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Abstract Clustering analysis is important for exploring complex datasets.
Alternative clustering analysis is an emerging subfield involving techniques for
the generation of multiple di↵erent clusterings, allowing the data to be viewed
from di↵erent perspectives. We present two new algorithms for alternative
clustering generation. A distinctive feature of our algorithms is their princi-
pled formulation of an objective function, facilitating the discovery of a sub-
space satisfying natural quality and orthogonality criteria. The first algorithm
is a regularization of the Principal Components analysis method, whereas the
second is a regularization of graph-based dimension reduction. In both cases,
we demonstrate a globally optimum subspace solution can be computed. Ex-
perimental evaluation shows our techniques are able to equal or outperform a
range of existing methods.
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2 Xuan Hong Dang, James Bailey

1 Introduction

Data clustering categorizes similar data instances into the same clusters. How-
ever, when clustering complex data, many solutions may exist and more than
one may be reasonable. Addressing this challenge is the goal of the growing
research area of alternative clustering, where the aim is to generate multiple
dissimilar, yet high quality clusterings of a dataset.

In this paper, we present two algorithms that can generate multiple al-
ternative clusterings. The first is suitable for when the dataset structure is
linear, whilst the second can further handle nonlinear cases. Both adopt a
transformed feature space approach: a new feature space (subspace) is gen-
erated to satisfy certain criteria and then a clustering algorithm is executed
using this new feature space to obtain an alternative clustering.

A key contribution of our approach is that the new feature space is gener-
ated via the optimization of two objectives, one based on orthogonality (dis-
similarity), the other based on quality. We formulate our objective functions in
the framework of the eigendecomposition problem. This has the major advan-
tage that a closed form for the subspace solution is guaranteed to exist and the
solution is globally optimum. Our first technique operates by regularizing the
objective function of the Principal Component Analysis (PCA) method [16],
whereas the second technique regularizes the graph-based dimension reduc-
tion method. PCA attempts to preserve the global variance of the data by
projecting into a lower subspace spanned by the leading eigenvectors of the
data covariance matrix. We regulate this subspace learning process by incorpo-
rating the information from reference clusterings into the PCA optimization
function, by using the Hilbert Schmidt Independence Criterion (HSIC) [2].
Similar to mutual information, this criterion is e↵ective in measuring the de-
pendence amongst di↵erent random variables. The output is a novel subspace
that is independent from any reference clusterings, yet which ensures the global
property of data variance being maximized.

In our second approach, rather than retaining the global variance property,
we maintain a local property, the geometrical proximity of the data instances.
This helps address the cases where the clustering structures may exhibit non-
convex shapes (i.e., clustering boundaries can be of any non-linear form). Ex-
perimental results show that the proposed techniques are either superior to or
competitive with existing methods across a range of datasets.

In summary, the contributions of our work are:

• We develop the formulation of two novel algorithms for the task of gener-
ating multiple alternative clusterings.

• The chief advantage of these two algorithms is their theoretical formulation.
To discover each alternative clustering, these algorithms operate by first
generating an alternative feature subspace satisfying an objective function
that combines both quality and dissimilarity. This feature space
– Is guaranteed to exist.
– Is globally optimal with respect to the objective function.
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 3

• We perform a number of experiments to demonstrate the advantages of
the proposed algorithms and compare against a number of well-known
algorithms in the literature.

An outline of the remainder of this paper is as follows. Background about
related work in the field of alternative clustering is provided in Section 2.
Section 3 defines terminology and formulates the problem. In Section 4, we
describe our first alternative clustering algorithm known as RPCA, based on
regularized principal components analysis. In Section 5, we describe our sec-
ond alternative clustering algorithm known as RegGB, based on a regularized
graph-based embedding. This is followed by an experimental analysis in Sec-
tion 6 and conclusions in Section 7.

2 Related Work

A number of algorithms exist for alternative clustering and they can be gener-
ally categorized into two groups: those seeking an alternative clustering using
the full original data space and those seeking an alterative clustering based on
transformed/projected subspaces. We review major studies falling into these
two themes in the following discussion.

Studies using the entire original data space: In this first group, the
full original feature space is utilized and most studies di↵er in the way they de-
velop a clustering objective that optimizes both the clustering quality and dis-
similarity of an alternative solution. Algorithms developed in [4, 14, 15, 8, 9, 21]
can be categorized into this group. In [4], an hierarchical clustering technique
named COALA is developed that incorporates the cannot-link constraints
(generated from a given clustering) into each its agglomerative merging step.
COALA achieves the goal by attempting to satisfy as many of these cannot-link
constraints as possible. In [8], the CAMI algorithm is developed to seek two
alternative clusterings at the same time and use the entire original data space.
Formulating the clustering problem under mixture models, CAMI optimizes
a dual-objective function in which the log-likelihood (accounting for cluster-
ing quality) is maximized while the mutual information between two mixture
models (accounting for the distinction between two clusterings) is minimized.
Two algorithms, named Dec-kmeans and Conv-EM, proposed in [15] are also
in this line, which aim to respectively regularize the k-means and EM objective
functions by incorporating a term accounting for the decorrelation between the
two clustering solutions. Representing each clustering solution by a set of mean
vectors, these algorithms attempt to maximize the orthogonality of a mean in
one clustering with respect to any mean vector of the other clustering (in ad-
dition to the maximizing clustering objective of the conventional k-means and
EM techniques). The work in [9] takes a di↵erent approach which is rooted
from information theory. Using the entire original data space, its clustering
objective is to maximize the mutual information (MI) between the full feature
data instances and the alternative clustering labels, while minimizing such
information between alternative and a provided clustering solution. However,
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4 Xuan Hong Dang, James Bailey

instead of using the traditional Shannon entropy [6], this work is developed
based on the use of Renyi’s entropy, with the corresponding quadratic mu-
tual information [17, 25]. Such an approach allows the MI to be practically
approximated when combined with the non-parametric Parzen window tech-
nique [24]. Recently, this dual-optimized clustering objective is also exploited
in work [21] with an iterative approach, rather than the hierarchical technique
adopted in [9].

Studies using a transformed data space: In this second group, most
studies seek alternative clusterings via data space transformation, following
the general idea that if the transformed spaces are independent (e.g., orthogo-
nal), corresponding clustering solutions discovered from them are dissimilar as
well. Algorithms developed in [7, 11, 26, 22] follow this approach, yet they dif-
fer in the way of formulating independent (sub)spaces, as well as the functions
using for transformation/projection. Work in [7] develops two techniques to
find an alternative clustering using orthogonal projections. From least mean
square error theory, one knows that the projection of a vector, say b, onto the
column space of a matrix A is computed by P ⇤b, of which P = A(ATA)�1AT

