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Abstract Generation and analysis of multiple clusterings is a growing and im-
portant research field. A fundamental challenge underpinning this area is how to
develop principled methods for assessing and explaining the similarity between
two clusterings. A range of clustering similarity indices exist and an important
subclass consists of measures for assessing spatial clustering similarity. These pro-
vide the advantage of being able to take into account properties of the feature
space when assessing the similarity of clusterings. However, the output of spa-
tially aware clustering comparison is limited to a single similarity value, which
lacks detail for a user. Instead, a user may also wish to understand the degree to
which the assessment of clustering similarity is dependent on the choice of feature
space.

To this end, we propose a technique for deeper exploration of the spatial sim-
ilarity between two clusterings. Using as a reference a measure that assesses the
spatial similarity of two clusterings in the full feature space, our method discovers
deviating subspaces in which the spatial similarity of the two clusterings becomes
substantially larger or smaller. Such information provides a starting point for the
user to understand the circumstances in which the distance functions associated
with each of the two clusterings are behaving similarly or dissimilarly. The core of
our method employs a range of pruning techniques to help efficiently enumerate
and explore the search space of deviating subspaces. We experimentally assess the
effectiveness of our approach using an evaluation with synthetic and real world
datasets and demonstrate the potential of our technique for highlighting novel
information about spatial similarity between clusterings.
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1 Introduction

Clustering is a core technique used in data mining, bioinformatics and pattern
recognition and is perhaps the most frequently used method for data exploration.
For complex applications and datasets, it is rarely the case that only a single
clustering1 needs to be analyzed. Rather, it is likely that multiple clusterings will
need to be considered, in order to gain insight into a domain. Multiple clusterings
may arise due to many experiments being carried out at different times, multiple
hypotheses being tested, the data containing different perspectives or views, or the
existence of legacy, or ‘gold standard’ clusterings being used for external validation.

When exploring a collection of multiple clusterings, a primary task for the user
is to be able to assess the similarity between a pair of clusterings. Computation
of similarity provides insight for the user into the relationship between two clus-
terings. This may allow removal of redundant clusterings, selection of interesting
clusterings, or increased understanding about clustering evolution. It is also a key
step when exploring the convergence properties of a clustering algorithm or assess-
ing the quality of the algorithm’s output when compared to an expert generated
clustering.

Many measures have been proposed for measuring the similarity between two
clusterings. The largest category of measures are membership based measures,
which compare the cluster memberships of objects in the two clusterings. This
typically involves either counting the co-occurrence of pairs of objects grouped to-
gether in a cluster and not in other clusters, or alternatively using an information
theoretic measure to assess the amount of information the object memberships in
one clustering provide about the object memberships in the other clustering. Well
known examples include the Rand Index (Rand 1971), Jaccard index (Hamers et al.
1989), variation of information (Meila 2007) and normalised mutual information
(Strehl and Ghosh 2003). These traditional measures do have some drawbacks,
however. They only use information about cluster memberships and are not sen-
sitive to the distances between objects in a cluster. They also cannot be used to
compare clusterings of different sets of objects.

To address the limitations with membership based clustering similarity mea-
sures, several recent works have proposed techniques for spatially aware clustering
comparison (Bae et al. 2010; Coen et al. 2010; Raman et al. 2011). These mea-
sures use information about the feature space when assessing distance/similarity
between objects, clusters and clusterings. Thus the similarity value that is com-
puted to compare two clusterings depends on the features that have been chosen.
This style of approach offers the significant advantage that (unlike membership
based measures), these measures are sensitive to distances between objects in a
cluster and can be used to compare clusterings performed on different sets of
objects.

Whilst using properties of the feature space when comparing clusterings has
significant advantages, it can also result in complications. The user may not know
which features are most appropriate to use when comparing two clusterings. Fur-
thermore, the output of a spatially aware clustering similarity measure is just a

1 A clustering is a set of clusters. The clusters are a partition of the set of objects in the
dataset.
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value between 0 and 1, assessing the degree of similarity. The connection between
this similarity value and the chosen feature space may not be obvious to the user.

Given these factors, in this paper we propose a new technique that can be
used to enrich the assessment of spatial similarity between two clusterings. Given a
reference assessment of clustering similarity in the full feature space, our technique
enumerates deviating subspaces in which the clustering similarity is substantially
increased or decreased. Such information can provide a starting point for the user
to gain insight into the appropriateness and applicability of the distance function
being used and the stability of the chosen feature space.

Motivating Scenario: Consider the following hypothetical scenario to mo-
tivate our idea. We have two “average” ambulance paramedics, one a novice and
the other an expert. Each paramedic is separately shown 100 patient case studies
and asked ”In your judgement, should this patient be admitted to hospital: {Yes,
No, Maybe} ?” The judgements provided by the two paramedics thus correspond
to two different clusterings, each having three clusters that partition 100 objects.

A feature space can be constructed to model the information contained in
the case studies, using categories of features such as patient information (height,
age, weight), vital signs (pulse, respiratory rate, temperature, blood pressure),
eye pupil characteristics (dilation, tracking ability), patient speech characteris-
tics (speed, loudness, dynamics) and skin characteristics (blotches, inflammation,
oiliness, softness).

The spatial similarity between the two clusterings in this feature space is com-
puted and found to be 0.6, meaning that the clusterings (novice and expert opin-
ions) appear to possess some core similarity. We now wish to identify the subspaces
in which the novice and expert judgements appear more similar (their distance
functions are closer and more transferable) and the subspaces in which their per-
spectives appear more dissimilar (their distance functions are less close and not as
transferable). For the first task, we find that a subspace consisting of a mixture of
vital signs features and speech characteristics yields a clustering similarity of 0.8,
which is 33% higher than in the full feature space. This may indicate that the level
of training being received by novices for scenarios modelled by this combination
of features is adequate and working well. For the second task, we find that a sub-
space consisting of skin characteristics and eye pupil features yields a clustering
similarity of 0.3, which is 50% lower than the similarity in the full feature space.
This may indicate that the level of training received by novices for scenarios in-
volving this second combination of features is insufficient and is not allowing them
to reach expert standard.

Synthetic Example: In order to visually understand how two clusterings
may have higher spatial similarity in a subspace, consider the synthetic example
in Figure 1. Here, two clusterings C and C′ are being compared in two different
feature spaces A = {X,Y } (full feature space) and A′ = {X} (a subspace where
A′ ⊂ A). Taking into account all the objects and all the clusters, C and C′ share
more spatial similarity in A′ than in A.

We are now in a position to roughly state our problem objective: Given two
clusterings, C and C′ and feature space A. Let the spatial clustering similarity
between C and C′ in A be S(A,C,C′). Our task is to enumerate all (deviating)

subspaces A′ ⊂ A for which i) S(A′,C,C′)
S(A,C,C′) ≥ δ1 (subspaces where there is higher
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Fig. 1 Comparison of C = {c1, c2} and C′ = {c′1, c′2} in subspaces A′ = {X} and A = {X,Y }.
The clusterings have higher spatial similarity in A′ than in A. Note that the object-cluster
memberships are exactly the same in both A and A′.

similarity) and ii) S(A′,C,C′)
S(A,C,C′) ≤ δ2 (subspaces where there is lower similarity),

where δ1 > 1 and δ2 < 1 are user specified parameter values.
Contributions: Our first contribution is that we formulate the new prob-

lem of deviating subspace discovery for spatial clustering comparison. Our second
contribution is that we propose an algorithm (which we call EVE) for enumer-
ating all deviating subspaces. EVE employs, as its base similarity measure, an
existing spatially aware similarity method known as ADCO (Bae et al. 2010).
Efficient enumeration of deviating subspaces is challenging, since the ADCO sim-
ilarity measure is neither monotonic, nor anti-monotonic, nor convertible. This
necessitates the use of pruning strategies, based on the determination of upper
and lower bounding functions, which themselves have monotonicity properties.
We carry out experiments to test the utility of our techniques. We show that i)
the notion of deviating subspace identification is meaningful and useful when as-
sessing the similarity between clusterings, ii) the EVE algorithm is able to run
effectively on several real world data sets.

