterns returned decreases dramatically with increasing threshold value. For mino, the running time of
PlatoonMiner declines with larger mino due to the shrinking search space by the Object pruning rule. In contrast,
the effect of mino on ObjectGrowth is negligible since the mino threshold does not narrow down the search space of
ObjectGrowth. For mint , there is a significant decrease in running time of both PlatoonMiner and ObjectGrowth due
to the timestamp pruning rules. The number of patterns found in the truck dataset drops more rapidly than those found
in the bus dataset, as the threshold value increases.

Effect of LoC value
In addition, we performed platoon queries on these two datasets by varying the consecutiveness threshold minc

from 1 to 20. We define the level of consecutiveness (LoC) as:

LoC(minc,mint) =

(
0 if minc = 1
minc
mint

otherwise
(1)

A platoon query with LoC = 0 retrieves the complete set of closed swarms, while a value of LoC = 100% retrieves
all convoy patterns with fixed duration of mint . In contrast, swarm queries require a postprocessing step to obtain

15

0.02 0.04 0.06 0.08 0.10

0
5

10
15

20

Epsilon

El
ap

se
d

tim
e

(s
ec

.)

● Bus
Truck

0.02 0.04 0.06 0.08 0.10

0
20

00
40

00
60

00
80

00

Epsilon

N
um

be
r o

f p
at

te
rn

s
fo

un
d

● Bus
Truck

200 400 600 800 1000
Number of objects

El
ap

se
d

tim
e

(s
ec

.)

 0
 5

00
00

10
00

00
15

00
00

● PlatoonMiner
ObjectGrowth

200 400 600 800 1000

0
50

10
0

15
0

20
0

Number of objects

N
um

be
r o

f p
at

te
rn

s
fo

un
d

(a) Elapsed time w.r.t. e (b) #Patterns w.r.t. e (c) Elapsed time w.r.t. |O| (d) #Patterns w.r.t. |O|

Figure 9: (a) & (b) Effect of the setting of DBSCAN on elapsed time and number of patterns. (c) & (d) Tests on the datasets generated by Brinkhoff
data generator.

platoon patterns with LoC > 0 due to the removal of the patterns with nonconsecutive timestamps, and convoy queries
cannot mine the platoon patterns of LoC < 100%. Thus, the platoon query is flexible and effective.

Figure 7 (c) shows for PlatoonMiner that elapsed time is negatively correlated with LoC value. Mining time for
the bus dataset and truck dataset decreases from 12.8s to 0.6s and from 67.5s to only 5.4s, when LoC increases from
0 to 100%. In Figure 7 (d), PlatoonMiner retrieved 103247 (37147) closed swarms from the bus (truck) dataset when
LoC = 0, but only 911 (1282) of them are convoys (LoC = 100%).

Effect of the setting of DBSCAN
We also tested the effect of the DBSCAN clustering algorithm on elapsed time and number of platoon patterns by

choosing different e (the radius of a cluster). The results are shown in Figure 9 (a) and (b). We observe that there no
patterns are found for a small radius, since the cluster is too small to form a moving object cluster that fulfills mino
constraint. Generally more patterns are found on clusters with bigger radii. However, since we are finding closed
platoon patterns, when the cluster becomes bigger, smaller patterns will be merged into closed patterns. That is the
reason why the number of patterns start to decline when e > 0.7 for truck dataset and e > 0.8 for bus dataset. In fact,
for e = 0.1, most of the timestamps only have one big cluster. Recall that DBSCAN is considered as a preprocessing
step and other spatial clustering algorithms are also applicable to our methods.

5.2. Evaluation On Synthetic Datasets
In this section, we will test PlatoonMiner and ObjectGrowth on two categories of synthetic datasets that are

generated by two different data generators. (1) The Brinkoff data generator2 , which simulates the behavior of moving
objects by using a group of factors including maximum speed of objects and maximum capacity of connections. (2)
Our own data generator in which we use transition probabilities to define at which cluster a moving object stays at
each timestamp.

5.2.1. Benchmark: Brinkhoff Data Generator
We first ran PlatoonMiner and ObjectGrowth on the datasets generated by the Brinkhoff data generator. We used

the map of Oldenburg as the input map data. In order to control the exact size of the objectset we tested, we vary
the number of objects from 100 to 1000 and set the number of newly generated objects at each timestamp as zero.
The maximum number of timestamps is set to 10000. In order to make moving objects last longer (thus the data has
more timestamps), we set the speed divided by 250 which is the default value for slow. Other parameters were set
as default. The parameters of PlatoonMiner and ObjectGrowth were set as mino = 5, mint = 200 and minc = 1 (for
PlatoonMiner). The results are shown in Figure 9 (c) and (d).