is called a projection matrix. Hence, (I �P ) is also another projection matrix
which projects b onto the null space of AT (i.e., perpendicular to A’s column
space). The two algorithms developed in [7] exploit this projection equation
by viewing each data instance xi as a vector b and in the first algorithm,
the columns of A directly are the provided clustering’s means, whereas in
the second algorithm, they are the features learnt from PCA applied on the
provided reference clustering’s means. A second, yet potentially uncorrelated,
clustering can be found by partitioning the orthogonally transformed data
yi = (I � P )xi. Another work along this theme is developed in [11], in which
the transformation is applied on the distance matrix learnt from the provided
clustering. Compared to the two methods developed in [7], this work has an
advantage that it can avoid the problem that the data dimension is smaller
than the number of clusters (e.g., spatial datasets). The algorithm developed
in [26] takes a di↵erent approach, by attempting to transform the data such
that data points belonging to the same cluster in the provided reference clus-
tering are now mapped far apart in the newly transformed space. However, a
key di↵erence of this method from the other ones is that it does not seek for
a completely novel clustering. Instead, it allows some part of the previously
known clustering to be retained in the alternative clustering, by adjusting a
threshold accounting for the dissimilarity between two solutions. Algorithms
proposed in [10] and [22] are based on spectral clustering. The first shows
that alternative clusterings can be found by looking at di↵erent eigenvectors
of the Laplacian matrix, whereas the second (mSC) combines dissimilar sub-
space learning into the process of spectral clustering. Its clustering objective is
thus a dual-function and at each iteration, mSC fixes one term for optimizing
the other term. Similar to the first algorithm we will present, mSC uses the
HSIC to quantify the correlation, but between two subspaces Our algorithm
uses HSIC to quantify the independence of a novel subspace to the provided
clustering label directly (rather than to a subspace indirectly learnt from it).
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 5

Moreover, although the core algorithm of mSC is a spectral technique, the
subspace learning is limited to a linear transformation.

3 Problem Formulation

Assume a d-dimensional dataset X with instances {x1,x2, ...,xn} and an ex-
isting reference clustering C(1) (found by any clustering algorithm) which is a
partition of X. Let C be the space of all clusterings of X.

Assume that the quality of a clustering can be measured by a quality func-
tion Q : C ! <+, which captures the inherent “goodness” of the clustering.
Assume also, the existence of a dissimilarity function D : C ⇥ C ⇥ . . . C ! <+,
which can measure how di↵erent a clustering is compared to an existing set of
clusterings. Then, the goal is:
Base Case: Given a single reference clustering C(1), we must generate C(2), an

alternative clustering over X, whose clusters C(2)
i ’s of C(2) satisfy

S
i C

(2)
i = X

and C(2)
i \ C(2)

j = ; for 8i 6= j. The quality of the alternative clustering C(2)

should be high and C(2) should be dissimilar from C(1).
Recursive case: Given a set of reference clusterings {C(1), C(2), . . .}, we must
generate an alternative clustering C(k), such that C(k) is of high quality and
C(k) is dissimilar from all previously found reference clusterings {C(1), C(2), . . .}.

To generate an alternative clustering, our work will use a subspace learning
approach. It aims to map data from an original space X into a new subspace
which preserves certain well-defined characteristics of X and is also indepen-
dent from one or more reference clusterings. Any clustering algorithm can then
be executed in this new subspace to generate an alternative clustering. We will
mostly focus on the case where only a single reference clustering is provided
and briefly indicate how one extends to multiple reference clusterings.

4 Regularized Principal Component Analysis

Principal Component Analysis is a widely used unsupervised technique to find
a subspace which maximally preserves the global variance of the data.

Mathematically, let x1,x2, ...,xn be the column vectors of the matrix X,
the coordinates of xi are considered as random variables and a row in X is
the sample of the values associated with a random variable drawn from an un-
known probability distribution. PCA finds a new basis w1, . . . ,wq arranged in
columns of a matrix W such that the projection of xi’s onto these new vectors
is as spread as possible; i.e. if Y = WTX, then the variance of Y should be
maximized. This can be solved via the equation Cov(X)w = �w for eigenval-
ues � � 0 (and Cov(X) is the X’s covariance). Solutions for w’s all lie in the
span of x1, . . . ,xn since Cov(X)w =

P
i(xi.w)xi; and the optimal w1, . . . ,wq

are the q leading eigenvectors (corresponding to the q largest eigenvalues) of
Cov(X). Notice that up to d eigenvectors can be found. However in practice,
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6 Xuan Hong Dang, James Bailey

only a small number q leading eigenvectors are retained (q ⌧ d), su�cient to
cover most of the data variance (e.g. 95%).

In our problem, given C(1) as a reference clustering, we regularize PCA
such that the learned subspace W is independent from C(1). This ensures
any clustering solution C(2) derived from W will be dissimilar from C(1).
To compute the dependency between subspaces, mutual information could
be applied [8]. Nevertheless, this approach requires approximating the joint
distribution. Instead, we employ the Hilbert Schmidt Independence Criterion
(HSIC) [2], which can achieve the same purpose, but does not require compu-
tation of the joint distribution. Furthermore, combining the use of HSIC with
PCA can lead to an eigendecomposition problem, for which a globally optimal
solution can be computed.

Specifically, given X and Y as two random variables, HSIC(X,Y ) quanti-
fies independence between them by computing the squared norm of the cross-
covariance operator over the domain X ⇥ Y in the Hilbert Space. This norm
is close to zero if X and Y are highly independent and is zero i↵ they are
completely independent [2]. At a high level, we are going to use the HSIC
measure to assess the correlation between X and Y , where X is the collec-
tion of transformed data instances (in the transformed subspace) and Y is the
cluster memberships of these data instances in the reference clustering C(1).
An advantage of using the HSIC criterion for this task, is that it can natu-
rally accommodate assessing the correlation between domains whose samples
X and Y may have complex structures.

More formally, let �(x) be a mapping of data sample x in the input space
X to the reproducing kernel Hilbert space (RKHS) F . We call F an RKHS
if the inner product of two mappings can be represented by a kernel function
k(x,x0) = h�(x),�(x0)i. Likewise, we define  (y) as the mapping of y in Y
to an RKHS G along with the kernel function l(y,y0) = h (y), (y0)i. The
cross-covariance operator C

xy

: G 7! F is defined as C
xy

= E
xy

[(�(x)� µx)⌦
( (y)�µy)] with ⌦ is the tensor product. The HSIC is defined as the square of
the Hilbert-Schmidt norm of C

xy

: HSIC(P
xy

,F ,G) = kC
xy

k2HS where P
xy

is
the joint distribution of X and Y . We do not have the joint distribution P

xy

,
but given n observations Z = {(x1,y1), . . . , (xn,yn)} from P

xy

, the HSIC can
be empirically estimated by [2]:

HSIC(Z,F ,G) = (n� 1)�2tr(KHLH) (1)

where K,L 2 Rn⇥n are Gram matrices with Kij = k(xi,xj), Lij = l(yi,yj),
H = I � 1

n1n1
T
n and tr(.) is the trace of a matrix and 1n is a column vector

of size n with all 1’s and 1T
n is a row vector with all 1’s with size n. We

will use l(yi,yj) = hyi,yji where yi is a binary vector encoding xi’s cluster
label and as shown later, we use the inner product for the kernel function
k(xi,xj) = h�(xi),�(xj)i. For simplicity, the notationHSIC(X,Y ), instead of
HSIC(Z,F ,G), is used for measuring the independence between two random
variables X and Y .

Example 1 To give a simple illustration, let us assume that we have 6 instances
{x1,x2, . . . ,x6} and 3 clusters, where every two consecutive instances belong
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 7

to the same cluster. The vectors y1 = y2 = (1, 0, 0)T can thus be used to
encode cluster labels for x1 and x2. Similarly, y3 = y4 = (0, 1, 0)T for x3 and
x4 and y5 = y6 = (0, 0, 1)T for x5 and x6. Y is then a matrix with rows
corresponding to each of the yi. L is a 6⇥6 matrix giving pairwise similarities
between yi and yj according to their dot product. Likewise, K is a 6⇥6 matrix
giving pairwise similarities between two mappings �(xi) and �(xj). Also note
that, by its definition, H is a constant matrix fixed for any matrix of size of
n⇥n (in this example it is 6⇥ 6) and the summation over any of one its rows
or columns is equal to 0. In this example, each row (and column) of H will
contain five entries with value � 1

6 and one entry with value 5
6 .