2 Related Work

To the best of our knowledge, our problem of discovering deviating subspaces to
enrich spatial clustering similarity assessment is novel. An interesting proposal
in a similar spirit to our investigation has been developed by Tatti and Vreeken
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(2012), where a tiling technique is proposed to assess the similarity between differ-
ent data mining results (such as clusterings or prediction models). There are also
a number of traditional areas of research that are related: i) techniques for cluster-
ing similarity measurement, ii) techniques for spatially aware clustering similarity
measurement and iii) subspace clustering.

2.1 Current Clustering Comparison Techniques

Roughly speaking, there are three main types of traditional clustering comparison
methods.

Pair counting: Methods in this category are based on counting pairs of objects
and comparing the agreement and the disagreement between two clusterings. Pairs
of objects are classified into four types - N11, N10, N01 and N00 - where N11 is the
number of pairs of objects which belong to the same cluster in both clusterings,
N10 and N01 are numbers of pairs which belong to the same cluster in one of the
clusterings but not the other, and N00 is the number of object pairs belonging to
different clusters in both clusterings. N11 and N00 are treated as agreements and
N10 and N01 are treated as disagreements between the two clusterings. Popular
pair counting methods are the Rand index (Rand 1971) and Jaccard index (Hamers
et al. 1989) and also the Wallace indices (Wallace 1983) and extensions (Hubert
and Arabie 1985).

Set matching: This category of methods is based on measuring the shared set
cardinality between two clusterings. The simplest form of set matching technique is
called clustering error (Meila 2005), it computes the best matches between clusters
(in terms of shared objects) from each of the two clusterings. It returns a value
equal to the total number of objects shared between pairs of matched clusters.
Other related techniques have also been developed by Larsen and Aone (1999),
as well as being generalised to the case of subspace clustering (Günnemann et al.
2011).

Information theoretic measures: Examples of these are the normalized mutual
information (Strehl and Ghosh 2003) and variation of information (VI) measures
(Meila 2007) and adjusted variations (Vinh et al. 2010). These measures utilize
the mutual information between two clusterings, which is determined by the condi-
tional probabilities resulting from the number of objects shared between clusters
of the two clusterings. The mutual information essentially signifies the amount
of information one clustering provides about the other. While NMI normalizes
the mutual information with the sum of the two clusterings’ entropies, VI uses a
different comparison criterion to give the final value.

A limitation with these these methods is that they consider object-to-cluster
membership as the primary factor behind clustering comparison. Computing these
measures requires no knowledge of underlying feature space being used. This means
that they are not sensitive for detecting variation in object distances across clus-
ters. They also cannot be used for comparing clusterings over different collections
of objects.
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2.2 Spatially-Aware Clustering Comparison

As mentioned earlier, there have been several recent works on spatially-aware
clustering similarity measures, which aim to address limitations of the standard
membership based measures.

Work by Zhou et al. (2005) proposes a method which takes into account both
object memberships and similarity between cluster representatives (cluster cen-
troids). Since it uses information about cluster centroids, we may characterise it
as being spatially aware, but it does not directly take account of object-object
distances based on the feature space.

Work by Bae et al. (2010) proposes a measure known as ADCO , which repre-
sents a clustering as a density profile vector and then computes similarity between
clusterings using vector operations. We will be using ADCO as a base similarity
measure throughout the remainder of the paper and exploiting and investigating
its properties for subspace enumeration. More detail will be described in Section 3.
Compared to the work of Bae et al. (2010), this paper proposes bounding results
that are applicable for pruning when employing ADCO and also shows how it can
be employed for a new application area (deviating subspaces).

Work by Coen et al. (2010) specifies a distance between clusters corresponding
to the transportation distance between the collections of objects from each cluster.
Based on this distance, it then uses a similarity distance measure to assess the
distance between the two clusterings.

An approach by Raman et al. (2011) is based on a Hilbert space representa-
tion of clusters. Clusters are modelled as points from a distribution that can be
represented as a vector in a reproducing kernel Hilbert space and then compared
using a metric on distributions.

2.3 Subspace Clustering

Given that our problem is concerned with both clustering and subspaces, it is nat-
ural to consider about connections to the well known area of subspace clustering.

Subspace clustering algorithms such as CLIQUE (Agrawal et al. 1998),
MAFIA (Nagesh et al. 1999) and DENCLUE (Hinneburg and Keim 1998) discover
clusters (as opposed to clusterings) that are in different subspaces. See the study by
Müller et al. (2009) for a critical overview. A subspace cluster is a group of objects
and a subset of features. An object may participate in multiple subspace clusters
(if not, then it is more properly described as a projected clustering (Aggarwal
et al. 1999)).

Recall that our objective is to discover deviating subspaces, subspaces in which
the similarity between two clusterings is higher or lower than in the full feature
space. Comparing our deviating subspace mining discovery task with subspace
clustering, we can make the following observations.

– Both subspace clustering and deviating subspace discovery aim to identify
subspaces.

– In deviating subspace discovery, the cluster memberships of objects are fixed 2

I.e. objects always retain membership of the same cluster, regardless of whether

2 It is reasonable to question why cluster memberships shouldn’t change in subspaces. Our
setting is that the cluster memberships may have been provided by a human expert and it can
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the full feature space is used, or whether a subspace is used. In subspace clus-
tering, objects may participate in multiple clusters across multiple subspaces.

– In subspace clustering, a subspace usually corresponds to a single cluster. In
deviating subspace discovery, each subspace contains a clustering, having the
same cluster memberships as the full feature space.

– The motivation behind deviating subspace discovery is to support similarity
comparison of clusterings. It does not aim to discover clusters. The motivation
of subspace clustering is to discover high quality clusters hidden in subspaces.
Its aim is to discover clusters.

In summary, the focus of deviating subspace discovery is not on producing more
accurate clusters by removing features, but rather on analyzing the underlying
relationships between two clusterings, within different feature subspaces.

For these reasons, we see deviating subspace discovery as a different task from
subspace clustering. Of course there is a possibility that existing algorithms for
subspace clustering might somehow be used to assist with deviating subspace
discovery. However, it is unclear about how this would be possible. In this paper
we adopt a direct approach for enumeration of deviating subspaces, based on
properties of a particular clustering similarity function, which is described in the
next section.

3 Background on the ADCO measure for spatial clustering comparison

Our work is broadly concerned with spatially aware similarity measurement be-
tween two clusterings in subspaces. As such, we need to select a spatially aware
measure, to be the basis for the technical development of our approach.

We choose to adopt the ADCO measure of Bae et al. (2010) as the base mea-
sure for our approach. They found it could effectively judge similarity for various
types of clusterings. It also has the advantages that it can be used for both con-
tinuous and categorical data, it can be used as the basis for alternative clustering
generation and it has been found to work efficiently in practice for datasets with
many features. Most importantly, for the purposes of this paper, we are able to
develop pruning rules based on its properties for efficiently computing its values
in subspaces.

At a high level, the ADCO measure constructs a spatial histogram for each
cluster and represents a clustering as a vector containing the spatial histogram
counts for the clusters. The two clusterings can then be compared using vector
operations. Intuitively, the output of ADCO is a containment judgement between
a clustering C and a clustering C′, expressed as “How much of clustering C′ is
contained in clustering C ?”, or “What percentage of clustering C′ is contained in
clustering C ?”.

In more detail, we now describe ADCO , based on the presentation of Bae et al.
(2010). The ADCO measure determines the similarity between the two clusterings
based on their density profiles along each attribute. Essentially, each attribute’s
range is divided into a number of intervals, and the similarity between two clus-
ters corresponds to how closely the object sets from each cluster are distributed

be impossible for the human to manually provide alternative membership judgements for all
subspaces.
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across these intervals. The similarity between two clusterings then corresponds to
the amount of similarity between their component clusters. We begin with some
terminology.

Let D be a data set of N objects having R attributes A = {a1, . . . , aR}. Also
assume C = {c1, . . . , cK} and C′ = {c′1, . . . , c′K′} are two (hard) clusterings that
are to be compared. Each clustering is a partition of the N objects. The ADCO
similarity value between the two clusterings is denoted as ADCO(A,C,C′), where
higher values of the measure indicate higher similarity (less dissimilarity). Next
we define terms for measuring density.