As we can see, the elapsed time of ObjectGrowth jumps as dramatically as the number of objects increases. On
the other hand, the elapsed time of PlatoonMiner grows approximately linearly from 0.5 second to just 5.4 seconds
(which cannot be visualized in Figure 9 (c)). The difference of elapsed time becomes more obvious when the number

2http://www.fh-oow.de/institute/iapg/personen/brinkhoff/

16

Cluster

3

Cluster

4

Cluster

5

Cluster

2

Cluster

1

0.8

0.2 ×
6

2
0.2 ×

6

2

0.2 ×
1

0.2 ×
1

0.2 ×
6

1
0.2 ×

6

C3

0.8
0.2 ×

6

2
0.2 ×

6

2

0.2 ×
6

1
0.2 ×

6

1
C4 C5C2C1

0 20 40 60 80 100

10
0

20
0

30
0

40
0

50
0

LoC %

El
ap

se
d

tim
e

(s
ec

.)

● MinTime=10
MinTime=20
MinTime=30

0 20 40 60 80 100
LoC %

N
um

be
r o

f p
at

te
rn

 fo
un

d

 1
0

10

0
 1

00
00

● MinTime=10
MinTime=20
MinTime=30

(a) The setting of transition probabilities (b) Elapsed time w.r.t. LoC (c) #Patterns w.r.t. LoC

Figure 10: (a) Transition probabilities of objects in C3 moving from two adjacent timestamps calculated by equations 2 where P(stay) = 0.8 and
P(move) = 0.2. (b) & (c) Effect of mint and LoC on platoon queries.

of objects reaches 800. In addition, Figure 9 (d) indicates that the number of closed swarm patterns found increases
from 17 to 174.

One limitation of using the Brinkhoff data generator to test the performance of PlatoonMiner is that the number
of timestamps at which objects appear is relatively small. For example, even though we set a slow speed for moving
objects, most of the moving objects will disappear after about 3000 timestamps and are only active for a short time.
Therefore, to increase the volume of timestamps the datasets contain, we developed our own data generator as shown
in the following section.

5.2.2. High Volume of Moving Object Data
To test the performance of PlatoonMiner on a larger scale, we developed a simulator which generates temporal ob-

ject clusters with various distributions. It takes four input parameters: the number of moving objects |OS|, the number
of timestamps |TS|, the number of clusters at initial timestamps x , the probability distribution d = {P(stay),P(move)}
of moving objects to stay in a cluster or move to another cluster at next timestamp. At t1, the objects are assigned
to the given x clusters equally. From current timestamp ti to next timestamp ti+1, a moving object can either stay
in its current cluster Cj or move to another cluster Ck by given probability distribution d , where 1 i |TS| and
1 j,k x . The transition probability is calculated by:

8
><

>:

P(Cj|Cj) = P(stay)

Âx

k, j P(Ck|Cj) = P(move) = 1�P(stay)
P(Cj±1|Cj) : P(Cj±2|Cj) = 2 : 1

(2)

where P(Ck|Cj) denotes the event that an object moves from cluster Cj to Ck. In addition, an object is more likely to
move to closer clusters rather than those further away. Figure 10 (a) gives an example of transition probabilities of
objects in C3 from timestamp ti to timestamp ti+1, where P(stay) = 0.8 and P(move) = 0.2.

In the basic setting of our experiment, we set |OS|= 1000, |TS|= 10000, x = |OS|/10 (i.e. 10 objects per cluster
at t1) and P(stay) : P(move) = 0.8 : 0.2. Since objects exist all the time during our simulation, the total number of
data points reaches 107 in the basic setting. For the parameters of PlatoonMiner and ObjectGrowth, we set mino = 5,
mint = 20 and minc = 1 (for PlatoonMiner). We compared the performance of PlatoonMiner against ObjectGrowth
by changing one of |OS|, |TS|, mino and mint with other parameters fixed. The results are shown in Figure 11.

Effect of number of objects and timestamps
As shown in Figure 11 (a) and (b), PlatoonMiner outperforms ObjectGrowth more significantly as the size of

dataset increases. The performance of ObjectGrowth is very sensitive to the number of objects, and the elapsed time
rises approximately linearly with increasing number of timestamps. Figure 11 (c) shows running time of PlatoonMiner
for different data sizes of data. as its behavior cannot be visualized in Figure 11 (a). The elapsed time of PlatoonMiner
for increasing number of objects has a similar trend with that for an increasing number of timestamps. Both grow
approximately linearly. The elapsed time of PlatoonMiner is almost proportional to the number of patterns found as
the size of data increases (Figure 11 (d)). In Figure 11 (a), we observe that the PlatoonMiner is 21 times faster than

17

200 400 600 800 1000
Number of objects

El
ap

se
d

tim
e

(s
ec

.)

