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Abstract. In this paper, we tackle a novel problem of mining contrast
subspaces. Given a set of multidimensional objects in two classes C+ and
C− and a query object o, we want to find top-k subspaces S that maxi-
mize the ratio of likelihood of o in C+ against that in C−. We demonstrate
that this problem has important applications, and at the same time, is
very challenging. It even does not allow polynomial time approximation.
We present CSMiner, a mining method with various pruning techniques.
CSMiner is substantially faster than the baseline method. Our experi-
mental results on real data sets verify the effectiveness and efficiency of
our method.

Keywords: contrast subspace, kernel density estimation, likelihood con-
trast.

1 Introduction

Imagine you are a medical doctor facing a patient having symptoms of being
overweight, short of breath, and some others. You want to check the patient
on two specific possible diseases: coronary artery disease and adiposity. Please
note that clogged arteries are among the top-5 most commonly misdiagnosed
diseases. You have a set of reference samples of both diseases. Then, you may
naturally ask “In what aspect is this patient most similar to cases of coronary
artery disease and, at the same time, dissimilar to adiposity?”
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The above motivation scenario cannot be addressed well using existing data
mining methods, and thus suggests a novel data mining problem. In a multidi-
mensional data set of two classes, given a query object and a target class, we
want to find the subspace where the query object is most likely to belong to the
target class against the other class. We call such a subspace a contrast subspace
since it contrasts the likelihood of the query object in the target class against
the other class. Mining contrast subspaces is an interesting problem with many
important applications. As another example, when an analyst in an insurance
company is investigating a suspicious claim, she may want to compare the sus-
picious case against the samples of frauds and normal claims. A useful question
to ask is in what aspects the suspicious case is most similar to fraudulent cases
and different from normal claims. In other words, finding the contrast subspace
for the suspicious claim is informative for the analyst.

While there are many existing studies on outlier detection and contrast min-
ing, they focus on collective patterns that are shared by many cases of the target
class. The contrast subspace mining problem addressed here is different. It fo-
cuses on one query object and finds the customized contrast subspace. This
critical difference makes the problem formulation, the suitable applications, and
the mining methods dramatically different. We will review the related work and
explain the differences systematically in Section 2.

To tackle the problem of mining contrast subspaces, we need to address
several technical issues. First, we need to have a simple yet informative contrast
measure to quantify the similarity between the query object and the target class
and the difference between the query object and the other class. In this paper,
we use the ratio of the likelihood of the query object in the target class against
that in the other class as the measure. This is essentially the Bayes factor on the
query object, and comes with a well recognized explanation [1].

Second, the problem of mining contrast subspaces is computational chal-
lenging. We show that the problem is MAX SNP-hard, and thus does not allow
polynomial time approximation methods unless P=NP. Therefore, the only hope
is to develop heuristics that may work well in practice.

Third, one could use a brute-force method to tackle the contrast mining
problem, which enumerates every non-empty subspace and computes the con-
trast measure. This method, however, is very costly on data sets with a non-
trivial dimensionality. One major obstacle preventing effective pruning is that the
contrast measure does not have any monotonicity with respect to the subspace-
superspace relationship. To tackle the problem, we develop pruning techniques
based on bounds of likelihood and contrast ratio. Our experimental results on
real data sets clearly verify the effectiveness and efficiency of our method.

The rest of the paper is organized as follows. We review the related work in
Section 2. In Section 3, we formalize the problem, and analyze it theoretically.
We present a heuristic method in Section 4, and evaluate our method empirically
using real data sets in Section 5. We conclude the paper in Section 6.



2 Related Work

Our study is related to the existing work on contrast mining, subspace outlier
detection and typicality queries. We review the related work briefly here.

Contrast mining discovers patterns and models that manifest drastic differ-
ences between datasets. Dong and Bailey [2] presented a comprehensive review.
The most renowned contrast patterns include emerging patterns [3], contrast
sets [4] and subgroups [5]. Although their definitions vary, the mining methods
share heavy similarity [6].