Definition 1 Given an attribute/feature space A = {a1, a2, .., aR}, let the range
of each attribute ai be divided into Q bins. An attribute-bin region is a pair
denoted as (i, j), which corresponds the j-th bin of the i-th attribute. (So there are
a total of RQ regions.) The density of an attribute-bin region (i, j) is denoted
as dens(i, j) and refers to the number of objects in that region expressed as

dens(i, j) = |{d ∈ D | d[ai] ∈ (i, j)}| (1)

where d[ai] is the projection of instance d on attribute ai. Additionally, the den-
sity of an attribute-bin region for cluster ck in clustering C, denoted as
densC(k, i, j), refers to the number of objects in the region (i, j), which belong to
the cluster ck of clustering C.

The values of densC(k, i, j) for all possible k, i, j form the building blocks of
a clustering’s ‘density profile vector’; in the vector those values are listed in a
lexicographical ordering imposed on all attribute-bin regions.

Definition 2 The density profile of a clustering C is the following density pro-
file vector of C:

(densC(1, 1, 1), densC(1, 1, 2), .., densC(1, 1, Q), densC(1, 2, 1), ..,

densC(1, R,Q), densC(2, 1, 1), .., densC(K,R,Q))

Suppose C and C′ are clusterings with respectively K and K′ clusters. We use
the following formula on their density profile vectors to determine the degree of
similarity between C and C′:

sim(A,C,C′) = max
ρ

Kmin∑
k=1

R∑
i=1

Q∑
j=1

densC(k, i, j)× densC′(ρ(k), i, j) (2)

where ρ ranges over permutations over the cluster IDs of C′ andKmin = min(K,K′).
We note that sim(A,C,C) =

∑K
k=1

∑R
i=1

∑Q
j=1 densC(k, i, j)2.

By considering all possible permutations ρ, we consider all possible pairings
of clusters and select the maximum dot product value corresponding to the best
match. The best cluster match may not be the match where the kth cluster in C is
matched with the kth cluster in C′. This ensures that the similarity is independent
of the assigned cluster labels. To solve the assignment problem of finding the best
match between clusters, the Hungarian algorithm (Kuhn 1955) is used, which turns
out to operate quite efficiently in practice.
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Symbol Meaning

C, C′ A clustering
A, A′, A′′ A set of features (a subspace)

Aji Subspace Ai having j number of features
ADCO(A,C,C′) Value of ADCO measure comparing C and C′ in

subspace A (Equation 4)
LB(A,C,C′) Lower bound ADCO measure comparing C and C′ in

subspace A (Equation 15)
UB(A,C,C′) Upper bound ADCO measure comparing C and C′ in

subspace A (Equation 8)
sim(A,C,C′), simM(A,C,C′) Similarity between C and C′ in subspace A choosing

maximum permutation (Equation 2)
simN (A,C,C′) Similarity between C and C′ in subspace A choosing

minimum permutation (Equation 14)
NF (A,C,C′), NFM(A,C,C′) Normalization factor for C and C′ in subspace A choosing

maximum (Equation 3)
NFN (A,C,C′) Normalization factor for C and C′ in subspace A choosing

minimum (Equation 7)

Table 1 Table of Symbols

Lastly, the ADCO measure uses a normalization factor, which corresponds to
the maximum achievable similarity when using either of the two clusterings. This
is given in equation 3. The ADCO(A,C,C′) measure is then shown in equation 4.

NF (A,C,C′) = max
[
sim(A,C,C), sim(A,C′, C′)

]
(3)

ADCO(A,C,C′) =
sim(A,C,C′)

NF (A,C,C′)
(4)

The value of ADCO ranges from 0 to 1, where a lower value indicates higher
dissimilarity and a higher value indicates higher similarity.

When clusterings C and C′ do not share the same number of clusters, ADCO
simply finds the best matching, similar to the clustering error metric described
earlier. Note that by varying the Q parameter (the number of bins), one can
trade off between the granularity of the density profile and the complexity of
computing the ADCO value. Any existing discretization technique can be used
for determining bin membership. It has been found that using Q = 10 with equi
density discretization works well (Bae et al. 2010) and we assume it as a default
setting for the remainder of the paper.

A table of symbols that will be used throughout the remainder of the paper is
shown in Table 1.

4 The EVE Algorithm for Discovering Deviating Subspaces

We now describe our algorithm for discovering deviating subspaces, which we call
EVE. It aims to identify subspaces where a pair of clusterings exhibit particularly
high or low similarity. By subspaces, we mean any set of attributes which is a
subset of the full feature space. This kind of subspace is more properly known
as an axis-aligned subspace. E.g. if the full feature space has attributes {x, y, z},
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then some of the possible subspaces are {x, y}, {x} and {y, z}. Recalling again our
target problem:

Definition 3 Given two clusterings C and C′ of objects described using feature
space A, and two user-defined thresholds δ1 > 1 and δ2 < 1, the aim of deviating
subspace discovery is to enumerate all subspaces A′, where A′ ⊂ A, for which either
of the following is true

– Higher Similarity : ADCO(A′,C,C′)
ADCO(A,C,C′) ≥ δ1

– Lower Similarity : ADCO(A′,C,C′)
ADCO(A,C,C′) ≤ δ2

where ADCO(A′, C, C′) is the similarity between C and C′ in the subspace A′

and ADCO(A,C,C′) is the similarity between C and C′ in the full feature space
A.

In order to solve this problem, the EVE algorithm essentially explores the set
enumeration tree of all possible subspaces, using a depth first bottom up strategy.
In practice, we do not compute subspaces of high and low similarity simultaneously,
but rather build a separate enumeration tree to discover each. The ADCO value for
each possible subspace is computed at each node in the tree, to determine whether
it satisfies the similarity constraint. A challenge though, is that the ADCO function
is not well behaved, compared to some well known constraints in data mining, such
as frequency. It is not monotonic or anti-monotonic, nor is it even convertible (this
last term is defined by Pei et al. (2004)). We assert this in the theorem below.

Theorem 1 The ADCO similarity function is not

1. monotonic
2. anti-monotonic
3. convertible.

Consequently, rather more complex pruning is needed in order to make an
enumeration algorithm efficient. Otherwise, it would be necessary to enumerate
2R subspaces, which is clearly infeasible for high dimensional data.

The main idea we use is that for a particular ordering of the enumeration
tree, it is possible to bound the ADCO function from above by a monotonically
decreasing function, we call UB (upper bound ADCO). Hence, once the value of
UB drops below δ1×ADCO(A, .., ..) (where A is the full feature space) , we know
the high similarity constraint will not be satisfied for any superset of the current
subspace and we can prune descendants in the tree. We can also bound the ADCO
function from below, by a monotonically increasing function that we call LB (lower
bound ADCO). Hence, once the value of LB rises above δ2 × ADCO(A, .., ..), we
know the low similarity constraint will not be satisfied for any superset of the
current subspace and we can prune descendants in the tree.

4.1 Calculating the ADCO Measure When a Subspace is Grown

For calculating the ADCO value between two clusterings in any subspace A′ =
{a1, a2, .., aR′} of A, we can simply use Equation 4. The value of simM(A′, C, C′)
is computed by replacing A by A′ in Equation 4 and consequently computing a
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density profile that has R′ attributes rather than R in Equation 2. Note that we
henceforth use simM(A′, C, C′) instead of sim(A′, C, C′) to emphasise that it is
the maximum scalar product. This is necessary as we also introduce the minimum
scalar product simN (A′, C, C′) and will later need to distinguish them.

This substitution is possible, since the density information of each attribute is
independently determined. In EVE, subspaces are grown (extended) one attribute
at a time, during the enumeration process. Therefore, let us consider calculating
the ADCO value when a subspace is extended.

Assume subspace A′ =
{
a′1, a

′
2, .., a

′
R′
}

is being extended by the singleton sub-
space A′′ = {a′′1}, where A′ ⊂ A,A′′ ⊂ A and A′ ∩ A′′ = {}. Let the merged
subspace be A′ ∪ A′′. Similarity in the new merged subspace can be expressed as
follows:

ADCO(A′ ∪A′′, C, C′) =
simM(A′ ∪A′′, C, C′)
NFM(A′ ∪A′′, C, C′)

(5)

=
simP(A′, C, C′) + simP(A′′, C, C′)

NFC(A′, C, C′) + NFC(A′′, C, C′)
(6)

where simP(A′, C, C′) refers to computing the similarity using some particular
permutation P and NFC(A′, C, C′) refers to computing the normalization fac-
tor choosing (say) clustering C as the maximum of the two clusterings. Observe
that the second equality is sustained when the same permutation P is used in
both simP(A′, C, C′) and simP(A′′, C, C′), to give the maximum similarity value
simM(A′ ∪A′′, C, C′).