 0
 5

00
00

10
00

00
15

00
00

● PlatoonMiner
ObjectGrowth

2000 4000 6000 8000 10000
Number of timestamps

El
ap

se
d

tim
e

(s
ec

.)

 0
 5

00
00

10
00

00
15

00
00

● PlatoonMiner
ObjectGrowth

200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

Number of objects

El
ap

se
d

tim
e

(s
ec

.)

1000 3000 5000 7000 9000
Number of timestamps

● PlatoonMiner(#objects)
PlatoonMiner(#timestamps)

200 400 600 800 1000

10
00

30
00

50
00

70
00

Number of objects

N
um

be
r o

f p
at

te
rn

s
fo

un
d

1000 3000 5000 7000 9000
Number of timestamps

● PlatoonMiner(#objects)
PlatoonMiner(#timestamps)

(a) Elapsed time w.r.t. |OS| (b) Elapsed time w.r.t. |TS| (c) Elapsed time of
PlatoonMiner w.r.t. |OS|, |TS|

(d) #Patterns w.r.t. |OS|,
|TS|

2 3 4 5 6 7 8
MinObject

El
ap

se
d

tim
e

(s
ec

.)

10
0

 1
00

0
 1

00
00

10
00

00

● PlatoonMiner
ObjectGrowth

2 3 4 5 6 7 8
MinObject

N
um

be
r o

f p
at

te
rn

s
fo

un
d

 1

0
 1

00
0

10
00

00

10 15 20 25 30
MinTime

El
ap

se
d

tim
e

(s
ec

.)

10
0

 1
00

0
 1

00
00

10
00

00

● PlatoonMiner
ObjectGrowth

10 15 20 25 30
MinTime

N
um

be
r o

f p
at

te
rn

s
fo

un
d

10

0
 1

00
0

 1
00

00
10

00
00

(e) Elapsed time w.r.t.
mino

(f) #Patterns w.r.t. mino (g) Elapsed time w.r.t.
mint

(h) #Patterns w.r.t. mint

Figure 11: Synthetic data using transition probabilities. Effect of |OS|, |TS|, mino and mint on elapsed time and number of closed platoons/swarms.
|OS|= 1000, |TS|= 10000, |mino|= 5 and |mint |= 20. minc is set to 1 for PlatoonMiner. Y-axes of (e), (f), (g) and (h) are logarithmic.

ObjectGrowth when |O| = 100. However, the gap elapsed time between these two algorithm increases significantly
and PlatoonMiner outperforms ObjectGrowth by almost 400 times when |O| grows to 1000.

Effect of mino and mint thresholds
Similar to the experiments on real datasets, increasing the mino or mint threshold requires less elapsed time,

except that a larger mino threshold does not decrease the cost of ObjectGrowth due to the lack of a pruning rule in
mino threshold, as shown in Figure 11 (e) and (g). The elapsed time of PlatoonMiner decreases from 401 seconds to
306 seconds as mino increases. Similarly, elapsed time of PlatoonMiner decreases from 491 seconds to 301 seconds
as mint increases. Compared to the experiments on real datasets, in Figure 11 (f) and (g), the number of patterns
found decreases more dramatically with an increasing threshold value. In our synthetic datasets, the probability of n
objects in a cluster to stay together in next timestamp is P(stay)n, while the probability of one object stay in the same
clusters for m timestamp is P(stay)m. As the threshold value increases, the probability drops exponentially. Note that
Figure 11 (f) and (g) use a logarithmic scale.

Effect of LoC value
We study the effect of LoC on platoon queries on the synthetic dataset composed of 107 data points. Figure 10

(b) and (c) reports the elapsed time of PlatoonMiner and the number of closed platoon found for combinations of
mint and LoC. In general, a larger mint incurs less elapsed time and has less patterns. Running time rises slightly
when LoC increases from 0 to 20%, since PlatoonMiner requires extra time to perform the consecutiveness check on
timestamps. In contrast, the number of closed platoons remains the same in this interval, implying that all the moving
objects stay in the same cluster for at least 20% of the minimum duration. In such a case, the consecutiveness check of
Frequent-Consecutive pruning rule does not affect the search space but costs more elapsed time. However, the running
time decreases significantly in the higher level of consecutiveness. Another observation from Figure 10 (b) is that the
significant drop in elapsed time for mint = 30 happens earlier than that of mint = 10 and mint = 20. Since a larger

18

200 400 600 800 1000
Number of objects

El
ap

se
d

tim
e

(s
ec

.)

 0
 5

00
0

10
00

0
15

00
0

20
00

0

● PlatoonMiner
ObjectGrowth*

200 400 600 800 1000
Number of timestamps

El
ap

se
d

tim
e

(s
ec

.)

