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Abstract We tackle the novel problem of mining contrast subspaces. Given a
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this problem has important applications, and, at the same time, is very chal-
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sets, evaluating its efficiency, effectiveness and stability and demonstrating it
is substantially faster than a baseline method.
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1 Introduction

Imagine you are a medical doctor facing a patient with symptoms that in-
clude being overweight, shortness of breath and tiredness. You want to check
the patient against two specific possible diseases: coronary artery disease and
adiposity. Note that clogged arteries are among the top-5 most commonly
misdiagnosed diseases. You have available a set of reference samples for both
diseases. Then, you may naturally ask “In what aspects is this patient most
similar to cases of coronary artery disease and, at the same time, dissimilar to
adiposity?”

The above motivational scenario cannot be addressed well using existing
data mining methods, and thus suggests a novel data mining problem. In a
multidimensional data set of two classes, given a query object and a target
class, we want to find the subspaces where the query object is most likely
to belong to the target class versus the other class. We call such subspaces
contrast subspaces, since they contrast the likelihood of the query object in the
target class against the other class. Mining contrast subspaces is an interesting
problem with important applications. As another example, when an analyst
in an insurance company is investigating a suspicious claim, she may want to
compare this suspicious case against samples of frauds and normal claims. A
useful question to ask is “In what aspects is this suspicious case most similar
to fraudulent cases and different from normal claims?”. In other words, finding
the contrast subspaces for the suspicious claim is informative for the analyst
and serves as a useful input for deeper exploration.

While there are many existing studies on outlier detection and contrast
mining, they focus on collective patterns that are shared by many cases of the
target class. The contrast subspace mining problem addressed here is different.
It focuses on one query object and finds the customized contrast subspaces.
This critical difference makes the problem formulation, the suitable applica-
tions, and the mining methods rather different. We will review related work
and explain the differences in more detail in Section 2.
Challenges: To tackle the problem of mining contrast subspaces, we need
to address several technical challenges. First, we need to have a simple yet
informative contrast measure to quantify the similarity between the query
object and the target class and the difference between the query object and
the other class.

Second, the problem of mining contrast subspaces is computationally chal-
lenging. Exhaustive search, which enumerates every non-empty subspace and
computes the contrast measure, is very costly on data sets with a non-trivial
dimensionality.

Third, one might attempt a brute-force method to tackle the contrast min-
ing problem. One major obstacle preventing effective pruning is that the con-
trast measure does not have any monotonicity with respect to the subspace-
superspace relationship.
Our contributions: Besides introducing the new problem of mining contrast
subspaces, we make several contributions in this paper.



Title Suppressed Due to Excessive Length 3

– We use the ratio of the likelihood of the query object in the target class
against that in the other class as the contrast measure. This is essentially
the Bayes factor on the query object, and comes with a well recognized
explanation (Jeffreys, 1961).

– We show that the problem of contrast subspace mining is MAX SNP-hard,
and thus does not allow polynomial time approximation methods unless
P=NP. Therefore, the only hope is to develop heuristics that may work
well in practice.

– We develop pruning techniques based on bounds of likelihood and con-
trast ratio. Our experimental results on real data sets clearly verify the
effectiveness, stability and efficiency of our method.

Organization: The rest of the paper is organized as follows. We review related
work in Section 2. In Section 3, we formalize the problem, and analyze it
theoretically. We present a heuristic method in Section 4, and evaluate our
method empirically using real data sets in Section 5. We conclude the paper
in Section 6.

2 Related Work

Our study is related to the existing work on contrast mining, subspace outlier
detection and typicality queries. We review the related work briefly here.

Contrast mining discovers patterns and models that manifest drastic dif-
ferences between data sets. Dong and Bailey (2013) presented a comprehensive
review of contrast mining, together with a range of real-life applications. Some
of the best known types of contrast patterns include emerging patterns (Dong
and Li, 1999), contrast sets (Bay and Pazzani, 2001) and subgroups (Wro-
bel, 1997). Although their definitions vary, the mining methods share many
similarities (Novak et al, 2009).

Contrast pattern mining identifies patterns by considering all objects of all
classes in the complete pattern space. Orthogonally, contrast subspace mining
focuses on one object, and identifies subspaces where a query object demon-
strates the strongest overall similarity to one class against the other. These two
mining problems are fundamentally different. To the best of our knowledge,
the contrast subspace mining problem has not been systematically explored in
the data mining literature1.

Subspace outlier detection discovers objects that significantly deviate from
the majority in some subspaces. Data sets from real life often have very high
dimensionalities. Due to the curse of dimensionality, measurements designed
to calculate the differences between an object and the other objects, such as
distance and probability density, become meaningless in the full space (Beyer
et al, 1999).

Given a multidimensional database, subspace outlier detection aims to i-
dentify a set of subspaces, where the outlier objects drastically deviate from

1 While Chen and Dong (2006) presented a contrast-pattern length based algorithm to
detection global outliers, their problem setting is different from ours.
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the majority. It is different from our study. In contrast subspace mining, the
query object may or may not be an outlier. We are trying to find the top-k
subspaces, in which a query object is the most typical in the current class and
is very unlikely to occur in other classes. Some recent studies find subspaces
that may contain substantial outliers. Böhm et al (2013) and Keller et al (2012)
proposed statistical approaches HiCS and CMI to select subspaces for a mul-
tidimensional database, where there may exist outliers with high deviations.
Both HiCS and CMI differ from our method. Technically, they choose sub-
spaces for all outliers in a given database, while our method chooses the most
contrasting subspaces for a query object. In HiCS and CMI, contrast refers to
the differences between the assumptions on whether the subspaces are mutu-
ally independent or not. In our work, contrast is defined as the differences of
the likelihoods that a query belongs to the given class or not.