Given our measureHSIC(X,Y ) we can use it for regularizing the objective
function of PCA. We must find the transformation matrix W which leads
to a subspace that is independent from C(1) and which also maintains the
global variance property of the data. In other words, among all subspaces that
are dissimilar to the existing reference solution C(1), we select one that can
optimally preserve the data variance. Thus, we regulate the PCA objective
function as follows:

W ⇤ = argmax
W2Rd⇥q

var(WTX)�HSIC(WTX,C(1))

= argmax
W2Rd⇥q

var(WTX)� tr(HKHL) (2)

in which W ⇤ is used to denote the optimal solution for W and tr(HKHL) =
tr(KHLH) due to the invariant property of the matrix trace under cyclic per-
mutations. Di↵erent kernel functions result in di↵erent approximations of the
dependency between the variables. In our problem, we use a linear kernel in or-
der to be consistent with the linear projection of the PCA and so that such ker-
nel corresponds to the dot product between two variables. The mapping func-
tion is defined as �(x) = WTx and hence K = h�(X),�(X)i = XTWWTX.
This gives us:

var(WTX)� tr(HKHL)

= WTXXTW � tr(HXTWWTXHL)

= WTXXTW �WTXHLHXTW

= WT (XXT �XHLHXT )W

=
qX

i=1

wT
i (XXT �XHLHXT )wi (3)

The matrix XHLHXT is symmetric, since both H and L are symmetric.
Hence, the eigenvalues of the symmetric matrix XXT � XHLHXT are real
and the corresponding eigenvectors are pairwise orthogonal. As an eigenvalue
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8 Xuan Hong Dang, James Bailey

decomposition problem, the optimal solution forW ⇤ is the set of q most impor-
tant eigenvectorsW ⇤ = [w1, . . . ,wq] corresponding to the q largest eigenvalues
of theXXT�XHLHXT . In practice, we select q such that the sum of q largest
eigenvalues occupies 90% of the sum of all eigenvalues. Then, to find an alter-
native clustering C(2) dissimilar from C(1), the k-means clustering technique
can be performed in the subspace spanned by these selected eigenvectors. We
name this algorithm RPCA and its pseudo code for the base case (provided
one reference clustering and find another alternative one) is provided in Fig-
ure 1 (extending this to the recursive case is straightforward as sketch in the
following discussion).

Algorithm RPCA: Discovery of an alternative clustering (clustering boundary expected
to be linear).

Input:
(1) A dataset X;
(2) A reference clustering C(1) over X;

Output: An alternative clustering C(2) over X;

1: Compute L with Lij = hyi,yji where yi is the binary vector encoding xi’s cluster label

in C(1);
2: Compute H = I � 1

n1n1T
n ;

3: Compute XXT �XHLHXT ;
4: Calculate eigenvalues/eigenvectors of XXT �XHLHXT ;
5: Sorting eigenvalues in descending order;
6: Select W = [w1, . . . ,wq ] corresponding to the q largest eigenvalues covering 90% of the

sum of all eigenvalues;
7: C(2) = k-means(WTX);

Fig. 1 Pseudo code of the RPCA technique for generating one alternative clustering

It can be seen that the value of XHLHXT can directly a↵ect the computa-
tion of the variance matrix XXT . However, as observed from Eq.(2), since this
quantity stems from the measure of independence between two clustering so-
lutions, one may view it somewhat as a constraint added to the main objective
of maximizing the variance. In other words, we desire a projection in which
the data variance is maximized, yet is subject to the independence condition
with respect to the previously given clustering solution C(1). Also from this
perspective, we can observe from Eq.(2) that a straightforward extension of
our technique to find multiple alternative clusterings (recursive case) is to add
more terms of HSIC measures (like constraints), each with respect to a known
clustering solution. For example, in seeking for the third clustering C(3) given
two previously found C(1) and C(2) solutions, the second term in Eq.(2) is re-
placed by (HSIC(WTX,C(1))+HSIC(WTX,C(2))). Analogously, deploying
this as shown in Eq.(3) gives us (WTXHL1HXTW +WTXHL2HXTW ) =
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 9

WTXH(L1 +L2)HXTW . That means L is replaced by (L1 +L2)1 and other
matrices remain unchanged.

Theorem 1 Let q be the number of dimensions of the data subspace that we
aim to look for satisfying Eq.(2), then the data subspace found by the regular-
ized PCA technique is ensured to be a globally optimum solution.

Proof. The proof of the theorem is straightforward, as seeking for the opti-
mal data subspace satisfying Eq.(2) turns out to be the eigen-decomposition
problem of the symmetric matrix XXT � XHLHXT . From linear algebra,
the solutions are unique as the set of the matrix’s eigenvectors/eigenvalues.
Sorting its eigenvalues from large to small, one can easily select q eigenvectors
corresponding to the q largest eigenvalues as the global optimum solution.

⇤

Theorem 2 Given d as the dimension of the dataset, n as the number of the
data instances, the computational complexity of the Regularized PCA technique
is O(n2d) +O(d2).

Proof. The complexity of Eq.(3) depends on the time to compute XXT , which
is O(n2d), and the L matrix, which is O(n2c), where c is the number of clusters
in C(1). Finding eigenvalues/eigenvectors of the XXT � XHLHXT matrix
generally costs time O(d3) [13], since its dimension is d ⇥ d. However, if only
the first few leading eigenvectors are required, techniques such as the power
method [30] can reduce computation to O(d2). Since c is usually smaller than
the number of data dimension d, the overall complexity is O(n2d) + O(d2),
the same as that of a conventional principal component analysis. Note also
that adding more HSIC terms into Eq.(2) (i.e., conditioning on more than one
reference clustering) does not a↵ect the time complexity, since it only a↵ects
the values in L, but does not change the matrix size.

⇤

5 Regularized Graph-based Method

We have described a method based on PCA to learn a subspace that is inde-
pendent from a reference clustering solution, but which preserves the global
variance property of the data. The method is linear, making it practically suit-
able for applications where the boundaries between clusters are linear or close
to linear functions. Nonetheless, if the structures in the data are not simple,
then the clustering boundaries can be non-linear, requiring a more complex
subspace learning technique. We therefore next propose another method to
deal with this challenge. Specifically, the algorithm aims to preserve a lo-
cal property of the data, the neighborhood proximity of the data instances.

1 In order to keep the values in L not proportional to the number of reference clusterings,
we normalize L’s values within the range of 0 and 1.
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10 Xuan Hong Dang, James Bailey

Similar to Local Linear Embedding [27] and Laplacian Eigenmap [20], the
philosophy is to map the original data into a subspace such that the local
neighborhood information in X is optimally preserved. Furthermore, we also
require the mapped data to be uncorrelated from any reference clusterings.