 0
 5

00
0

10
00

0
15

00
0

20
00

0

● PlatoonMiner
ObjectGrowth*

200 400 600 800 1000

0
5

10
15

20
25

30

Number of objects

El
ap

se
d

tim
e

(s
ec

.)

100 300 500 700 900
Number of timestamps

● PlatoonMiner(#objects)
PlatoonMiner(#timestamps)

200 400 600 800 1000

50
00

10
00

0
15

00
0

Number of objects

N
um

be
r o

f p
at

te
rn

s
fo

un
d

100 300 500 700 900
Number of timestamps

● PlatoonMiner(#objects)
PlatoonMiner(#timestamps)

(a) Elapsed time w.r.t. |OS| (b) Elapsed time w.r.t. |TS| (c) Elapsed time of
PlatoonMiner w.r.t. |OS|,

|TS|

(d) #Patterns found w.r.t.
|OS|, |TS|

Figure 12: Datasets with overlapping clusters. Settings: |OS|= 1000, |TS|= 1000, |mino|= 5, |mint |= 20 and minc = 1.

Bus Truck

Real dataset

El
ap

se
d

tim
e

(s
ec

.)

0
10

20
30

40
50

60

1.5

7.2

1.3
5.3

36.5

6.7

PlatoonMiner
MC2
CuTS*

Bus

PlatoonMiner MC2 CuTS*

#Patterns 911 957 823

Avg. #Objects
per Pattern

15 13 21

Truck

PlatoonMiner MC2 CuTS*

#Patterns 1282 1317 1089

Avg. #Objects
per Pattern

17 16 26
2000 4000 6000 8000 10000

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of timestamps

El
ap

se
d

tim
e

(s
ec

.)
● PlatoonMiner

MC2
CuTS*

2000 4000 6000 8000 10000

0
20

40
60

80
10

0

Number of timestamps

R
at

io
 o

f s
am

e
pa

tte
rn

s
%

Ratio(PlatoonMiner, MC2)
Ratio(PlatoonMiner, CuTS*)

(a) Traffic datasets (b) #Patterns (c) Scalability (d) Ratio of same patterns

Figure 13: Mining platoon patterns with global consecutive timestamps (mint = minc).

mint has a larger number of consecutive timestamps for a fixed LoC, the elapsed time of mint = 30 drops rapidly since
LoC = 40% while the elapsed time of mint = 10 and mint = 20 decreases insignificantly until LoC = 60%.

5.3. Datasets With Overlapping Clusters
We further compare the efficiency of PlatoonMiner against ObjectGrowth* as ObjectGrowth does not support

overlapping clusters. The datasets were created with our data generator using the same settings as Section 5.2, except
that when an object o chooses to move from cluster Cj to cluster Ck (j , k) at timestamp ti we instead keep a copy of
o in both Cj and Ck for one more timestamp. Object o is then removed from Cj at timestamp ti+1. Therefore, o exists
in both Cj and Ck at timestamp ti. The experiment setting: |OS| = 1000, |TS| = 1000, |mino| = 5 and |mint | = 20.
minc is set to 1 for PlatoonMiner. Note that the number of data points in this setting is more than 106 since there are
overlapping clusters. Results are presented in Figure 12 and we see that datasets with overlapping clusters are more
complicated. As shown in Figure 12 (d), the number of patterns found in the dataset of |OS|⇥ |TS| = 1000⇥ 1000
reaches 16978 compared to only 781 for the same size of non-overlapping dataset (left-most point in Figure 11 (d)).
ObjectGrowth* takes up to 21036.3 seconds for the basic setting while PlatoonMiner only takes 18.5 seconds.

5.4. Mining Platoon Patterns with Global Consecutive Timestamps
Lastly, we compared our approach against MC2 [11] and CuTS* [8] for mining platoon patterns with global

consecutive timestamps (i.e. LoC = 100%). MC2 and CuTS* are originally designed to mine moving clusters and
convoy patterns respectively (c.f. Section 2 for details). In order to achieve a direct comparison, the experiments were
set up as follows. For PlatoonMiner, we set minc = mint(LoC = 100%) which means all timestamps of a pattern are
required to be consecutive. For MC2, we set the percentage of common objects in clusters between two consecutive
timestamps as q = 1.

19

The spatial clustering process is embedded in the original implementation of MC2 and CuTS*. In our experiments,
we generated the clusters at each timestamp in advance for MC2 and CuTS* and the running time of pre-clustering
was not counted. The trajectory simplification [8] technique used in the filter step of CuTS* was still applied.