Contrast pattern mining identifies patterns by considering all objects of all
classes in the complete pattern space. Orthogonally, contrast subspace mining
focuses on one object, and identifies subspaces where a query object demon-
strates the strongest overall similarity to one class against the other. These two
mining problems are fundamentally different. To the best of our knowledge, the
contrast subspace mining problem has not been systematically explored in the
data mining literature.

Subspace outlier detection discovers objects that significantly deviate from
the majority in some subspaces. It is very different from our study. In contrast
subspace mining, the query object may or may not be an outlier. Some recent
studies find subspaces that may contain substantial outliers. Böhm et al. [7] and
Keller et al. [8] proposed statistical approaches CMI and HiCS to select sub-
spaces for a multidimensional database, where there may exist outliers with high
deviations. Both CMI and HiCS are fundamentally different from our method.
Technically, they choose subspaces for all outliers in a given database, while our
method chooses the most contrasting subspaces for a query object.

Our method uses probability density to estimate the likelihood of a query
object belonging to different classes. There are a few density-based outlier de-
tection methods, such as [9–12]. Our method is inherently different from those,
since we do not target at outlier objects at all.

Hua et al. [13] introduced a novel top-k typicality query, which ranks ob-
jects according to their typicality in a data set or a class of objects. Although
both [13] and our work use density estimation methods to calculate the typical-
ity/likelihood of a query object with respect to a set of data objects, typicality
queries [13] do not consider subspaces at all.

3 Problem Formulation and Analysis

In this section, we first formulate the problem. Then, we recall the basics of
kernel density estimation, which can estimate the probability density of objects.
Last, we investigate the complexity of the problem.

3.1 Problem Definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is R,
the set of real numbers. A subspace S ⊆ D (S ̸= ∅) is a subset of D. We also
call D the full space.



Consider an object o in space D. We denote by o.Di the value of o in dimen-
sion Di (1 ≤ i ≤ d). For a subspace S = {Di1 , . . . , Dil} ⊆ D, the projection of
o in S is oS = (o.Di1 , . . . , o.Dil). For a set of objects O = {oj | 1 ≤ j ≤ n}, the
projection of O in S is OS = {oSj | oj ∈ O, 1 ≤ j ≤ n}.

Given a set of objects O, we assume a latent distribution Z that generates the
objects in O. For a query object q, denote by LD(q | Z) the likelihood of q being
generated by Z in full space D. The posterior probability of q given O, denoted
by LD(q | O), can be estimated by LD(q | Z). For a non-empty subspace S
(S ⊆ D, S ̸= ∅), denote by ZS the projection of Z in S. The subspace likelihood
of object q with respect to Z in S, denoted by LS(q | Z), can be estimated by
the posterior probability of object q given O in S, denoted by LS(q | O).

In this paper, we assume that the objects in O belong to two classes, C+

and C−, exclusively. Thus, O = O+ ∪O− and O+ ∩O− = ∅, where O+ and O−
are the subsets of objects belonging to C+ and C−, respectively. Given a query
object q, we are interested in how likely q belongs to C+ and does not belong
to C−. To measure these two factors comprehensively, we define the likelihood

contrast as LC(q) = L(q|O+)
L(q|O−) .

Likelihood contrast is essentially the Bayes factor7 of object q as the obser-
vation. In other words, we can regard O+ and O− as representing two models,
and we need to choose one of them based on query object q. Consequently, the
ratio of likelihoods indicates the plausibility of model represented by O+ against
that by O−. Jeffreys [1] gave a scale for interpretation of Bayes factor. When
LC(q) is in the ranges of < 1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, and over 100,
respectively, the strength of the evidence is negative, barely worth mentioning,
substantial, strong, very strong, and decisive.

We can extend likelihood contrast to subspaces. For a non-empty subspace

S ⊆ D, we define the likelihood contrast in the subspace as LCS(q) =
LS(q|O+)
LS(q|O−) .

To avoid triviality in subspaces where LS(q | O+) is very small, we introduce a
minimum likelihood threshold δ > 0, and consider only the subspaces S where
LS(q | O+) ≥ δ.

Given a multidimensional data set O in full space D, a query object q, and
a minimum likelihood threshold δ > 0, and a parameter k > 0, the problem
of mining contrast subspaces is to find the top-k subspaces S ordered by the
subspace likelihood contrast LCS(q) subject to LS(q | O+) ≥ δ.