We formulate the approach using graph theory. Let G = {V,E} be an
undirected graph, where V = {v1, . . . , vn} is a set of vertices and E = {eij} is
a set of edges, each connecting two vertices (vi, vj). A vertex vi corresponds to
a data instance xi in the dataset X and the edge eij between vi and vj exists if
the respective points xi,xj are close to each other. We define closeness between
xi and xj using the `-nearest neighbors, i.e. xi is close to xj if it is among
the `-nearest neighbors of xj . We associate a weight K(i, j) between each
pair of vertices vi and vj which measures their closeness. The non-linear RBF
kernel function is widely used for this measure and by definition, K(i, j) =
exp

�
�kxi � xjk2/�2

�
, where � is a given parameter. For two nodes that are

not connected, the respective weight K(i, j) is set to zero. The n ⇥ n matrix
K contains the weights K(i, j) as elements. K is symmetric and typically
sparse, since each vertex is only connected to a limited number of neighbors.
Furthermore, each K(i, j) 2 [0, 1] can loosely be interpreted as the possibility
of xi and xj to be clustered together.

Given the weight matrix K derived from the graph G and a reference
clustering C(1), our algorithm learns a novel set Y = {y1, . . . ,yn} (where each
yi 2 Rq (q ⌧ d) is the mapping of xi 2 Rd) that optimally preserves the local
proximity of the data instances while at the same time are independent from
the reference solution C(1). The objective function is as follows:

y⇤ = argmin
y

NX

i=1

NX

j=1

kyi � yjk2K(i, j) s.t. STy = 0 (4)

where S is a subspace encoding the reference solution C(1) (discussed shortly).
In order to keep the problem simple, in Eq.(4) we present for the case where the
original data instances are mapped into R1 space, yielding a 1-dimensional vec-
tor y = {y1, . . . , yn} (generalization to multiple dimensions will be presented
later once the solution for y is clear).

Looking at this objective function, we can see that it aims to identify a
new subspace y, having two properties:

– The similarity of pairs of transformed data instances is required to be high,
if the pair of instances was similar in the original data space. Specifically,
if K(i, j) is large (xi and xj are close in the original space), there is a
large penalty in the objective function if the respective points yi and yj
are mapped far apart. Therefore, optimally preserving the local proximity
of the data is equivalent to minimizing this cost function.

– The new data space y is required to be orthogonal to the subspace S
which characterises the reference clustering C(1) (captured by the con-
straint STy = 0). Consequently, a second clustering C(2) learnt from sub-
space y is thus likely to be be independent or dissimilar from C(1), due to
the orthogonality of the two respective subspaces.
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 11

We note that one can show y = 0 is a solution of Eq.(4) since all elements in
K matrix are non-negative and so is the objective function. However, note that
such a trivial solution is not unique, since the function also reaches minimum
when yi = yj for any i, j. We therefore will later add more constraints over y
in order to remove these trivial solutions.

Learning the subspace S which characterizes the reference clustering C(1):
We now discuss how to find the subspace S that characterizes the provided
reference clustering C(1). Di↵erent from our regularized PCA method, where
the mapping function is clear and linear, we do not have such an explicit map-
ping function with this nonlinear graph-based approach. We hence employ a
non-linear projection technique to find a new set of mapped data characteriz-
ing C(1). To achieve this goal, we use the kernel discriminant analysis (KDA)
technique [5], a generalization of linear discriminant analysis (LDA). Briefly
recall that LDA can be used to discover a lower dimensional representation for
a dataset, that is a good characterization for the classes (in our case clusters)
existing in that dataset. In particular, it seeks a lower dimensional represen-
tation which maximizes the separation between clusters. Mathematically, this
is achieved by maximizing the di↵erence between the projected means of the
clusters, while also ensuring instances from the same cluster are projected close
to one another.

In our context, we are seeking to find a subspace S which is a good char-
acterisation for the reference clustering C(1). However, the shapes of clusters
and the boundaries between them may be non linear. We thus employ KDA,
which is able to more e↵ectively handle such non linear situations (compared
to the LDA). More specifically, KDA maps the original data into the Hilbert
space F using a nonlinear mapping � : xi 2 Rd ! �(xi) 2 F and then per-
forms the LDA on this F space. An optimal direction v in the F space is
sought for which the between-cluster scatter matrix S�

b is maximized whilst
the within-cluster scatter matrix S�

w is minimized, i.e.,

v⇤ = argmax
vTS�

b v

vTS�
wv

(5)

with S�
b =

Pk
j=1(µ

�
j �µ�)(µ�

j �µ�)T , S�
w =

Pk
j=1

P
xi2C

(1)
j

(�
xi �µ�

j )(�xi �

µ�
j )

T and µ� and µ�
j are respectively the centroids of the entire data and the

C(1)
j cluster (computed in the F space).
According to the theory of reproducing kernels, it is known that solutions

for vmust lie in the span of �(x1), . . . ,�(xn) and thus v can be represented as a

linear combination of these vectors: v =
PN

i=1 ↵i�(xi). Instead of directly seek-
ing v, KDA searches for ↵ = [↵1, . . . ,↵N ]T . The corresponding optimal ↵ is
the leading eigenvector of the generalized eigen-problem UWU↵ = �UU↵ [5],
in which W and U are diagonal blocking matrices with their entries being
defined respectively as:
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12 Xuan Hong Dang, James Bailey

• Wij = 1/|C(1)
` | if xi and xj belong to the same cluster C(1)

` and zero
otherwise;

• Uij = h�(xi),�(xj)i = K(xi,xj) with K(., .) is a non-linear kernel function.

The optimal eigenvector ↵ provides the corresponding optimal projection
direction v. We cannot compute v explicitly since recall that the mapping
function �(x) is unknown. Fortunately, what we need is just the set of data
projected onto v, rather than the v itself. We therefore define our S matrix in
Eq.(4) as follows:

S = hv,�(x)i =
X

i

↵ih�(x)�(xi)i =
X

i

↵iK(xi,x)

Each row in S corresponds to a projected data instance and the number of
columns in S equals the number of retained eigenvectors (the dimensionality
of the transformed feature space). As a rule of thumb, this number is selected
equal to the number of clusters in the reference clustering C(1) minus one.

Seeking an alternative clustering using the mapped data orthogonal to the
reference clustering : It is important to note that by learning the subspace S as
presented above, it is obvious that S strongly supports the provided reference
clustering C(1) (i.e., highly correlates to the cluster labels in C(1)). Therefore,
by exploiting the orthogonal constraint STy as shown in our objective function
Eq.(4), we ensure that the newly mapped data yi’s will be uncorrelated from
the reference solution C(1) and subsequently a novel alternative clustering C(2)

derived from yi’s is likely to be dissimilar from C(1). We now discuss how to
compute this mapped data (the yi’s) and the corresponding novel alternative
clustering C(2).