The comparison was first carried out on the traffic datasets used in Section 5.1.2 with the same configuration
except that we set mint = minc = 20 for PlatoonMiner. As shown in Figure 13 (a), our approach exhibits significantly
faster elapsed time than MC2 for retrieving interesting patterns and has comparable performance with CuTS*. This
is mainly due to the fact that PlatoonMiner avoids the time consuming computation of intersection and union of
clusters required by MC2. Although all three algorithms used DBSCAN with the same distance threshold in the
clustering process, the patterns discovered vary to an extent. The use of cluster combination technique and trajectory
simplification in MC2 and CuTS* respectively are responsible for the difference. As shown in Figure 13 (b), by using
trajectory simplification, CuTS* tend to have bigger objectsets in the patterns. Consequently, a smaller number of
patterns are returned as some of them are combined.

We then further use the large synthetic datasets in Section 5.2.2 for comparing the scalability of three approaches.
In order to apply the line simplification technique of CuTS*, the clusters generated by our simulator are plotted with
data points. This allows CuTS* to use its filter step (c.f. [8]) to process the raw data. The results are demonstrated
in Figure 13 (c). Again, both PlatoonMiner and CuTS* outperform significantly MC2 (about five times faster). As
mentioned before, there are difference among the returned patterns. We measure the difference by computing the ratio
of same patterns returned by two groups (Figure 13 (d)): (1) PlatoonMiner and MC2; (2) PlatoonMiner and CuTS*.
Overall, PlatoonMiner and MC2 share about 80% of their patterns whilst PlatoonMiner and CuTS* return about 65%
same patterns.

From this experiment, it is evident that PlatoonMiner can be used for simulating MC2 and CuTS* and finding
moving clusters and convoy patterns with promising efficiency. We can observe that the number of patterns found are
significantly less compared to the previous section due to the strict constraint on the consecutiveness of timestamps.
In fact, we found that many disqualified patterns have only small gaps (one timestamp in some cases) between time
segments. MC2 and CuTS* are designed to find such patterns with strict constraints. This may be a desirable fea-
ture for finding convoy patterns [8]. However, employing such strict constraint means that one can miss interesting
patterns.

6. Conclusions

In this paper we have formalized the concept of platoon patterns. Unlike previously proposed patterns, the platoon
query is more flexible and retrieves temporal object clusters according to different levels of temporal consecutiveness.
To efficiently discover platoon patterns in a large-scale datasets, we introduced the PlatoonMiner algorithm, which
employs four types of pruning rules to discover the set of closed platoons. Our experiment using eye movement data
qualitatively demonstrated the utility of platoon pattern. Our experiments using other datasets showed the scalability
of PlatoonMiner: it is approximately 20 and 400 times faster than ObjectGrowth, for real and synthetic datasets,
respectively. In future work, we aim to investigate the use of platoon patterns for understanding co-location behaviour,
in contexts where location privacy is important.

Appendix A. Proofs of Lemmas

Appendix A.1. Lemma 1
Proof 1. If a temporal object cluster C = (O : T) is not frequent, then the number of timestamps in TC is less than
mint . Adding any object into O to form a superset O0 cannot make the objects occur in more timestamps, i.e. T 0C ✓ TC.
Therefore, a C0 = (O0 : T 0) is not frequent either.

Appendix A.2. Lemma 2
Proof 2. A temporal object cluster C = (O : T) is not locally consecutive implies 9T 0 2 Sl�con(T)^ l < minc. C0 =
(O0 : T 0), O✓O0, cannot increase the number of consecutive timestamps in T 0. Therefore, for Sl0�con(T 0), l0 l. Also
C0 = (O0 : T 0) is not locally consecutive either.

20

Appendix A.3. Lemma 3
Proof 3. If O is not significant then the number of objects in O is less than mino. Since oi is the first object in O, in the
depth-first search order, any object o j that can be added into O must have an index j < i, where 1 i, j |OS|. Thus,
the maximum possible number of objects can be added into O to form a descendant C0 is i�1. If (i�1)+ |O|< mino,
then C0 is not significant.

Appendix A.4. Lemma 4
Proof 4. C is not a closed platoon since O⇢ O0 and T = T 0. For any descendant C00 of C0, since T = T 0 and N = N0,
it implies that O always occurs together with O0 �O. If O00 �O occurs with O, then O00 �O must also occur with O0.
Therefore, if C00 is a platoon, then (O00 [(O0 �O) : T : N) is also a platoon which has been found before (DFS order).
Thus C00 is not closed.