Furthermore, the same clustering C must be chosen in both NFC(A′, C, C′) and
NFC(A′′, C, C′) when determining the maximum normalization factor NFM(A′ ∪
A′′, C, C′). Similar to simM(A′, C, C′), we will henceforth denote the normaliza-
tion factor shown in Equation 3 here as NFM(A′∪A′′, C, C′) to explicitly indicate
that it is the maximum normalization factor. We will also use NFN (A′, C, C′)
which selects the minimum normalizing factor. This highlights the point that the
choices which would maximize the ADCO value for individual subspaces may not
be the choices that achieve the maximum ADCO value for a larger subspace in
which they are contained.

4.2 An Upper Bound and a Lower Bound for the ADCO Value in Any Subspace

We are going to bound the ADCO function from above by a function UB , which
takes its maximum value for some singleton subspace and thereafter decreases
monotonically, provided subspaces are grown by following certain ordering condi-
tions. Similarly, we are going to bound the ADCO function below by a function
LB , which takes its minimum value for some singleton subspace and thereafter
increases monotonically, provided subspaces are grown following certain ordering
conditions. We consider the upper bound case first:

4.2.1 An Upper Bound

We begin with a definition for the UB function:
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NFN (A,C,C′) = min
[
simM(A,C,C), simM(A,C′, C′)

]
(7)

UB(A,C,C′) =
simM(A,C,C′)

NFN (A,C,C′)
(8)

where in Equation 7, the clustering that yields the minimum value for the nor-
malization factor is chosen (as opposed to Equation 3, which selects the max-
imum), while in Equation 8, UB is calculated with NFN (A,C,C′) (instead of
NFM(A,C,C′) as in Equation 4). The following properties are then straightfor-
ward to check for any A′ ⊆ A:

NFN (A′, C, C′) ≤ NFM(A′, C, C′) (9)

ADCO(A′, C, C′) ≤ UB(A′, C, C′). (10)

We will now show that UB takes its maximum value for a subspace with just
a single attribute (we call this a base subspace). Let Ai be a subspace and let Aji
indicate that subspace Ai has dimensionality j.

Lemma 1 Consider the set of UB values for all base subspaces (1-dimensional
subspaces): {

UB(A1
1, C, C

′),UB(A1
2, C, C

′), . . . ,UB(A1
R, C, C

′)
}

Let UB(A1
M, C, C

′) be the maximum value in this set.
Then UB(A1

M, C, C
′) ≥ UB(A′, C, C′) where A′ is any subspace with an arbitrary

number of attributes and A′ ⊆ A.

The above lemma states that there exists a base subspace A1
M, which has the

highest UB value compared to any other base subspaces. Moreover, it has a greater
than or equal to UB value compared to any R′-dimensional subspaces A′, where
R′ ≤ R. The value of UB(A1

M, C, C
′) is, therefore, the upper bound for UB values

of all subspaces in A. Proving that UB(A1
M, C, C

′) is the highest value amongst
all 1-dimensional subspaces is trivial. We now provide the proof.

Proof UB(A1
M, C, C

′) satisfies :

UB(A1
M, C, C

′) = max{UB(A1
1, C, C

′), . . . ,UB(A1
R, C, C

′)}

Now, let A′ be a R′-dimensional subspace containing the subspace A1
M. Using

Equation 5 and the property defined in Equation 9, we can re-write UB(A′, C, C′)
as follows:

UB(A′, C, C′) =
simM(A′, C, C′)

NFN (A′, C, C′)
=

simP(A1
1, C, C

′) + ..+ simP(A1
M, C, C

′) + ..+ simP(A1
R′ , C, C′)

NFC(A1
1, C, C

′) + ..+ NFC(A1
M, C, C

′) + ..+ NFC(A1
R′ , C, C′)

(11)

and given the above, the following is also true :
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simM(A′, C, C′)

NFN (A′, C, C′)
≤ max

[
simM(A1

1, C, C
′)

NFN (A1
1, C, C

′)
, , ..,

simM(A1
M, C, C

′)

NFN (A1
M, C, C

′)
, ..,

simM(A1
R′ , C, C′)

NFN (A1
R′ , C, C′)

]
(12)

and so, the theorem holds.

To see why Equation 12 is true, let us rewrite it as A+C+,..,+X
B+D+,..,+Y ≤ max

[
A
B ,

C
D , ..,

X
Y

]
.

Let us assume that max
[
A
B ,

C
D , ..,

X
Y

]
= A

B . Then we have

A+ C+, ..,+X

B +D+, ..,+Y
≤ A

B
,

AB +BC+, ..,+BX ≤ AB +AD+, ..,+AY (13)

and since A
B ≥

C
D therefore AD ≥ BC and subsequently since A

B ≥
X
Y , then

AY ≥ BX and thus, after these manipulations we can conclude that Equation 13
is true and thus Equation 12 is true. �

From the above proof, we can state that there is a base subspace A1
M with

the highest UB value compared to all other subspaces. Therefore, in the enumer-
ation process of EVE, we are certain that the UB(A1

M, C, C
′) ≥ UB(A′, C, C′)

for any subspace A′ in A. Furthermore, by following the property in Equation 10,
UB(A1

M, C, C
′) ≥ ADCO(A′, C, C′). Hence we can begin our branch in the enu-

meration tree using UB(A1
M, C, C

′) at the top.

4.2.2 A Lower Bound

The lower bound can be defined in a similar manner to the upper bound. We begin
with a definition for the LB function:

simN (A,C,C′) = min
ρ

K∑
k=1

R∑
i=1

Q∑
j=1

densck(ai, bj) · densc′k(ai, bj) (14)

LB(A,C,C′) =
simN (A,C,C′)

NFM(A,C,C′)
. (15)

Equation 14 selects the permutation that gives the minimum scalar product value
instead of the maximum value that was selected by Equation 2. In Equation 15,
LB is computed using simN . The following properties are then straightforward to
check for any A′ ⊆ A:

simN (A′, C, C′) ≤ simM(A′, C, C′) (16)

LB(A′, C, C′) ≤ ADCO(A′, C, C′). (17)

We will now show that LB takes its minimum value for some base subspace.
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Lemma 2 Consider the set of LB values for all base subspaces :{
LB(A1

1, C, C
′),LB(A1

2, C, C
′), ..,LB(A1

R, C, C
′)
}
.

Let LB(A1
N , C, C

′) be the minimum value in this set. Then, LB(A1
N , C, C

′) ≤
LB(A′, C, C′) where A′ is any subspace with arbitrary number of attributes and
A′ ⊆ A.

The above lemma states that there exists a base subspace A1
N which has the

lowest LB value compared to all other base subspaces and moreover has value less
than or equal to the LB value of any other higher dimensional subspaces of A.
Therefore, LBA1

N
is the lower bound for LB values of all subspaces of A.

Proof The proof for this is symmetric to that of Lemma 1. �

From the above proof, we can assert that there is a 1-dimensional subspace
A1
N having the lowest LB value compared with all other subspaces. Therefore,

in the enumeration process of EVE, we can be certain that LB(A1
N , C, C

′) ≤
LB(A′, C, C′) for any subspace A′.

4.3 Greedy Prefix Monotonicity and Anti-monotonicity

Having established upper and lower bounds we are now interested in how these
values may change as bottom-up subspace enumeration proceeds.

Specifically, our goal is to find an ordering of the base subspaces such that,
when growth in the enumeration tree follows this order, UB and LB are mono-
tonically decreasing and increasing respectively. In other words, we will establish
these functions which can obey a type of prefix (anti-)monotonic property (Pei
et al. 2002).

Rather interestingly, we are unable to determine this prefix order in a static
fashion. Instead, we can only uncover it as the enumeration tree is explored. Recall
that a function f is monotonically increasing if whenever A ⊆ B, then f(A) ≤
f(B). f is monotonically decreasing if whenever A ⊆ B, then f(A) ≥ f(B).