Let us define D as the diagonal matrix with Dii =
P

j K(i, j) and L =

D �K, then expanding the sum in Eq.(4) results in
P

i y
2
iDii +

P
j y

2
jDjj �

2
P

i

P
j yiyjK(i, j) = 2yTLy. Additionally, as we need the direction of y

rather than its magnitude, the constraint yTDy is further taken into account
to remove the freedom of y’s magnitude. Hence, in combination with the clear
form of S, the optimization objective with the constraints in Eq.(4) can be
solved using the Lagrange method:

L(�, �,y) = yTLy � �(yTDy � 1)� �STy (6)

in which � and � are the Lagrange multipliers. Solving this objective function
for y will automatically satisfy our two added constraints over y. Notice that
the graph is connected and thus D is a positive definite diagonal matrix and
the variable y can be changed to y = D�1/2z. The minimization objective is
therefore:

yTLy = zTD�1/2LD�1/2z

= zTQz

and the two constraints are:
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 13

yTDy = zT z = 1 and STy = STD�1/2z = 0

Let us denote RT = STD�1/2 and notice that adding the constant 1/2 to
the two leading terms does not a↵ect our optimization objective, Eq.(6) can
be re-written as follows:

L(�, �, z) = 1

2
zTQz� 1

2
�(zT z� 1)� �RT z (7)

Taking the derivative with respect to z and equating it to zero gives us:

�L
�z

= Qz� �z� �R = 0

Qz� �z = �R (8)

Pre-multiplying RT to both sides, it is straightforward to derive � =
(RTR)�1RTQz. Substituting this result into Eq.(8) leads to:

�z = Qz�R(RTR)�1RTQz

=
�
I �R(RTR)�1RT

�
Qz

= PQz (9)

which is an eigenvalue problem with P = I � R(RTR)�1RT . Note that PQ
might not be symmetric, though each of its individual matrices is. However,
it is possible to show that P is indeed a projection matrix. Specifically, notice
that R(RTR)�1RT is unchanged under its transpose due to ((RTR)�1)T =
((RTR)T )�1 = (RTR)�1, which is used to verify PT = P . In addition, P 2 =
I2 � 2R(RTR)�1RT + R(RTR)�1(RTR)(RTR)�1RT = I � R(RTR)�1RT =
P . Consequently, it is true �(PQ) = �(PQP ), meaning that the eigenvalues
of both matrices PQ and PQP are the same. Therefore, instead of directly
solving �z = PQz, we solve an easier equation �v = PQPv (with v = P�1z)
since PQP is a symmetric matrix.

The quadratic form of the symmetric matrix PQP is non-negative. Its
eigenvalues �i’s are thus always non-negative and the smallest eigenvalue is
�0 = 0, corresponding to the eigenvector v0 = P�1D1/21 (with 1 is the vector
having all unit elements). Such trivial eigenvalues/eigenvectors are removed
from our solution, and the final representation is the set of q eignenvectors
y = D�1/2Pv corresponding to the q smallest positive eigenvalues of PQP
(in our work, we select q as the number of clusters desired for the alternative
clustering minus 1). Notice that the final solutions naturally satisfy the two
specified constraints imposed on y due to the Lagrange multipliers method.

Again, a k-means clustering technique can be applied to the transformed
data to obtain the novel alternative clustering C(2). In Figure 2, we provide the
pseudo code of this regularized graph-based (RegGB) algorithm for the base
case. Similar to our first technique, this approach can be straightforwardly
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14 Xuan Hong Dang, James Bailey

Algorithm RegGB: Discovery of one alternative clustering (clustering boundary can be
non-linear).

Input:
(1) A dataset X;
(2) A reference clustering C(1) over X;

Output: An alternative clustering C(2) over X;

1: /*Computing kernel and weight matrices based on graph G */
2: Compute K with K(i, j) = exp

�
�kxi � xjk2/�2

�
if xi and xj are neighbors to each

other; Otherwise, K(i, j) = 0 ;

3: Compute W with Wij = 1/|C(1)
` | if xi,xj 2 C

(1)
` ; Otherwise, Wij = 0;

4: /*Learning subspace S characterized for C(1) */
5: Compute U with Uij = h�(xi),�(xj)i = K(xi,xj) in that K(., .) is the Gaussian kernel;
6: Calculate ↵ = [↵1, . . . ,↵N ]T as the leading eigenvector of the equation UWU↵ =

�UU↵;
7: Compute S =

P
i ↵iK(xi,x);

8: /*Learning mapped data yi’s and novel clustering C(2) */
9: Compute D with Dii =

P
j K(i, j)

L = D �K;
10: Compute Q = D�1/2LD�1/2

RT = STD�1/2

P = I �R(RTR)�1RT ;
11: Compute �i’s and vi’s as the set of eigenvalues/eigenvectors of PQP ;
12: Remove �i’s and vi’s having �i = 0 and sort �i’s in ascending order;
13: Select Y = [y1, ....yq ] with yi = D�1/2Pvi corresponding to the q smallest �i’s;
14: C(2)  k-means(Y );

Fig. 2 Pseudo code for the RegGB technique when generating one alternative clustering

extended to find multiple alternative clusterings by just including all reference
clusterings’ subspaces into the S matrix (as S’s rows).

Theorem 3 Let q be the number of dimensions of the data subspace that we
aim to look for satisfying Eq.(4), then the data subspace found by the Regular-
ized Graph-Based technique is ensured to be a globally optimum solution.

Proof. Similar to the case of the Regularized PCA technique, the proof of this
theorem is straightforward since searching the optimal subspace data leads to
solving the eigen-decomposition problem of the symmetric matrix PQP . Its
solutions are always unique as the set of the matrix’s eigenvectors/eigenvalues.
Ranking these eigenvalues from small to large and removing those that are
equal to 0, one can select the set of q eigenvectors (corresponding to the q
smallest eigenvalues) as the global optimum solution. ⇤

Theorem 4 Given d as the dimension of the dataset, n as the number of the
data instances, the computational complexity of the Regularized Graph-Based
technique is O(n2d).

Proof. The algorithm complexity is dependent on the time to compute nearest
neighbors and the K matrix, which both are O(n2d). The size of PQP is
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Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 15

the same as the size of L, and also the K matrix. So, its eigendecomposition
complexity amounts to O(n3). By keeping only the first few eigenvectors, the
power method [30] can be employed to reduce the time to O(n2). Thus, the
overall complexity is O(n2d).

⇤

6 Experimental Evaluation

We next undertake experimental comparisons of our two algorithms, the reg-
ularized PCA (RPCA) and the regularized graph-based (RegGB), against the
following methods: two algorithms from [7] denoted by Algo1 and Algo2, the
ADFT [11], the SC [10] and mSC [22] (which are all subspace based learning
approaches); we also compare with COALA [4], Dec-kmeans [15], CAMI [8]
and NACI [9] (which all use the entire data space). We set RegGB’s pa-
rameters as follows: the nearest neighbors to 10 and the kernel width � =

b� (4/(n(2d+ 1)))
1

d+4 as in [9] (where b� =
P

i �i/d and �i’s are the diagonal
elements of the sample covariance matrix), since it was shown to work fairly
well by balancing out the bias and the data variance [29]. Each algorithm (ex-
cept hierarchical technique COALA and NACI) was run ten times for di↵erent
initializations and we report the average values.

6.1 Clustering Measurements

Clustering results are evaluated according to clustering quality and dissimi-
larity. For clustering quality, we divide into two cases: if ground truth cluster
labels are known, the agreement between alternative clusterings and the cor-
rect labels is calculated by the F-measure: F = 2P ⇥ R/(P + R), in which P
and R are respectively the precision and recall. Otherwise, we use the Dunn In-
dex denoted by DI(C) (similar to the work [4, 11]), which measures clusters’s
separation normalized by cluster diameters within the clustering solution C.

Mathematically, the Dunn Index is defined by: DI(C) = mini 6=j{ �(ci,cj)}
x1`k{4(c`)} with

�: C⇥C!R+
0 is the cluster-to-cluster distance and 4: C!R+

0 is the cluster
diameter measure.