3.2 Kernel Density Estimation

We can use kernel density estimation [14] to estimate likelihood LS(q | O). In
this paper, we adopt the Gaussian kernel, which is natural and widely used in
density estimation. Given a set of objects O, the density of a query object q in

7 Generally, given a set of observations Q, the plausibility of two models M1 and M2

can be assessed by the Bayes factor K = Pr(Q|M1)
Pr(Q|M2)

.



subspace S, denoted by f̂S(q,O), can be estimated as

f̂S(q,O) = f̂S(q
S , O) =

1

|O|
√
2πhS

∑
o∈O

e
−distS(q,o)2

2h2
S

where distS(q, o)
2 =

∑
Di∈S

(q.Di − o.Di)
2 and hS is a bandwidth parameter.

Silverman [15] suggested that the optimal bandwidth value for smoothing nor-
mally distributed data with unit variance is hS opt = A(K)|O|−1/(|S|+4), where
A(K) = {4/(|S|+ 2)}1/(|S|+4).

As the kernel is radially symmetric and the data is not normalized in sub-
spaces, we can use a single scale parameter σS in subspace S and set hS =
σS · hS opt. As Silverman suggested [15], a possible choice of σS is the root of
the average marginal variance in S.

Using kernel density estimation, we can estimate LS(q | O) as

LS(q | O) = f̂S(q,O) =
1

|O|
√
2πhS

∑
o∈O

e
−distS(q,o)2

2h2
S (1)

Correspondingly, the likelihood contrast of object q in subspace S is given by

LCS(q,O+, O−) =
f̂S(q,O+)

f̂S(q,O−)
=

|O−|hS−

|O+|hS+

·

∑
o∈O+

e

−distS(q,o)2

2h2
S+

∑
o∈O−

e

−distS(q,o)2

2h2
S−

(2)

We often omit O+ and O− and write LCS(q) if O+ and O− are clear from
context.

3.3 Complexity Analysis

We have the following theoretical result. It can be proved by a reduction from
the emerging pattern mining problem [3], which is MAX SNP-hard [16]. Limited
by space, we omit the details here.

Theorem 1 (Complexity). The problem of mining contrast subspaces is MAX
SNP-hard.

The above theoretical result indicates that the problem of mining contrast
subspaces is even hard to approximate – it is impossible to design a good ap-
proximation algorithm. In the rest of the paper, we turn to practical heuristic
methods.

4 Mining Methods

In this section, we first describe a baseline method that examines every possible
non-empty subspace. Then, we present a bounding-pruning-refining method that
expedites the search substantially.



4.1 A Baseline Method

A baseline method enumerates all possible non-empty spaces S and calculates
the exact values of both LS(q | O+) and LS(q | O−). Then, it returns the
top-k subspaces S with the largest LCS(q) values. To ensure the completeness
and efficiency of subspace enumeration, the baseline method traverses the set
enumeration tree [17] of subspaces in a depth-first manner.

LS(q | O+) is not monotonic in subspaces. To prune subspaces using the min-
imum likelihood threshold δ, we develop an upper bound of LS(q | O+). We sort
all the dimensions in their standard deviation descending order. Let S be the set
of children of S in the subspace set enumeration tree using the standard deviation

descending order. Define L∗
S(q | O+) =

1
|O+|

√
2πσ′

minh
′
opt min

∑
o∈O+

e
−distS(q,o)2

2(σSh′
opt max)2 ,

where σ′
min = min{σS′ | S′ ∈ S}, h′

opt min = min{hS′ opt | S′ ∈ S}, and
h′
opt max = max{hS′ opt | S′ ∈ S}. We have the following result.

Theorem 2 (Monotonic density bound). For a query object q, a set of
objects O, and subspaces S1, S2 such that S1 is an ancestor of S2 in the sub-
space set enumeration tree using the standard deviation descending order in O+,
L∗
S1
(q | O+) ≥ LS2(q | O+).