Appendix A.5. Lemma 5
Proof 5. (1) Since O0 and O occur together in every timestamp in T and there is no O00 � O0 that does so, thus there
exists no C000 such that (O0 [O) ⇢ O000 and T = T 000. i.e. (O0 [O : T : N) is object-maximal. Since search uses the
object space, at each node we always calculate the Tmax for current candidate, thus T = Tmax and (O0 [O : T : N) is
time-maximal. Also, the infrequent or non locally consecutive candidate is removed by Frequent-Consecutive pruning
rule. Therefore, (O0 [O : T : N) is a closed platoon if |O0 [O|> mino. (2) Let C0 = (X [O : T 0 : N0) be a descendant
of C that containing O0, and C00 = (X [O0 [O : T 00 : N00) be a descendant of C containing O0. Since O0 and O are
always in the same cluster, that means T 0 = T 00. So C0 is not object-maximal. Thus C0 is not a closed platoon.

Appendix A.6. Theorem 1
Proof 6. (1) Correctness: Frequent-Consecutive pruning rule ensures that 8C 2R is frequent and locally consecutive,
where R is the set of results patterns. The Object pruning rule together with the test on mino for every candidate
pattern ensures that 8C 2 R is significant. Therefore, 8C 2 R is a platoon pattern according to the Definition 1. Subset
checking and common prefix checking ensure every pattern in R is object-maximal. Since search is based on OS and
we compute Tmax for every current candidate, every pattern in R is time-maximal. Therefore, 8C 2 R is a closed
platoon. (2) Completeness: the search space of the PlatoonMiner algorithm covers all cases for candidate patterns.
Lemma 1 to 5 prove that the four pruning rules only remove the redundant patterns from the search space. Thus every
closed platoon is retrieved by the PlatoonMiner algorithm.

Appendix B. The running example

Step 1: We first build the prefix table PT for the suffix f (PT
f

) by calling Algorithm 2. After checking each
object in PT

f

(line 8 - 15, Alg.1), object o5 fails to satisfy the locally consecutive threshold minc and hence the whole
branch of enumeration tree can be pruned by Frequent-Consecutive pruning rule. Then we build the prefix table for
the remaining objects in PT

f

recursively in the reversed order by calling Algorithm 3. o4 is the first object to be
extended (line 10, Alg.3), which leads to step 2.

Step 2: o4 is the next node we visit and PTo4 takes the PLo4 of PT
f

as the input CDB. After PTo4 is built, we found
{o3} is the common prefix of o4 (Ncon(o3) = N = 5), that means {o3} and {o4} are always travel together in CDB.
According to Lemma 3, (o3,o4 : t1, t2, t3, t4, t5 : 5) is a closed platoon, and {o3} can be extracted from PTo4 . That is,
we turn PTo4 into PTo3,o4 (line 11 and 22, Alg.1), and other subtrees of {o4} that does not contain {o3} ({o2,o4} and
{o1,o4}) can be pruned (subtree substitution, refer to Example 5). o2 is the only object in PTo3,o4 , the subset checking
result for (o2,o3,o4 : t2, t3, t4, t5 : 4) is 2, which is part of the input of step 3.

Step 3: There is no prefix object in PTo2,o3,o4 and the closed platoon (o2,o3,o4 : t2, t3, t4, t5 : 4) is returned (line 18,
Alg.1).

Step 4: PTo3 takes PLo3 of PT
f

as input CDB. o2 is extended first. As C0 = (o2,o3,o4 : t2, t3, t4, t5 : 4) has been
returned, the subset checking result for C = (o2,o3 : t2, t3, t4, t5 : 5) is 1 (O⇢ O0, T = T 0 and N > N0), thus C is not a
closed platoon. Node {o2,o3} is extended in step 5.

Step 5: As mentioned in step 4, the subset checking result for C = (o2,o3 : t2, t3, t4, t5 : 5) is 1 thus C is not a closed
platoon (line 18, Alg.1). o1 is the object to be extended and has a subset checking result of 2, which goes to step 6.

21

Step 6: C = (o1,o2,o3 : t4, t5 : 2) is returned as a closed platoon. After that, o1 of PTo3 is the next object to be
extended in step 4. However, the subset checking result for platoon C0 = (o1,o3 : t4, t5 : 2) is 0 (O ⇢ O0 and T = T 0
and N = N0) thus it (and its descendants if any) is pruned by subset checking rule (line 7, Alg.3).

Step 7: Object o1 is the only object to be extended in PTo2 and the subset checking result for (o1,o2 : t1, t2, t4, t5 : 4)
is 2 as the part of the input of step 8.

Step 8: (o1,o2 : t1, t2, t4, t5 : 4) is returned as a closed platoon. After step 8, we go back to o1 in PT
f

. Since
1+ |f |< mino, we can stop extending o1 in PT

f

according to Object pruning rule.