4.3.1 Monotonically Decreasing UB Values

Suppose we begin with the base subspace A1
M and are now moving down the

leftmost branch of the enumeration tree, to grow a 2-dimensional subspace. Which
base subspace should be merged next with A1

M in order that UB decreases ?
The answer is that we should grow using the base subspace A1

O, such that there
is a minimum decrease in similarity value. That is, the value of UB(A1

M, C, C
′)−

UB(A1
O ∪A1

M, C, C
′) is minimized. In essence, this can be regarded as a “greedy”

type of growth.
More generally, suppose we are currently at some node in the enumeration

tree corresponding to subspace Sq and that any of the attributes (base subspaces)
{a1, . . . , ak} could be used for forming a subspace of size q + 1. Then we should
choose to grow using the attribute ai which minimizes the value of UB(Sq, C, C′)−
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UB(Sq ∪ {ai}, C, C′). We will call this type of ordering strategy a greedy prefix
ordering.

Thus, at each node in the tree, our ordering must be dynamically chosen, by
testing all possible extensions and greedily choosing the one for which the change
in UB value is minimum. Using this ordering strategy, it is guaranteed that the
resulting UB function will be monotonically decreasing, when moving down along
each branch of the enumeration tree. This is captured in the following theorem.

Theorem 2 Let S = {a1, . . . , ak} be a subspace, whose attributes are ordered
according to the greedy prefix ordering method described above. If subspace p is any
prefix of subspace S (according to the enumeration tree order), then

1. UB(p, C,C′) ≥ UB(S,C,C′) and
2. UB(p, C,C′) ≥ UB(S′, C, C′), for any subspace S′ for which |S′| = |p| and

S′ ⊆ {a1, . . . , ak}.

Proof : We show the proof for the above theorem by induction on the size k of
the subspace. For k = 2, we have seen from lemma 1, that there exists some
base subspace whose UB value is greater than that for any superspace in the
enumeration tree. This base subspace will correspond to A1

M = {a1}. It therefore,
follows that the following is true:

UB({a1}, C, C′) ≥ UB({a1, a2}, C, C′) (18)

and it is true that

UB({a1, a2}, C, C′) ≥ UB({a2, a1}, C, C′) (19)

For the induction step, assume the theorem is true for all subspaces of size less
than or equal to k, we need to show it is true for subspaces of size k+ 1. To show
it is true for k + 1, we will need to establish that

UB({a1, . . . , ak+1}, C, C′) ≤ UB({a1, . . . , ak}, C, C′). (20)

We can show that the following statement is true

UB({a1, . . . , ak+1}, C, C′) ≤
max[UB({a1, . . . , ak}, C, C′),UB({a2, . . . , ak+1}, C, C′)] (21)

if by the induction step the following is true

UB({a2, . . . , ak+1}, C, C′) ≤ UB({a1, . . . , ak}, C, C′). (22)

The above condition is directly what Equation 19 states, that UB(p, C,C′) ≥
UB(S′, C, C′) where |S′| = |p| and S′ ⊆ {a1, ..., ak}.

To show this consider the case when 2-dimensional subspaces are being formed.
Let A1

M be the subspace with the maximum UB value and it is merged with A1
O to

create A2
{O,M}. Given two other base subspaces A1

U and A1
V , we show the following

is true :
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UB(A1
M, C, C

′)−UB(A2
{O,M}, C, C

′) ≤

UB(A1
M, C, C

′)−UB(A2
{U,M}, C, C

′) ≤

UB(A1
M, C, C

′)−UB(A2
{V,M}, C, C

′). (23)

For brevity, let us represent the above equation as follows:

(
A

B
− A+ C

B +D

)
≤
(
A

B
− A+X

B + Y

)
≤
(
A

B
− A+X ′

B + Y ′

)
(24)

where A, C, X and X ′ corresponds to simM(A1
M, ..), simM(A1

O, ..), simM(A1
U , ..)

and simM(A1
V , ..) respectively. The variables B, D, Y and Y ′ corresponds to

NFN (A1
M, ..), NFN (A1

O, ..), NFN (A1
U , ..) and NFN (A1

V , ..) respectively.
From the above, the following properties are deduced :

A

B
≥ C

D
, AD ≥ BC, A

B
≥ X

Y
, AY ≥ BX,

A

B
≥ X ′

Y ′
, AY ′ ≥ BX ′, C

D
≥ X

Y
, CY ≥ DX,

C

D
≥ X ′

Y ′
, CY ′ ≥ DX ′, X

Y
≥ X ′

Y ′
, XY ′ ≥ X ′Y. (25)

With these conditions, let us now prove the following :(
A

B
− A+ C

B +D

)
≤
(
A

B
− A+X ′

B + Y ′

)
(26)

by re-writing it as follows:

A+X

B + Y
≥ X +X ′

Y + Y ′
,

AY +AY ′ +XY +XY ′ ≥ BX +BX ′ +XY +X ′Y (27)

and by using the properties defined in Equation 25, the above equation yields
a positive value. This ensures that selecting A1

O and merging with A1
M returns

the highest UB(A2
M, C, C

′) value in the 2-dimensional subspace. Moreover, this
property suggests A1

O succeeds A1
M in the ordered set of base subspaces prior to

proceeding the enumeration steps.
Consider now a general case of showing that Equation 22 is true for a subspace

A′ of size k, where R ≥ k > 2. Following Equation 23, we can express this as

UB({a1, . . . , ak−1}, C, C′)−UB({a1, . . . , ak}, C, C′) ≤
UB({a1, . . . , ak−1}, C, C′)−UB({a2, . . . , ak+1}, C, C′) ≤

UB({a1, . . . , ak−1}, C, C′)−UB({a3, . . . , ak+2}, C, C′) (28)

For brevity, let us first represent UB({a1, . . . , ak−1}, C, C′) as follows:
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UB({a1, . . . , ak−1}, C, C′) =

A︷ ︸︸ ︷
A1 +A2+, ..,+Ak−1

B1 +B2+, ..,+Bk−1︸ ︷︷ ︸
B

(29)

where we label the terms of numerator as A and the denominators as B. Equa-
tion 28 can now be expressed as

(
A
B
− A +Ak

B +Bk

)
≤
(
A
B
− A +Ak+1

B +Bk+1

)
≤
(
A
B
− A +Ak+2

B +Bk+2

)
. (30)

From Equation 30, we can deduce the properties similar to Equation 25 as
follows:

A
B
≥ Ak
Bk

, ABk ≥,BAk
A
B
≥ Ak+1

Bk+1
, ABk+1 ≥,BAk+1

A
B
≥ Ak+2

Bk+2
, ABk+2 ≥,BAk+2

Ak
Bk
≥ Ak+2

Bk+2
, AkBk+2 ≥ BkAk+2,

Ak
Bk
≥ Ak+2

Bk+2
, AkBk+2 ≥ BkAk+2,

Ak+1

Bk+1
≥ Ak+2

Bk+2
, Ak+1Bk+2 ≥ Bk+1Ak+2,

(31)

and to prove
(

A
B −

A+Ak

B+Bk

)
≤
(

A
B −

A+Ak+2

B+Bk+2

)
, we can re-write it as

A +Ak
B +Bk

≥ Ak +Ak+2

Bk +Bk+2
,

ABk + ABk+2 +AkBk +AkBk+2 ≥ BAk + BAk+2 +AkBk +Ak+2Bk (32)

and by using the properties defined in Equation 31, Equation 32 yields a positive
value and proves Equation 22. �

4.3.2 Monotonically Increasing LB Values

From the previous section, we know that the smallest LB value will occur for a base
subspace and is in fact A1

N . Our subspace ordering approach will be symmetric to
the monotonically decreasing case, again using a greedy prefix ordering.

Suppose we are currently at some node in the enumeration tree corresponding
to subspace Sq and that any of the attributes (base subspaces) {a1, . . . , ak} could
be used for forming a subspace of size q+ 1. Then we should choose to grow using
the attribute ai which minimizes the value of

LB(Sq ∪ {ai}, C, C′)− LB(Sq, C, C
′).

So again, our ordering must be dynamically determined, by testing all possible
extensions and greedily choosing the one for the change is minimum. Using this
ordering strategy, it is guaranteed that the resulting LB function must be mono-
tonically increasing, moving down along each branch of the enumeration tree. This
is stated in the following theorem.
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Theorem 3 Let S = {a1, . . . , ak} be a subspace, whose attributes are ordered
according to the greedy prefix ordering method described above. If subspace p is any
prefix of subspace S (according to the enumeration tree order), then

1. LB(p, C,C′) ≤ LB(S,C,C′) and
2. LB(p, C,C′) ≤ LB(S′, C, C′), for any subspace S′ for which |S′| = |p| and

S′ ⊆ {a1, . . . , ak}.