For measuring dissimilarity between alternative clusterings, we report the
values of two di↵erent measures. The first and also the most popular one is the
normalized mutual information NMI [18, 12, 15]. The second is the Jaccard
index (JI): J(C(1);C(2)) = n11/(n11 + n01 + n10) in which n11 is the number
of pairs of samples in the same cluster for both C(1) and C(2), n01 and n10 are
the number of samples’ pairs belonging to the same cluster in one solution,
but not in the other.

Note that a smaller value of NMI and JI is desirable (indicating higher
dissimilarity between clusterings), while a larger value of F-measure and Dunn
Index is desirable (indicating a better clustering quality). Also, since methods
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16 Xuan Hong Dang, James Bailey

like Dec-kmeans, SC, CAMI and mSC do not require reference clusterings
and instead seek two alternative clusterings simultaneously, we compare by
reporting the higher values of F-measure in the case true labels are available,
and averaging the Dunn Indexes otherwise.

6.2 Synthetic Datasets

We use two popular synthetic datasets to evaluate the performance of our
proposed clustering techniques against the other algorithms. For visualization
purposes, these two synthetic datasets are generated in low dimensions (and
we leave the cases of high dimensional data for other real-world datasets).
The first Syn1 consists of four Gaussian sub-classes with each containing 200
data points generated in 2-dimensional space [7, 11, 15]. The goal of using
this dataset is to verify if our two developed techniques are able to uncover an
alternative clustering that is orthogonal to a supplied one. For the second Syn2
dataset, we generate a more sophisticated clustering structure of which each
sub-class has a non-convex shape. The purpose of using this dataset is to test
whether our second technique, which exploits the local proximity property of
the data, is able to uncover not only uncorrelated but also non-linear clustering
structure.

Row 1 of Figure 3 shows the clustering results of our algorithms for dataset
Syn1. The clustering in the first column is provided as the reference solution
C(1) and in the second column, we see the alternative clustering C(2) returned
by both the RPCA and RegGB techniques. Both our algorithms can find the
alternative clustering that is orthogonal to the supplied reference clustering.
Furthermore, if we include this clustering as an extra reference solution and
search for a second alternative clustering C(3), RegGB returns the solution
shown in the third column. In terms of Euclidean distance, this solution seems
to be less natural compared to the two previous ones. Nonetheless, it still can
be considered as an interesting one since it groups two opposite Gaussians
into a cluster and such a clustering is completely independent from the two
reference clusterings. We also note that, except for the SC method, all the other
alternative clustering techniques are unable to find this second alternative
clustering. We report the performance of all algorithms in Table 1 (to be fair,
the second alternative C(3) is excluded).

For the Syn2 dataset (which is designed to test the RegGB’s ability in
uncovering a non-linearly shaped clustering function), looking at row 2 of
Figure 3 we show the reference clustering C(1) (column 1), the first alternative
clustering C(2) (column 2) and the second alternative C(3) (column 3) found
by our RegGB technique. Moreover, to provide more insights, we show the
corresponding subspace (the top eigenvector in this 2-clusters case) returned
by RegGB at row 3. For this row, the first graph is the leading eigenvector
output by the kernel general discriminant analysis method. The second graph
is the leading eigenvector output by our algorithm by conditioning on the first

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Generating Multiple Alternative Clusterings Via Globally Optimal Subspaces 17

-4� -2� 0� 2� 4�
-4�

-2�

0�

2�

4�

-4� -2� 0� 2� 4�
-4�

-2�

0�

2�

4�

-4� -2� 0� 2� 4�
-4�

-2�

0�

2�

4�
-5� 0� 5� 10� 15�

-5�

0�

5�

10�

15�

-5� 0� 5� 10� 15�
-5�

0�

5�

10�

15�

-5� 0� 5� 10� 15�
-5�

0�

5�

10�

15�

0� 50� 100� 150� 200�
-0.2�

-0.15�

-0.1�

-0.05�

0�

0.05�

0.1�

0.15�

0� 50� 100� 150� 200�
-0.03�

-0.02�

-0.01�

0�

0.01�

0.02�

0.03�

0� 50� 100� 150� 200�
-0.03�

-0.02�

-0.01�

0�

0.01�

0.02�

0.03�

Fig. 3 Alternative clusterings uncovered from Syn1 (1st row) and Syn2 (2nd row) datasets.
Images on the 3rd row shows corresponding top eigenvectors of RegGB technique. (Clusters
are best visualized in colors.)

solution, and the third one is the top eigenvector found by conditioning on the
two previously uncovered solutions.

It is clear that by learning a subspace orthogonal the first solution and
attempting to maintain the local proximity of the data, the RegGB method
has successfully discovered the second important clustering from the data. The
separation between two non-Gaussian shape clusters, as graphically observed
from the Figure 3(row 2), is remarkably far apart. This strongly demonstrates
the advantage of a graph-based technique in learning a non-linear clustering
boundary. For comparison against the other techniques over this second al-
ternative clustering, we list the clustering measurements in Table 1 under the
Syn2 row. Obviously, due to their core algorithms being tied to a particu-
lar spherical clustering technique (k-means and EM), the methods like Algo1,
Algo2, CAMI and Dec-kmeans are not able to find the accurate clustering.
Similarly, the RPCA is a linear technique and thus also has relatively poor
results. SC and mSC perform better since their underlying clustering tech-
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18 Xuan Hong Dang, James Bailey

Table 1 Clustering performance for synthetic datasets (excluding second alternative clus-
tering)

Syn1 Syn2
Methods NMI JI F NMI JI F

Algo1 0.25 0.41 0.83 0.28 0.34 0.63
Algo2 0.26 0.43 0.81 0.28 0.34 0.63
ADFT 0.12 0.39 0.92 0.30 0.36 0.62

COALA 0.00 0.33 1.00 0.25 0.37 0.58
mSC 0.00 0.33 1.00 0.05 0.35 0.76
SC 0.00 0.33 1.00 0.00 0.33 1.00

NACI 0.00 0.33 1.00 0.00 0.33 1.00
CAMI 0.11 0.38 0.95 0.21 0.34 0.63
Deckm 0.12 0.39 0.93 0.22 0.34 0.62
RPCA 0.00 0.33 1.00 0.03 0.35 0.66
RegGB 0.00 0.33 1.00 0.00 0.33 1.00

nique is the spectral clustering. However, as we can see in overall only the
performance of NACI and RegGB can achieve the optimum. Nonetheless, if
we further keep searching for another di↵erent clustering, only RegGB can find
the third one (shown in the column 3, rows 2&3, Figure 3), which merges two
opposite spirals into one cluster. This demonstrates RegGB’s strength, which
uses the eigen-decomposition technique with graph theory, over NACI which
exploits the mutual information based approach.

6.3 Pen Digit Dataset

We next provide an experimental comparison on the Pen Digit dataset from [3],
consisting of 1602 data samples, where each sample corresponds to a hand
written digit. As a digit is being written on a pen-based tablet, 8 x, y positions
of the pen are recorded and they form the 16 attributes of the digit. Users could
write the digits in any form. We apply our algorithms on this dataset to find
di↵erent explanations about how the digits have been written. Selecting 2 as
the number of clusters within each clustering, we show in Figure 4(a) the
reference clustering C(1) found by k-means . In Figures 4(b) and (c), we show
two alternative solutions C(2) and C(3) returned by the RegGB. Each picture
in the figure corresponds to a cluster centroid.