Appendix C. Pseudo-code

Algorithm 1 PlatoonMiner
Input: Clustered trajectory database CDB, suffix X , timestamp sequence T , occurrences N, minimum objects mino,

minimum timestamps mint , minimum locally consecutive timestamps minc, subset-checking result s
Output: R: the complete set of platoon patterns

1: PT f //Construct prefix table PT for CDB
2: for each temporal object cluster C in CDB do
3: o1st the first object of the objectset of C
4: Call Insert-Table(o1st , C, PT)
5: end for
6: CP f //Common prefix
7: RO f //Remove objects
8: for each object o in PT do
9: Call Extract-LC-Timestamps(Tmax, minc)

10: if Ncon = N then
11: CP CP[{o} //Common prefix pruning
12: else if |Sminc�con|< mint then
13: RO RO[{o} //Frequent-Consecutive pruning
14: end if
15: end for
16: RO RO[CP
17: if |CP|= 0 then
18: R R[(X ,T,N), if |X |> mino and s = 2
19: else
20: R R[(CP[X ,T,N), if |CP[X |> mino

//Lemma 5
21: end if
22: Remove the objects in RO from PT .
23: Call Suffix-Merge(PT , CP[X , mino, mint , minc, R)

22

Algorithm 2 Insert-Table
Input: Current object o, temporal object cluster C,

prefix table PT
Output: Updated prefix table

1: p prefix of o in O //where C = (O : T : N)
2: if o 2 PT then
3: Tmax Tmax�T
4: if p 2 PLo then
5: Tp Tp[T and Np Np +N
6: else
7: PLo PLo[{(p : T : N)}
8: end if
9: else

10: PT PT [{(o : T : N)}
11: PLo PLo[{(p : T : N)}
12: end if
13: o next object in O, if o is not the last object of O
14: Call Insert-Table(o, C, PT)

Algorithm 4 Suffix-Merge
Input: Prefix table PT , suffix X , mino, mint , minc, R
Output: Prefix tables of children nodes

1: for each object o in PT in reversed order do
2: if IndexOf(o)+ |X |< mino then
3: break //Object pruning
4: end if
5: X 0 {o}[X //X 0 is the objectset of the child of X
6: C (X 0 : Sminc�con : Ncon)
7: s Subset-Checking(C,R) //Subset pruning
8: if s , 0 then
9: C0DB PLo

10: Call PlatoonMiner(C0DB, X 0, Sminc�con, Ncon, mino,
mint , minc, s)

11: end if
12: end for

Appendix D. Discussion of Parameter Configuration

Overall, the number of patterns found increases in inverse proportion to the value of parameters mino, mint and
minc. The value of mino controls the size of object clusters which can be seen as the level of granularity of the
data studied. Generally speaking, a large mino should be used for analyzing large groups such as in animal seasonal
migration [2] whereas a relatively small mino should be used for analyzing small group behaviors such as students in
a class. The default value of mino was set to 10 for PlatoonMiner in our experiments. The value of mint indicates the
extent of a pattern exists, whilst the value of minc shows how coherent of objects in a pattern stay together over time.
Obviously, the number of patterns increase in inverse proportion to the value of mino, mint and minc. This inverse
relationship can be used for eliminating noisy patterns. The combination of the setting of mint and minc controls the
level of consecutiveness of timestamps (c.f. Section 5.1.2). According to our experimental results in Figure 7 (d), the
gradient descent for the number of patterns found occurs at around LoC = 10%. Overall, the configuration of these
parameters is largely driven by the end-user application.

23

Algorithm 3 Extract-LC-Timestamps
Input: Tmax, minc
Output: Locally consecutive timestamps Sminc�con,

number of occurrence Ncon
1: Sminc�con f and Ncon 0
2: Tcon f and c 0 //Tcon: consecutive timestamp
3: Let t1st be the first timestamp in Tmax
4: j IndexOf(t1st)
5: for each timestamp t in Tmax do
6: i IndexOf(t)
7: if i� j 1 then
8: c c+1
9: Tcon Tcon[{t}, if i� j = 1

10: else
11: Sminc�con Sminc�con[Tcon and Ncon Ncon + c,

if |Tcon|� minc
12: Tcon {t} and c 1
13: end if
14: j i
15: end for
16: Sminc�con Sminc�con[Tcon and Ncon Ncon + c,

if |Tcon|� minc

Algorithm 5 Subset-Checking
Input: Candidate object cluster C, patterns found so-far R
Output: Subset checking result s

s 0, if 9C0 2 R such that O⇢ O0 ^T = T 0 ^N = N0;
s 1, if 9C0 2 R such that O⇢ O0 ^T = T 0 ^N > N0;
s 2, otherwise.

Reference

[1] Y. Zheng, L. Zhang, X. Xie, W. Ma, Mining interesting locations and travel sequences from gps trajectories, in: International Conference on
World Wide Web, 2009, pp. 791–800.