Using Theorem 2, in addition to LS(q | O+) and LS(q | O−), we also compute
L∗
S(q | O+) for each subspace S. Once L∗

S(q | O+) < δ in a subspace S, all super-
spaces of S can be pruned.

Using Equations 1 and 2, the baseline algorithm computes the likelihood con-
trast for every subspace where LS(q | O+) ≥ δ, and returns the top-k subspaces.
The time complexity is O(2|D| · (|O+|+ |O−|)).

4.2 A Bounding-Pruning-Refining Method

For a query object q and a set of objects O, the ϵ-neighborhood (ϵ > 0) of q
in subspace S is N ϵ

S(q) = {o ∈ O | distS(q, o) ≤ ϵ}. We can divide LS(q | O)
into two parts, that is, LS(q | O) = LNϵ

S
(q | O) + Lrest

S (q | O). The first part
is contributed by the objects in the ϵ-neighborhood, that is, LNϵ

S
(q | O) =

1
|O|

√
2πhS

∑
o∈Nϵ

S(q)

e
−distS(q,o)2

2h2
S , and the second part is by the objects outside the

ϵ-neighborhood, that is, Lrest
S (q | O) = 1

|O|
√
2πhS

∑
o∈O\Nϵ

S(q)

e
−distS(q,o)2

2h2
S .

Let distS(q | O) be the maximum distance between q and all objects in O in
subspace S. We have,

|O| − |N ϵ
S(q)|

|O|
√
2πhS

· e
− distS(q,O)2

2h2
S ≤ Lrest

S (q | O) ≤ |O| − |N ϵ
S(q)|

|O|
√
2πhS

· e
− ϵ2

2h2
S

Using the above, we have the following upper and lower bounds of LS(q | O)
using ϵ-neighborhood.



Theorem 3 (Bounds). For a query object q, a set of objects O and ϵ ≥ 0,

LLϵ
S(q | O) ≤ LS(q | O) ≤ ULϵ

S(q | O)

where

LLϵ
S(q | O) =

1

|O|
√
2πhS

 ∑
o∈Nϵ

S(q)

e
−distϵS(q,o)2

2h2
S + (|O| − |N ϵ

S(q)|)e
− distS(q,O)2

2h2
S


and

ULϵ
S(q | O) =

1

|O|
√
2πhS

 ∑
o∈Nϵ

S(q)

e
−distϵS(q,o)2

2h2
S + (|O| − |N ϵ

S(q)|)e
− ϵ2

2h2
S


We obtain an upper bound of LCS(q) based on Theorem 3 and Equation 2.

Corollary 1 (Likelihood Contrast Upper Bound). For a query object q, a

set of objects O+, a set of objects O−, and ϵ ≥ 0, LCS(q) ≤ ULϵ
S(q|O+)

LLϵ
S(q|O−) .

Using Corollary 1, for a subspace S, if there are at least k subspaces whose

likelihood contrast are greater than
ULS

ϵ (q|O+)
LLS

ϵ (q|O−)
, then S cannot be a top-k sub-

spaces of the largest likelihood contrast.
Using the ϵ-neighborhood, L∗

S(q | O+) is computed by

L∗
S(q | O+) =

∑
o∈Nϵ

S(q)

e
−distϵS(q,o)2

2(σSh′
opt max)2 + (|O+| − |N ϵ

S(q)|)e
− ϵ2

2(σSh′
opt max)2

|O+|
√
2πσ′

minh
′
opt min

Our bounding-pruning-refining method, CSMiner (for Contrast Subspace
Miner), conducts a depth-first search on the subspace set enumeration tree.
For a candidate subspace S, CSMiner calculates ULϵ

S(q | O+) and LLS(q | O−)
using the ϵ-neighborhood. If ULϵ

S(q | O+) is less than the minimum likelihood
threshold, S cannot be a contrast subspace. Otherwise, CSMiner checks whether
the likelihood contrasts of the current top-k subspaces are larger than the up-
per bound of LCS(q). If not, CSMiner refines LS(q | O+) and LS(q | O−) by
involving objects that are out of the ϵ-neighborhood. S will be added into the
current top-k list if its likelihood contrast is larger than one of the current top-k
ones. Algorithm 1 gives the pseudo-code of CSMiner. Due to the hardness of
the problem shown in Theorem 1 and the heuristic nature of this method, the
time complexity of CSMiner is O(2|D| · (|O+|+ |O−|)), the same as the exhaus-
tive baseline method. However, as shown by our empirical study, CSMiner is
substantially faster than the baseline method.