Proof : The proof for monotonically increasing LB values is symmetric to that of
Theorem 2.

4.4 Incrementally Reusing ADCO Values of Base Subspaces

We now briefly discuss where it is possible to use incremental strategies when
exploring the search space. Consider a subspace A′ = {a1, a2, .., aR′}. We know
that Equation 2 requires all values from the permutation function ρ to be computed
before the maximum value can be selected. Since each attribute independently
contributes to the overall similarity, we can store values of the scalar product
from all permutations for each base subspace {ai} in an initial processing phase.
These values can then be reused as required for a merged subspace A′, to calculate
simM(A′, C, C′) as below :

simM(A′, C, C′) = max

|ρ|∑
i=1

R′∑
j=1

simi(j, C,C′)

where |ρ| is the number of possible different permutations required and
∑R′

j=1 simρ(j, C1, C2)
is the stored similarity value for the j-th attribute for permutation i. Similarly, for
each base subspace ai, simM(ai, C1, C1) and simM(ai, C2, C2) need to be calcu-
lated to select the normalization factor NFM(ai, C, C

′). These values can also be
stored and reused for evaluating the new normalization factor for A′ as below :

NFM(A′, C, C′) = max

 R′∑
j=1

simM(aj , C, C),
R′∑
j=1

simM(aj , C
′, C′)

 .
The stored values can also be used to calculate the values of NFN (A′, C, C′),

simN (A′, C, C′), LB(A′, C, C′) and UB(A′, C, C′) as needed. Lastly, the UB and
LB values required for the greedy choice of subspace extension, can be reused once
that part of the enumeration tree begins to be processed.

4.5 Algorithm Description

We present the pseudo code for EVE in which subspaces of high similarity and
dissimilarity between clusterings are found respectively in Algorithm 1 and Algo-
rithm 2.
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Algorithm 1 EVE algorithm for finding subspaces of high similarity between C
and C′

Require: clusterings C and C′, full feature space A, threshold δ1 > 1
Ensure: all subspaces A′ ⊂ A in which the similarity between C and C′ satisfy the constraint

δ1 are returned
1: for i = 1 to R do
2: Calculate ADCO for all base subspaces
3: Calculate UB for all base subspaces
4: SortedBase=Sort values of UB for the base subspaces
5: end for
6: for i = 1 to R do
7: subspace = {ai} where ai ∈ SortedBase {ai is the first element in the sorted list (has

the largest UB value)}
8: if UB(subspace, C,C′) ≥ δ1 ×ADCO(A,C,C′) then
9: if ADCO(subspace, C,C′) ≥ δ1 ×ADCO(A,C,C′) then

10: output subspace
11: end if
12: Greedily select next attribute aj
13: repeat
14: subspace = subspace ∪ {aj}
15: if UB(subspace, C,C′) ≥ δ1 ×ADCO(A,C,C′) then
16: if ADCO(subspace, C,C′) ≥ δ1 ×ADCO(A,C,C′) then
17: output subspace
18: end if
19: else
20: subspace = subspace\ {aj}
21: Backtrack to next node in enumeration tree
22: end if
23: Greedily select next attribute aj
24: until no attributes remain to be added
25: end if
26: end for

Data Sets Instances Classes Attributes

Synthetic Data Set 1 000 2 10
Adult 48 000 2 14
Ozone 2 534 2 72
Diabetes 768 2 8
Wine Quality 6 497 10 11
Musk 475 2 166

Table 2 Characteristics of data sets used in experiments

5 Experimental Analysis

The experimental section for EVE consists of three parts. First we evaluate EVE’s
ability to find deviating subspaces using synthetic data. The second exercise uses
three real world data sets and evaluates how intuitive the interpretation is of the
discovered subspaces. Lastly, we perform some tests on the scalability of EVE.
The characteristics of the data sets used throughout the experimental analysis are
described in Table 2.
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Algorithm 2 EVE algorithm for finding subspaces of high dissimilarity between
C and C′

Require: clusterings C and C′, full feature space A, threshold δ2 < 1
Ensure: all subspaces A′ ⊂ A in which the dissimilarity between C and C′ satisfy the con-

straint δ2 are returned
1: for i = 0 to R do
2: Calculate LB for all base subspaces
3: Calculate ADCO for all base subspaces
4: SortedBase=Sort values of LB for the base subspaces
5: end for
6: for i = 1 to R do
7: subspace = {ai} where ai ∈ SortedBase {ai is the first element in the sorted list (has

the smallest LB value)}
8: if LB(subspace, C,C′) ≤ δ2 ×ADCO(A,C,C′) then
9: if ADCO(subspace, C,C′) ≤ δ2 ×ADCO(A,C,C′) then

10: output subspace
11: end if
12: Greedily select next attribute aj
13: repeat
14: subspace = subspace ∪ {aj}
15: if LB(subspace, C,C′) ≤ δ2 ×ADCO(A,C,C′) then
16: if ADCO(subspace, C,C′) ≤ δ2 ×ADCO(A,C,C′) then
17: output subspace
18: end if
19: else
20: subspace = subspace\ {aj}
21: Backtrack to next node in enumeration tree
22: end if
23: Greedily select next attribute aj
24: until no attributes remain to be added
25: end if
26: end for

Subspaces compared by ADCO ADCO value

ADCO(A′, C, C′) 0.988
ADCO(A′′, C, C′) 0.504
ADCO(A′ ∪A′′, C, C′) 0.549

Table 3 Synthetic Data Set: ADCO similarity values between C and C′ for A′, A′′ and
A′ ∪A′′.

5.1 Experiment A : Subspace Validation

We generated a synthetic data set having 1000 instances and formed two cluster-
ings, C = {c1, c2} and C′ =

{
c′1, c

′
2

}
. Each cluster contained 500 instances and

the objects were distributed to clusters differently in each clustering. A feature set
A′ =

{
a′1, a

′
2, .., a

′
5

}
was then generated, in which all values of features were ran-

domly generated within a very close range. This enforced both C and C′ to have
similar distributions over A′, resulting in high similarity between them. An addi-
tional feature set A′′ =

{
a′′1 , a

′′
2 , .., a

′′
5

}
was also created, for which the clusterings

C and C′ were highly dissimilar. This was achieved by generating feature values
using a separate range for each clustering. The two feature sets were then merged
to create A′ ∪A′′ and our objective was then to use EVE to recover subspaces of
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Summary
Subspaces of Subspaces of
High Similarity High Dissimilarity

Threshold value δ1 = 1.5 δ2 = 0.05
Number of subspaces output 56 761
Number of subspaces examined 2 036 1 336
Total search space 1.1× 1011 1.1× 1011

Average similarity value
0.2 0.08

in deviating subspace (ADCO(A′, C, C′))
Similarity value in

0.128 0.128
full feature space (ADCO(A,C,C′))
Time taken (seconds) 0.151 0.148

Table 4 A summary table for the Wine Quality Dataset experiment.

A′∪A′′, which corresponded to subspaces of A′ and A′′. Table 3 shows the relative
ADCO values of A′, A′′ and A′ ∪A′′.

EVE was able to discover the expected sets of subspaces (25 subspaces of A′

and 25 subspaces of A′′) belonging to A′ (highly similar ones) and A′′ (highly
dissimilar ones) in the two discovery tasks. This exercise supports the hypothesis
that when using EVE, a detailed subspace comparison between C and C′ can be
made. Given a single similarity value for A′ ∪ A′′ (0.549), users might never be
aware that there are subsets of features which give very high similarity (i.e. 0.988).
Moreover, the results of the experiment indicates it may be promising to apply
EVE in settings where there exist attributes that distort the clusterings in the full
feature space and hence bias the user’s idea of the degree of similarity. In this case,
observing subspaces may potentially provide a deeper understanding.

5.2 Experiment B : Subspace Interpretation

We took three real world data sets; ‘Wine Quality’, ‘Adult’ and ‘Ozone’ (all avail-
able from UCI Repository (Frank and Asuncion 2010)) whose characteristics are
described in Table 2. We produced two clusterings of each data set and used EVE
to find deviating subspaces between the clusterings. The purpose was to deter-
mine whether EVE could return intuitive subspaces when used in each of these
situations.