[2] http://www.movebank.org.
[3] T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans look, in: International Conference on Computer Vision, pp.

2106–2113.
[4] P. Laube, S. Imfeld, Analyzing relative motion within groups of trackable moving point objects, in: International Conference on Advances in

Geographic Information Systems, ACM, 2002, pp. 132–144.
[5] J. Gudmundsson, M. van Kreveld, Computing longest duration flocks in trajectory data, in: International Conference on Advances in Geo-

graphic Information Systems, ACM, 2006, pp. 35–42.
[6] M. Vieira, P. Bakalov, V. Tsotras, On-line discovery of flock patterns in spatio-temporal data, in: International Symposium on Spatial and

Temporal Databases, ACM, 2009, pp. 286–295.
[7] H. Jeung, H. Shen, X. Zhou, Convoy queries in spatio-temporal databases, in: IEEE Transactions on Knowledge and Data Engineering, IEEE,

2008, pp. 1457–1459.
[8] H. Jeung, M. Yiu, X. Zhou, C. Jensen, H. Shen, Discovery of convoys in trajectory databases, in: International Conference on Very Large

Data Bases, 2008, pp. 1068–1080.
[9] Z. Li, B. Ding, J. Han, R. Kays, Swarm: Mining relaxed temporal moving object clusters, in: International Conference on Very Large Data

Bases, 2010, pp. 723–734.
[10] J. Gudmundsson, M. van Kreveld, B. Speckmann, Efficient detection of motion patterns in spatio-temporal data sets, in: International

Conference on Advances in Geographic Information Systems, ACM, 2004, pp. 250–257.
[11] P. Kalnis, N. Mamoulis, S. Bakiras, On discovering moving clusters in spatio-temporal data, in: International Symposium on Spatial and

Temporal Databases, 2005, pp. 364–381.
[12] Z. Li, B. Ding, F. Wu, T. K. H. Lei, R. Kays, M. Crofoot, Attraction and avoidance detection from movements, Proceedings of the VLDB

Endowment 5 (3).

24

[13] J. Lee, J. Han, K. Whang, Trajectory clustering: a partition-and-group framework, in: SIGMOD Record, ACM, 2007, pp. 593–604.
[14] Y. Li, J. Han, J. Yang, Clustering moving objects, in: SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, 2004, pp.

617–622.
[15] H. Kriegel, M. Pfeifle, Density-based clustering of uncertain data, in: SIGKDD Conference on Knowledge Discovery and Data Mining,

ACM, 2005, pp. 672–677.
[16] C. Jensen, D. Lin, B. Ooi, Continuous clustering of moving objects, in: IEEE Transactions on Knowledge and Data Engineering, IEEE, 2007,

pp. 1161–1174.
[17] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: SIGKDD

Conference on Knowledge Discovery and Data Mining, ACM, 1996, pp. 226–231.
[18] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: SIGMOD Record, ACM, 2000, pp. 1–12.
[19] J. Pei, J. Han, R. Mao, et al., Closet: An efficient algorithm for mining frequent closed itemsets, in: Data Mining and Knowledge Discovery,

Springer, 2000.
[20] J. Wang, J. Han, J. Pei, Closet+: Searching for the best strategies for mining frequent closed itemsets, in: SIGKDD Conference on Knowledge

Discovery and Data Mining, ACM, 2003, pp. 236–245.
[21] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach, in: Data Mining and

Knowledge Discovery, Springer, 2004, pp. 53–87.
[22] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of International Conference on Data Engineering, IEEE, Taipei, Taiwan,

1995, pp. 3–14.
[23] M. J. Zaki, Sequence mining in categorical domains: incorporating constraints, in: Proceedings of International Conference on Information

and Knowledge Management, ACM, 2000, pp. 422–429.
[24] M. Zaki, Spade: An efficient algorithm for mining frequent sequences, Machine Learning 42 (1) (2001) 31–60.
[25] J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate maintenance, IEEE Transactions on Knowledge and Data Engi-

neering 19 (8) (2007) 1042–1056.
[26] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M. Hsu, Mining sequential patterns by pattern-growth: The prefixspan

approach, IEEE Transactions on Knowledge and Data Engineering 16 (11) (2004) 1424–1440.
[27] J. Han, J. Pei, Mining frequent patterns by pattern-growth: methodology and implications, ACM SIGKDD explorations newsletter 2 (2)

(2000) 14–20.
[28] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, ACM SIGMOD Record 29 (2) (2000) 1–12.
[29] P. Kasprowski, J. Ober, Eye movements in biometrics, Biometric Authentication (2004) 248–258.

25