Computing ϵ-neighborhood is critical in CSMiner. The distance between ob-
jects increases when dimensionality increases. Thus, the value of ϵ should not be



Algorithm 1 CSMiner(q,O+, O−, δ, k)
Input: q: a query object, O+: the set of objects belonging to C+, O−: the set of objects belonging

to C−, δ: a likelihood threshold, k: positive integer
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with

likelihood contrast 0
2: for each subspace S in the subspace set enumeration tree, searched in the depth-first manner

do

3: if ULϵ
S(q | O+) ≥ δ and ∃S′ ∈ Ans s.t.

ULϵ
S(q|O+)

LLϵ
S

(q|O−)
> LCS′ (q) then

4: calculate LS(q | O+), LS(q | O−) and LCS(q); // refining
5: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. LCS(q) > LCS′ (q) then
6: insert S into the top-k list
7: end if
8: end if
9: if L∗

S(q | O+) < δ then
10: prune all super-spaces of S;
11: end if
12: end for
13: return Ans;

Table 1. Data set characteristics

Data set # objects # attributes

Breast Cancer Wisconsin (BCW) 683 9
Climate Model Simulation Crashes (CMSC) 540 18

Glass Identification (Glass) 214 9
Pima Indians Diabetes (PID) 768 8

Waveform 5000 21
Wine 178 13

fixed. The standard deviation expresses the variability of a set of data. For sub-

space S, we set ϵ =
√
r ·

∑
Di∈S

(σ2
Di

+ + σ2
Di

−) (r ≥ 0), where σ2
Di

+ and σ2
Di

− are

the marginal variances of O+ and O−, respectively, on dimension Di (Di ∈ S),
and r is a system defined parameter. Our experiments show that r can be set in
the range of 0.3 ∼ 0.6, and is not sensitive.

5 Empirical Evaluation

In this section, we report a systematic empirical study using real data sets to
verify the effectiveness and efficiency of our method. All experiments were con-
ducted on a PC computer with an Intel Core i7-3770 3.40 GHz CPU, and 8
GB main memory, running Windows 7 operating system. All algorithms were
implemented in Java and compiled by JDK 7.

5.1 Effectiveness

We use 6 real data sets from the UCI machine learning repository [18]. We
remove non-numerical attributes and all instances containing missing values.
Table 1 shows the data characteristics.



For each data set, we take each record as a query object q, and all records
except q belonging to the same class as q forming the set O1, and records belong-
ing to the other classes forming the set O2. Using CSMiner, we compute for each
record (1) the inlying contrast subspace taking O1 as O+ and O2 as O−, and (2)
the outlying contrast subspace taking O2 as O+ and O1 as O−. In this experi-
ment, we only compute the top-1 subspace. For clarity, we denote the likelihood
contrasts of inlying contrast subspace by LCin

S (q) and those of outlying contrast
subspace by LCout

S (q). The minimum likelihood threshold is set to 0.001.
Tables 2 ∼ 7 list the joint distributions of LCin

S (q) and LCout
S (q) in each data

set. As expected, for most objects LCin
S (q) are larger than LCout

S (q). However,
interestingly a good portion of objects have strong outlying contrast subspaces.
For example, in CMSC, more than 50% of the objects have outlying contrast
subspaces satisfying LCout

S (q) ≥ 103. Moreover, we can see that, except PID,
a non-trivial number of objects in each data set have both strong inlying and
outlying contrast subspaces (e.g., LCin

S (q) ≥ 104 and LCout
S (q) ≥ 102).

Figures 1, 2 show the distributions of dimensionality of inlying and outlying
contrast subspaces, respectively. The dimensionality distribution is an interesting
feature characterizing a data set. For example, in most cases the dimensionali-
ty of contrast subspaces follows a two-side bell-shape distribution. However, in
BCW and PID, the outlying contrast subspaces tend to have low dimensionality.