It is observed that three resultant clusterings provide three di↵erent in-
terpretations regarding how the digits have been written. As seen from the
first clustering C(1), the writing style of the digits seems to follow clockwise
trend with a slightly constant speed in the first cluster but having a slow speed
for initial strokes and increasingly high speed for later strokes. Notice that a
shorter distance between two adjacent x, y co-ordinates indicates a slow writ-
ing speed and inversely, a longer one reveals a faster speed of strokes’ writing.
For the second clustering C(2), it is possible to observe from the first clus-
ter that the digit writing style is in counter-clockwise, as opposed to the first
clustering, with a smooth speed for most of the strokes. Analogically, though
digits are mostly written from left to right and going down, the writing style
in the second cluster of C(2) demonstrates a non-constant writing speed with
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initial strokes writing in high speed and subsequent ones with more and more
slower. This writing style is clearly di↵erent from the style uncovered in the
second cluster of C(1), where the speed of writing digits is backward. For the
third clustering, we further observe that two clusters’ centroids demonstrate
two di↵erent novel writing styles. While the digit writing manner in the first
cluster starts with a stroke from left to right, then with strokes going down to
create a very far distance of two ends, the writing style in the second cluster
begins with a stroke from right to left, going down then up again to create a
closed-end circle. Furthermore, the writing speed in two clusters is also quite
di↵erent with faster speeds for middle strokes in the first cluster while almost
constant speed for all strokes in the second cluster. These two writing styles
are not only themselves contrasted to each other but they are also clearly
distinguished from those discovered from the first two clusterings C(1) and
C(2).
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Fig. 4 Reference Clustering (C(1)) and two Alternative Clusterings (C(2) and C(3)) re-
turned by RegGB on Pen Digit dataset

Quantitative results are in Table 2. Recall that ADFT, NACI and COALA
cannot discover multiple alternative clusterings. For these algorithms, the re-
sults related to C(3) in Table 2, were computed by providing C(2) as the
reference clustering. For these algorithms, C(3) is very close to clustering C(1).
Similar behavior was found with Algo1 and Algo2, although they are able to
uncover for more than one alternative. In Table 2, both their NMI and Jac-
card Index between C(1) and C(3) are large, demonstrating a similar clustering
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Table 2 Clustering performance of all algorithms on Pen Digit dataset. (NMIij stands for

the NMI between C(i) and C(j) clusterings. A similar interpretation is applied to JIij and
DIi.)

NMI12 NMI13 NMI23 JI12 JI13 JI23 DI1 DI2 DI3
Algo1 0.01 0.74 0.02 0.38 0.83 0.37 1.70 1.59 1.68
Algo2 0.02 0.75 0.02 0.37 0.86 0.39 1.70 1.57 1.67
ADFT 0.01 0.83 0.01 0.42 0.90 0.44 1.70 1.60 1.70

COALA 0.04 0.85 0.01 0.45 0.90 0.36 1.70 1.64 1.67
mSC 0.02 0.22 0.02 0.36 0.44 0.49 1.67 1.60 1.55
SC 0.01 0.25 0.04 0.38 0.45 0.49 1.65 1.59 1.54

NACI 0.01 0.84 0.01 0.35 0.84 0.39 1.70 1.61 1.70
CAMI 0.02 0.04 0.24 0.36 0.42 0.49 1.67 1.62 1.65
Deckm 0.04 0.11 0.26 0.36 0.44 0.49 1.64 1.60 1.59
RPCA 0.01 0.18 0.02 0.33 0.48 0.47 1.70 1.61 1.57
RegGB 0.00 0.15 0.01 0.33 0.44 0.46 1.70 1.62 1.59

(b)� (c)� (d)� (e)�(a)�

Fig. 5 Image segmentation results on Escher image data. The original image is shown in the
first graph (a). Images in the three subsequent graphs (b-d) correspond to three alternative
clusterings returned by RegGB. The image in the last graph (e) is the third clustering
returned by RPCA (its second clustering is similar to the one in graph (c).

structure between C(3) and C(1). The performances of SC and mSC are similar
to each other and slightly better than Algo1,2 over the third clustering. How-
ever, in terms of mutual information and Dunn index, they are less successful
than those found by RegGB. The performance of RPCA in discovering C(3) is
good in terms of clustering dissimilarity. Nevertheless, its clustering quality is
still worse than that of RegGB, likely the result of its linear approach to the
searching subspace.

6.4 Escher Image Data

For another set of experiments on discovering multiple alternative clusterings,
we choose the Escher image data as introduced by [26], where there exists
di↵erent interpretations of image segmentation (i.e., clustering) to the human
eyes. For this sort of image segmentation, each pixel in the image is consid-
ered as a data object represented in RGB and HSV features. In Figure 5(a), we
show the original Escher image. Similar to the Pen Digit dataset, we set K = 2
and the first segmentation C(1) (Figure 5(b)) found by k-means is provided
as the reference clustering for all related algorithm. We present the second
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Table 3 Clustering performance of all algorithms on the Escher image data (notations’s
interpretation is analogous to Table2).

NMI12 NMI13 NMI23 JI12 JI13 JI23 DI1 DI2 DI3
Algo1 0.25 0.81 0.38 0.43 0.57 0.46 3.48 1.19 1.34
Algo2 0.27 0.80 0.41 0.44 0.61 0.45 3.48 1.33 1.21
ADFT 0.25 0.78 0.37 0.41 0.59 0.42 3.48 1.15 2.01

COALA 0.31 0.79 0.44 0.42 0.55 0.47 3.48 1.22 1.90
mSC 0.21 0.09 0.31 0.35 0.36 0.38 3.24 1.17 2.29
SC 0.12 0.08 0.04 0.40 0.54 0.47 3.39 1.31 1.03

NACI 0.03 0.11 0.14 0.40 0.44 0.51 3.48 1.24 1.31
CAMI 0.21 0.36 0.34 0.44 0.58 0.41 3.13 1.28 2.27
Deckm 0.32 0.28 0.35 0.42 0.45 0.56 3.04 1.21 2.30
RPCA 0.24 0.12 0.39 0.41 0.35 0.48 3.48 1.18 2.31
RegGB 0.26 0.08 0.31 0.42 0.39 0.45 3.48 1.17 2.34

alternative segmentation C(2) found by RegGB algorithm (also RPCA) in
Figure 5(c) and the third alternative segmentation C(3) found by RegGB and
RPCA in Figures 5(d) and (e) respectively. For other algorithms like ADFT,
NACI or COALA, their third segmentation C(3) is sought by providing C(2) as
the reference segmentation. As observed from Figure 5, our two proposed algo-
rithms are able to uncover three di↵erent yet interpretable segmentations from
this Escher image data. The first segmentation shown in Figure 5(b) is quite
dominant and it corresponds to the yellow reptiles aligned horizontally. The
second alternative segmentation shown in Figure 5(c) (showing segmentation
with reptiles aligned vertically) is also successfully uncovered by both RegGB
and RPCA. However, it is more interesting to observe the third segmentation
returned by the RegGB and RPCA algorithms. Our two methods graphically
seem to achieve the goal but di↵erent levels of noise are presented in their
segmentations (see Figures 5(d) and (e)). However compared to RPCA’s, the
segmentation returned by RegGB is better, as the reptiles aligned in the diag-
onal way are more visible. Without being aware of the original Escher image,
it would be somewhat di�cult to realize the third segmentation uncovered by
RPCA. For the performance of other algorithms, we observed their behaviors
similarly to the Pen Digit data and thus do not repeat their justification. Nev-
ertheless, it is worth mentioning here that none of the algorithms can return
a third segmentation close to the one found by RegGB. Amongst them, the
C(3) found by mSC is the best and quite similar to that of RPCA but with
some minor noise added to its other segmentations. We summarize the overall
segmentation results of all algorithms in Table 3.