5.2.1 Wine Quality Dataset

The Wine Quality dataset characterizes 6 497 variants of a Portuguese wine by
a set of measurable chemical attributes, such as pH level, alcohol measure and
acidity. The dataset consists of 1 599 red wine and 4 898 white wine variants. The
quality of each wine is also recorded by wine experts with a value between 0 and
10, where 0 indicates poor quality and 10 means excellent.

With this dataset, we are interested in identifying the subset of core attributes,
which determine good or bad quality in the red wine category compared to the
white wine category. Since it is difficult to achieve such a comparison easily with
normal clustering comparison measures that always use the full feature space, we
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Subspaces of high similarity ADCO(A′, C, C′) value

A′ ={3,8 (residual sugar, pH)} 0.24
A′ ={0,8,10 (fixed acidity,pH, alcohol)} 0.19
A′ ={2,3,8 (citric acid,residual sugar,pH)} 0.18

Table 5 Subspaces where two clusterings from Wine Quality dataset are compared and found
to be highly similar (ADCO(A,C,C′) = 0.127)

Subspaces of high dissimilarity ADCO(A′, C, C′) value

A′ ={4,6 (chlorides, total sulfur dioxide)} 0.068
A′ ={6,9 (total sulfur dioxide, sulphates)} 0.053

Table 6 Subspaces where two clusterings of Wine Quality dataset are compared and found
to be highly dissimilar (ADCO(A,C,C′) = 0.128).

want to apply EVE to discover feature subspaces, in which the red wine clustering
is in fact, different/similar to the white wine clustering.

We divided the dataset into white wine and red wine groups. In each group,
we created a clustering of two clusters. One cluster was labeled as ‘good’ wine
cluster and contained wines with scores between 7 and 10 and the other cluster
was labeled as ‘bad wine cluster’ and contained wines with scores between 0 and
3. For instances with the quality index between 4 and 6, we discarded them for
this experiment. We then compared the two groups (clusterings) using EVE.

Looking at the result summary in Table 4, we can see that the ADCO value in
the full feature space is quite low, which suggests that the spatial similarity for the
underlying attributes that determine the quality between the red wine clustering
and the white wine clustering is quite different. In Tables 5 and 6, we list the
subspaces, where the two clusterings were highly similar and dissimilar.

When comparing the ADCO value in the full feature space against the ADCO
values in the subspaces in Table 5, we can identify which subset of attributes
has similar contribution towards the wine quality metrics and which subset of
attributes has contrasting input.

For example, we can see that features such as pH, citric acid and residual
sugar contribute in a similar manner for when measuring the quality of both red
and white wines. On the other hand, levels of total sulfur dioxide, chlorides and
sulphates tend to be differently considered in red and wine clusterings.

It is the case that the similar and dissimilar subspaces found above between
the two clusterings are in fact directly correlated to the differing metrics used to
measure the quality of both red and white wine. For example, wine experts tend to
identify with the alcohol and fixed acidity levels of both red and white wine, when
determining the quality. Moreover, since residual sugar level is inversely correlated
to the acidity level, it is also considered as a determinant for wine quality measure.
This supports the presence of these features in the subspaces of high similarity.

However, sulfur dioxide is a preservative added during the wine-making process,
as an anti-bacterial that prevents wine from turning into vinegar. Often, one would
expect to find higher amounts of sulfur dioxide in white wine, than red. This is
because the tannin in red wine naturally works as a preservative, and therefore,
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Summary
Subspaces of Subspaces of
High Similarity High Dissimilarity

Threshold value δ1 = 1.1 δ2 = 0.8
Number of subspaces output 3 876 1 301
Number of subspaces examined 4 057 1 571
Total search space 8 192 8 192
Average similarity value

0.75 0.5
in deviating subspace (ADCO(A′, C, C′) )
Similarity value in

0.66 0.66
full feature space (ADCO(A,C,C′))
time taken (seconds) 0.33 0.17

Table 7 A summary table for ‘Adult’ data set experiment. Note that we show the summary
in regards to comparing the countries between England and Vietnam.

there is a much less amount of sulfur dioxide added to the red wine. For higher
quality white wine, one may require a larger amount of sulfur dioxide in order
to preserve it longer. This supports the inclusion of sulfur dioxide in one of the
subspace with a low ADCO measure between the red and white clusterings. In
addition, sulphate, which is the by-product of sulfur oxide’s preservation process,
would naturally occur more in the white wine than red, and it was also a member
of the highly dissimilarity subspaces.

5.2.2 Adult Data Set

This data set contains information about 48 000 adults (e.g. age, education, mar-
ital status) and is used to classify whether or not an individual earns more than
$50 000 dollars (USD). For our purposes, we generated a number of clusterings,
with each clustering corresponding to a particular nationality. Each clustering con-
tained two clusters, one for those who earn more than $50 000 and one for those
who do not. Our objective was to observe the similarities and dissimilarities be-
tween clusterings. This corresponds to the differences across countries for those
who earn high and low income. The data set contained 14 attributes and we re-
moved the ‘country’ attribute before input to EVE. Table 7 shows a summary
of the experiment. In Table 8 we show the comparison results between pairs of
countries (clusterings).

Table 8 appears to illustrate some interesting stories between pairs of coun-
tries, in terms of how individual adults earn income and what characteristics in-
fluence their earnings. For example, when comparing the England clustering and
the Vietnam clustering, we see a collection of attributes such as education level
achieved (e.g. high school, tertiary), number of education (i.e. number of degrees,
certificates, diplomas), the working class (e.g. self-employed, governmental) and
their age, determined whether the person earned more than $50,000 per year for
both of the countries. However, collections of attributes like people’s race, rela-
tionship (e.g. wife, husband, own-child) and occupation (e.g. sales, technology,
farming) were differentiating subspaces between these two countries. In the case
of the comparison between the Cambodia clustering and the France clustering,
we can see that these clusterings appear more dissimilar in the subspace of race,
age, occupation and number of education. This suggests that this in this sub-
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Countries A Subspace of A Subspace of ADCO in Full
compared High Similarity High Dissimilarity Feature Space

education, number of race, relationship,

0.64
England, education, working occupation
Vietnam class, age (ADCO = 0.21)

(ADCO = 0.81)
Japan, capital-gain, occupation race, age, number of

0.57Jamaica marital status, relationship education
(ADCO = 0.70) (ADCO = 0.29)

Cambodia, capital-gain, working class, race, age, occupation,
0.61France education, sex number of education

(ADCO = 0.76) (ADCO = 0.3)

Table 8 Comparing two countries in terms of how characteristics of individual adults deter-
mine their income.

Summary
Test 1 Test 2
January vs. July 1998 vs. 2004

Threshold value δ2 = 0.05 δ2 = 0.99
Number of subspaces output 297 397 34 072
Number of subspaces examined 1.59× 107 1 611 460
Total search space 272 272

Average similarity value
0.015 0.982

in deviating subspace (ADCOA′ )
Similarity value in

0.330 0.983
full feature space (ADCOA)
time taken (seconds) 67 6.8

Table 9 A summary table for ‘Ozone’ data set experiment.

space, the Cambodia clustering and the French clustering have higher deviation.
I.e. for this subspace, the way high-low earning capacity in France is determined
appears rather different from the way high-low earning capacity in Cambodia is
determined.

The results for this experiment highlight the advantage of using EVE to an-
alyze and explore clusterings from new perspectives. Indeed, we could form clus-
terings for this data set in different ways. For example, generate clusterings based
on different occupations and then form clusters in each based on earning level
characteristics. Furthermore, the ability of EVE to compare clusterings contain-
ing non-overlapping objects (modelled by a mixture of discrete and categorical
attributes) is a valuable factor in making these experiments possible.

5.2.3 Ozone Level Data Set

This data set consists of various readings relevant to monitoring the ozone level
of the earth. It contains 2 534 daily observations in a 7 year span with 72 features
and a class with the two values {‘ozone day’, ‘normal day’}, where the former
signifies a high level of ozone (O3) in the atmosphere and the latter indicates a
normal level. We performed two tests to find subspaces of high dissimilarity.
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Dissimilar Subspaces Similarity Value (ADCO(A′, C, C′))

A′ = {14, 24} 0.977
A′ = {13, 14} 0.979
A′ = {9, 12, 24, 53} 0.979
A′ = {7, 9, 10, 14, 24, 49, 53, 61} 0.980
A′ = {12, 14, 15, 24, 32, 61} 0.980

Table 10 Comparing clusterings of ozone readings between year 1998 and 2004. Note that
the similarity of two clusterings in the full feature space was 0.983.