5.2 Efficiency

To the best of our knowledge, there is no previous method tackling the exact
same mining problem. Therefore, we evaluate the efficiency of only CSMiner and
the baseline method. Limited by space, we report the results on the Waveform
data set only, since it is the largest one with the highest dimensionality. We
randomly select 100 records from Waveform as query objects, and report the
average runtime. The results on the other data sets follow similar trends.

Figure 3(a) shows the runtime (in logarithmic scale) with respect to the min-
imum likelihood threshold δ. As δ decreases, the runtime increases exponentially.
However, the heuristic pruning techniques in CSMiner expedites the search sub-
stantially in practice. Figures 3(b) and 3(c) show the scalability on data set size
and dimensionality. CSMiner is substantially faster than the baseline method.

CSMiner uses a user defined parameter r to define ϵ-neighborhood. Figure 4
shows the relative runtime with respect to r. The runtime of CSMiner is not very
sensitive to r in general. Experimentally, the shortest runtime of CSMiner hap-
pens when r is in [0.3, 0.6]. Figure 5 illustrates the relative runtime of CSMiner
with respect to k, showing that CSMiner is linearly scalable with respect to k.

6 Conclusions

In this paper, we studied a novel and interesting problem of mining contrast
subspaces to discover the aspects that a query object most similar to a class and
dissimilar to the other class. We showed theoretically that the problem is very



Table 2. Distribution of LCS(q) in BCW
LCout

S (q)
< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 102 0 0 0 2 21 23
[102, 103) 6 7 5 8 11 37
[103, 104) 176 37 18 15 18 264
[104, 105) 99 7 6 4 5 121
≥ 105 38 25 87 82 6 238

Total 319 76 116 111 61 683

Table 3. Distribution of LCS(q) in Glass
LCout

S (q)
< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 10 0 4 0 2 4 10
[10, 102) 11 70 26 6 4 117
[102, 103) 2 24 5 3 2 36
[103, 104) 0 0 4 0 1 5
≥ 104 0 23 14 6 3 46

Total 13 121 49 17 14 214

Table 4. Distribution of LCS(q) in PID
LCout

S (q)
< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 1 0 0 1 1 0 2
[1, 3) 0 124 99 19 2 244
[3, 10) 17 241 54 4 0 316

[10, 102) 28 146 19 4 0 197
≥ 102 1 8 0 0 0 9

Total 46 519 173 28 2 768

Table 5. Distribution of LCS(q) in Wine
LCout

S (q)
< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 103 2 22 10 13 9 56
[103, 104) 0 17 11 6 2 36
[104, 105) 0 10 4 2 2 18
[105, 106) 0 5 5 2 0 12
≥ 106 4 21 15 12 4 56

Total 6 75 45 35 17 178

Table 6. Distribution of LCS(q) in CMSC
LCout

S (q)
[10, 102) [102, 103) [103, 104) [104, 105) ≥ 105 Total

L
C

i
n

S
(q

) < 103 2 6 41 15 0 64
[103, 104) 4 28 47 17 4 100
[104, 105) 7 38 44 17 7 113
[105, 106) 1 30 36 10 3 80
≥ 106 4 82 75 16 6 183

Total 18 184 243 75 20 540

Table 7. Distribution of LCS(q) in Waveform
LCout

S (q)
[1, 3) [3,10) [10, 102) [102, 103) ≥ 103 Total

L
C

i
n

S
(q

) < 10 0 8 24 10 7 49
[10, 102) 88 462 695 222 98 1565
[102, 103) 235 686 956 299 104 2280
[103, 104) 151 346 383 71 23 974
≥ 104 36 46 45 5 0 132

Total 510 1548 2103 607 232 5000

challenging, and cannot even be approximated in polynomial time. We presented
a heuristic method based on upper and lower bounds of likelihood and likelihood
contrast. Our experiments on real data sets show that our method expedites
contrast subspace mining substantially comparing to the baseline method.
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Fig. 1. Dimensionality distributions of inlying contrast subspaces
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Fig. 2. Dimensionality distributions of outlying contrast subspaces
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