6.5 CMUFace Dataset

The CMUFace dataset collected from the UCI repository [3] has samples which
can be partitioned in di↵erent ways (by individual, by pose, etc.). It contains
images of 20 people having various facial expressions (neutral, happy, sad,
angry), head positions (left, right or straight), and eye states (open or sun-
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Fig. 6 Results on CMUFace data. 1st row corresponds to supplied clustering. 2nd and 3rd
rows respectively correspond to RPCA’s and RegGB’s alternative clusterings

Table 4 Performance of all algorithms on CMUFace

Algo Alg2 ADFT Coala mSC SC NACI CAMI Deckm RPCA RegGB
NMI 0.31 0.33 0.29 0.27 0.32 0.37 0.20 0.24 0.26 0.22 0.21

JI 0.34 0.36 0.33 0.32 0.36 0.39 0.24 0.31 0.32 0.27 0.25
F.pose 0.68 0.67 0.69 0.71 0.59 0.51 0.81 0.74 0.72 0.71 0.78
F.per 0.87 0.84 0.89 0.87 0.87 0.81 0.94 0.89 0.90 0.90 0.97

glasses). There are 32 images for each person covering every combination of
these features. We randomly select 3 people and all their images. Since it is
known which image comes from which person, this ground truth can be used
as a reference clustering.

We show the cluster means of this reference in row 1 of Figure 6, and in rows
2 and 3, cluster means of the alternative clustering found by the RPCA and
RegGB are respectively shown. Graphically, one observes that the alternative
clustering returned by both algorithms has provided another di↵erent, yet
equally important clustering solution for this dataset. While pictures in the
first row show that they represent for di↵erent individuals, pictures in the
second and third row reveal images have been partitioned according to various
poses. This obviously provides another di↵erent yet interesting interpretation
about the data.

We compare against other algorithms via the results reported in Table 4.
The methods like Dec-kmeans and CAMI, which seek two alternative cluster-
ings concurrently, perform fairly well for the clustering based on individuals
but achieve only a moderate accuracy on the clustering based on poses. Look-
ing deeper, we found that the clustering based on poses is quite hidden and
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Table 5 Results on Ionosphere and Glass data.

iono. glass
Methods NMI JI DI NMI JI DI

Algo1 0.11 0.46 1.46 0.18 0.32 1.25
Algo2 0.13 0.47 1.44 0.20 0.36 1.24
ADFT 0.09 0.42 1.54 0.16 0.33 1.24

COALA 0.11 0.42 1.52 0.12 0.32 1.26
mSC 0.08 0.44 1.55 0.07 0.29 1.22
SC 0.10 0.48 1.51 0.10 0.43 1.21

NACI 0.03 0.36 1.56 0.09 0.31 1.29
CAMI 0.08 0.38 1.50 0.11 0.38 1.26
Deckm 0.10 0.39 1.49 0.14 0.42 1.23
RPCA 0.04 0.39 1.52 0.08 0.29 1.26
RegGB 0.04 0.36 1.59 0.05 0.28 1.32

non-linearly separable, but the configuration based on persons is very obvi-
ous. SC and mSC show good results for persons but less successful for the
poses. This is because SC simply exploits a single eigenvector (i.e., solely 1-
dimension) for each of its suboptimal solution, whereas mSC only uses a linear
transformation in its subspace learning. In contrast our algorithms, especially
the RegGB, are able to outperform these techniques for this dataset since they
not only ensure the dissimilarity in subspace learning, but also make sure the
important properties of the data being retained. We also evaluated the case
that the pose-based clustering is used as a reference clustering. The accuracy
for person-based clustering is summarized in the last row of Table 4 and we
see that the performance of RPCA and RegGB is very close to the ground
truth labels, with F-measures all above 90%.

6.6 Other real-world datasets

We further test our algorithms against other techniques on two real-world
datasets collected from the UCI repository: Ionosphere and Glass. Since these
datasets already contain class labels, we utilize them as reference clusterings.
The Dunn index (instead of F-measure) is used for clustering quality compar-
ison as ground truth for the alternative clusterings is not known. Results for
all techniques are reported in Table 5. Inspecting this table we see that the
performances of both RPCA and RegGB are consistently better than most
of the other examined methods, especially in term of clustering dissimilarity.
Our proposed techniques achieve the clustering dissimilarity with small values
of both NMI and JI. These are only slightly larger than that of NACI in the
ionosphere, but are far better in the glass data. Of the existing techniques,
the methods like Algo1, Algo2 tend to have worse performance compared to
the others. The RPCA, albeit a linear method, can achieve better results
here since it not only ensures orthogonality but further looks for preserving
data variance. The mSC and SC methods seem to achieve highly uncorrelated
clusterings, but looking deeper we found that their alternative clusterings are
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somewhat imbalanced, causing small NMI but much larger JI. Overall, our
developed techniques achieve more dissimilar clusterings and their clustering
quality is very competitive. For the glass dataset, the performance of RegGB
is better than all other algorithms.

6.7 Scalability:

Finally, we make some remarks on the scalability of our proposed algorithms.
For both algorithms, recall that the most expensive computational step is their
matrix eigenvalue decomposition. Our implementation used Matlab (version
7.11 implemented on Windows 7 with 4 CPUs of 3.4GHz, 8GB RAM) and
employed the Lanczos method (which is an adaption of the power method)
[19, 28] to compute the leading eigenvalues and eigenvectors.

To provide an idea about typical running times: For the Glass dataset, the
RPCA method took 0.3 seconds and RegGB needed 0.5 seconds to find an al-
ternative clustering. For the Ionosphere data, RPCA required 0.7 seconds and
RegGB required 0.9 seconds. For the Pen Digit dataset (the largest of all our
datasets), RPCA required 19.2 seconds and RegGB required 26.4 seconds. In
all datasets, the RegGB algorithm required slightly more time since it further
needed the learning subspace computation step (see Fig.2).

These running times indicate our methods are practical for use on modest
sized datasets. However, the running time of both our proposed algorithms
remains a potential limitation for deployment on very large datasets. One
interesting future direction here would be to incorporate random sampling[23]
and random projection[1] into our techniques. The challenge here will be how
to balance dimensionality reduction (fewer instances and features) against the
resultant quality and dissimilarity of the resulting alternative clustering.

7 Conclusions

In this paper, we have developed two algorithms for alternative clustering
based on subspace learning. Our methods, each focuses on di↵erent data prop-
erties, but share the same advantages flowing from their characterization via
the eigenvalue decomposition problem. Importantly, closed form solutions can
be found and the subspaces are guaranteed to be globally optimum. This dif-
ferentiates our approach from existing work. We evaluated and demonstrated
the appealing performance of both methods on a range of datasets and com-
pared against most well-known algorithms in the literature. The experimental
results showed that the performance of the RPCA technique is highly com-
petitive whilst that of the RegGB is consistently equal to or better than the
state-of-the-art.
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