In the first test, we grouped the data into different months, combining records
from the same month across all 7 years. We then formed a clustering of the data
for January (with clusters ‘ozone day’ and ’normal day’) and compared it against a
clustering for July (also with clusters ’ozone day’ and ’normal day’). We mined dis-
similar subspaces. The subspaces returned by EVE consisted of feature sets related
to ‘base temperature in F ◦’ from different locations, which matched our intuition,
since these two months have quite different temperatures. For example, the largest
subspace returned contains features {33, 34, 35, 36, 39, 41, 43, 44, 47, 48, 49, 50, 51}
(feature index numbers) where each feature is a separate reading of temperature.
The similarity between the two months in the full feature space A was 0.33 while
the average similarity of these dissimilar subspaces was 0.015, signifying high dis-
similarity.

In the second test, we divided the data set into years and formed a cluster-
ing for each of the 7 years (each with clusters corresponding to ’ozone day’ and
’normal day’). The aim was to identify subspaces in which the clusterings have
significantly changed. In Table 10, we show some of the subspaces that caused the
biggest changes between the years 1998 and 2004. The features in this Table turn
out to have names such as ‘wind speed near the sun rise’, ‘base temperature in
F ◦’ and ‘upwind ozone background level’. This corresponds with intuition about
global warming, since this is correlated to rising temperatures and changes in
ozone. Furthermore, change in wind speed is also said to be correlated with global
warming (Freitas 2002). Whilst the difference between the ADCO value in the
subspaces and the ADCO value in the full feature space is small, these subspaces
might still be used to suggest a hypothesis for further exploration.

5.3 Experiment C : Pruning Effectiveness and Scalability

Information about the effectiveness of the pruning strategy used in EVE is in
Table 4, Table 7 and Table 9. For example, comparing the ‘number of subspaces
examined’ against the ‘total search space’ for ‘Wine Quality’ and ‘Ozone’ datasets,
we see there is a dramatic difference between the two values (a factor of more than
50 million for Wine Quality and more than 100 billion for ozone).

This demonstrates that the pruning methods of EVE have an extremely sig-
nificant effect on reducing the overall running time, by analyzing only a subset
of exponential search space. Recall that a naive algorithm without pruning would
need to explore the entire search space in order to guarantee completeness of the
output answer set and for the data sets we have tested, this would be infeasible.
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Fig. 2 Figures for testing scalability of EVE.

Since EVE employs ADCO as its underlying similarity measure, its overall per-
formance is influenced by the number of attributes, bins, instances and clusters.
So, using data sets ‘Diabetes’ and ‘Musk’ and ’Adult’, we tested the scalability of
EVE by changing these variables and the results are displayed in Figure 2(a), Fig-
ure 2(b) and Figure 3(a) respectively (characteristics of the datasets are described
in Table 2).

The effect of increasing the number of bins per attribute (shown in Figure 2(a))
does not necessarily degrade the speed of EVE. Although this may hold true when
we only consider the full feature space, the output of EVE is dependent upon how
each ADCO(A′, C, C′) values of subspaces is compared against ADCO(A,C,C′).
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Therefore, based on how objects are distributed in each subspace with the given
Q parameter value, the performance of EVE may differ. We note that the curve
for the ’Musk’ dataset in 2(a) appears to exhibit an oscillating behaviour as the
number of bins increases. Further investigation revealed that this appears to be
due to the choice of δ2 = 0.74 that was used in the experiment. This threshold
appears to represent a tipping point in behaviour, below δ2 = 0.74 there are few
subspaces output and the running time is stable around 0.2 seconds, even as the
number of bins increase. Above δ2 = 0.74, the running time increases to around
1000 seconds, but is again stable as the number of bins increase.

It is also true that the effect of number of bins can be further reduced by
employing not equi-width binning method, but instead implementing a more so-
phisticated techniques as described by Kontkanen and Myllymäki (2007). For ex-
ample, the NML optimal histogram estimation adopts the minimum description
length principle to compress irregular data, while emphasizing data points that
occur more frequently. Furthermore, a number of density and/or entropy based
feature discretization methods have also proven to be effective. For the datasets
we have used in this experiment, however, the number of bins did not affect the
performance or the ADCO values greatly and the extra step required to optimally
discretize the attributes has been left as our future work.

On the other hand, growing the size of dimensionality obviously made EVE
slower as shown in Figure 2(b). This is because the number of subspaces output
can increase exponentially as the number of attributes increases3. However, the
time required for the ’Musk’ and ’Diabetes’ was quite stable which affirmed the
effectiveness of our pruning strategies. For the ’Adults’ dataset though, there is a
steep increase in running time at around 130 attributes.

Finally, the results of EVE’s performance is shown in Figure 3(a) when the
number of clusters per clustering is changed. This demonstrates that running time
becomes slower as the number of clusters increases. EVE is affected in such a way
because the underlying ADCO measure requires permuting the order of clusters
(using the Hungarian algorithm) in one of the clusterings, before calculating the
overall dissimilarity. The implications here are that EVE is likely to be more
practical for clusterings with less than 10 clusters and it may not be feasible to
use for clusterings with a very large number of (e.g. 30 or more) clusters.

Additionally EVE is also affected by the δ1 and δ2 values. In Figure 3(b) we
plot how EVE’s performance is changed when we changed δ1 value. This shows
the runtime performance of EVE on the Ozone data set, as the value of δ1×100%
varies, We observe that EVE is very efficient for higher values of the threshold, but
runtime increases (and pruning effectiveness decreases) as the threshold becomes
lower. Intuitively, this is because the constraint is becoming less selective and the
output size is becoming much larger, due to this lack of selectivity.

6 Discussion and Limitations

Whilst we believe that our EVE algorithm has excellent potential for exploratory
clustering comparison, there remain a number of challenging issues to investigate
and analyse further for the future.

3 For this experiment, we duplicated the features of ’Diabetes’ and ’Adult’ in order to
increase the number of features up to 166
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Fig. 3 Figures for testing scalability of EVE when various parameters are changed.

Firstly, the EVE technique depends on the interpretability of the ADCO mea-
sure and also the interpretability of changes in the ADCO measure. Discussion of
ADCO ’s mathematical properties is provided by Bae et al. (2010). However, pre-
cise calibration of ADCO values remains an open problem. A possible direction
here is to use a statistical test for assessing when the value of ADCO in a subspace
is statistically significantly different compared to the full feature space.

Secondly, the output of EV E is dependent on the underlying choice of binning
for the ADCO measure and our default in this paper has been to use 10 bins of
equal density. The fact that the (absolute) similarity between two clusterings is
dependent on the choice of binning can be viewed as both an advantage and a
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disadvantage. The advantage is that of flexibility and the capability to incorpo-
rate domain knowledge and guidance from the user into the binning process. The
disadvantage is that users who are not expert may need assistance in determining
how to carry out the choice of binning. Previous work by Bae et al. (2010) has
compared the effect of equi-density binning, versus equi-width, versus MDL dis-
cretization binning (Fayyad and Irani 1993) for ADCO . An important advantage of
MDL discretization is that different attributes may have different numbers of bins
and the number can be automatically determined. A general conclusion made by
Bae et al. (2010) is that there is reasonable consistency in ADCO across different
discretizations, but there do exist differences in absolute values. We highlight this
as an important issue that is interesting and important to investigate further. A
possible further direction would be to also investigate the use of optimal histogram
density estimation (Kontkanen and Myllymäki 2007).

7 Summary

In this paper, we have introduced the problem of mining deviating subspaces in
order to enrich spatially aware similarity assessment between clusterings. We also
proposed an efficient algorithm for enumerating deviating subspaces, leveraging
an existing similarity measure known as ADCO .

We believe this is an exciting new direction for clustering comparison, since it
can reveal hidden relationships between the two clusterings and enrich the assess-
ment of similarity between them.

For future work, it may be interesting to investigate whether deviating sub-
spaces can be efficiently enumerated using alternative spatially aware clustering
similarity measures. Furthermore, it may be interesting to consider the imposition
of other constraints for the output set of deviating subspaces, such as number of
features, or use non-redundant representations such as maximality. Efficient incor-
poration of these into the mining process is another interesting open question.
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