Kriegel et al (2009) introduced SOD, a method to detect outliers in axis-
parallel subspaces. For each outlier detected, the method selects a hyperplane,
where the outlier deviates significantly from the neighbors of the outlier in the
full space as references. SOD also differs from our work. First, SOD is still an
outlier detection method, and the hyperplane is a byproduct of the detection
process. Our method does not detect outliers at all. Second, the input data
is different. Our work requires the input data to have class labels, while SOD
does not have this requirement.

Our method uses probability density to estimate the likelihood of a query
object belonging to different classes. There exist density-based outlier detec-
tion methods, such as (Breunig et al, 2000; Kriegel et al, 2008; He et al, 2005;
Aggarwal and Yu, 2001). Our method is different from those, since we do not
target outlier objects and instead aim to analyse any type of object.

Hua et al (2009) introduced a novel top-k typicality query, which ranks
objects according to their typicality in a data set or a class of objects. Al-
though both (Hua et al, 2009) and our work use density estimation methods
to calculate the typicality/likelihood of a query object with respect to a set of
data objects, typicality queries (Hua et al, 2009) do not consider subspaces.
Hua et al (2009) aim to find the most typical data objects according to the
query object; in contrast we find the most contrasting subspaces for a query
object.

Cai et al (2012) proposed a method that adopted concepts from human
cognition, to answer the top-k typicality queries. The typicality of an object
with respect to a set of data objects was calculated based on the similarity
and support of the object with respect to the set of data objects. Again, the
problem setting and the method differ from our work.

We tackled the problem of contrast subspace mining in (Duan et al, 2014),
a preliminary version of this paper. Compared to that work, in this paper, we
present a complete complexity analysis, provide a more detailed description of
the key steps in our method, and perform more extensive empirical evaluations,
including using different bandwidths and kernel.
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3 Problem Formulation and Analysis

In this section, we first formulate the problem. Then, we recall the basics of
kernel density estimation for estimating the probability density of objects.
Last, we investigate the complexity of the problem.

3.1 Problem Definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is
R, the set of real numbers. A subspace S ⊆ D (S ̸= ∅) is a subset of D. We
also call D the full space.

Consider an object o in space D. We denote by o.Di the value of o in
dimension Di (1 ≤ i ≤ d). For a subspace S = {Di1 , . . . , Dil} ⊆ D, the
projection of o in S is oS = (o.Di1 , . . . , o.Dil). For a set of objects O = {oj |
1 ≤ j ≤ n}, the projection of O in S is OS = {oSj | oj ∈ O, 1 ≤ j ≤ n}.

Given a set of objects O, we assume a latent distribution Z that generates
the objects in O. For a query object q, denote by LD(q | Z) the likelihood of
q being generated by Z in full space D. The posterior probability of q given
O, denoted by LD(q | O), can be estimated by LD(q | Z). For a non-empty
subspace S (S ⊆ D, S ̸= ∅), denote by ZS the projection of Z in S. The
subspace likelihood of object q with respect to Z in S, denoted by LS(q | Z),
can be used to estimate the posterior probability of object q given O in S,
denoted by LS(q | O).

In this paper, we assume that the objects in O belong to two classes, C+

and C−, exclusively in full space D. Thus, O = O+ ∪ O− and O+ ∩ O− = ∅,
where O+ and O− are the subsets of objects of O belonging to C+ and C−,
respectively. Given a query object q, we are interested in how likely q belongs to
C+ and does not belong to C−. To measure these two factors comprehensively,

we define the likelihood contrast as LC(q) = LD(q|O+)
LD(q|O−) .

Likelihood contrast is essentially the Bayes factor2 of object q as the obser-
vation. In other words, we can regard O+ and O− as representing two models,
and we need to choose one of them based on query object q. Consequently,
the ratio of likelihoods indicates the plausibility of model represented by O+

against that by O−. Jeffreys (1961) gave a scale for interpretation of Bayes
factor. When LC(q) is in the ranges of < 1, 1 to 3, 3 to 10, 10 to 30, 30 to
100, and over 100, respectively, the strength of the evidence is negative, barely
worth mentioning, substantial, strong, very strong, and decisive.

We can extend likelihood contrast to subspaces. For a non-empty subspace

S ⊆ D, we define the likelihood contrast in the subspace as LCS(q) =
LS(q|O+)
LS(q|O−) .

To avoid triviality in subspaces where LS(q | O+) is very small, we introduce a
minimum likelihood threshold δ > 0, and consider only the subspaces S where

2 Generally, given a set of observations Q, the plausibility of two models M1 and M2 can

be assessed by the Bayes factor K =
Pr(Q|M1)
Pr(Q|M2)

.
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LS(q | O+) ≥ δ. The number of likelihood contrast subspaces will be reduced
with larger δ.

Now, we formally define the problem. Given a multidimensional data set
O in full space D, a query object q, a minimum likelihood threshold δ > 0,
and a parameter k > 0, the problem of mining contrast subspaces is to find the
top-k subspaces S ordered by the subspace likelihood contrast LCS(q) subject
to LS(q | O+) ≥ δ.

3.2 Kernel Density Estimation

We can use kernel density estimation to estimate the likelihood LS(q | O).

Given a set of objects O, we denote by f̂S(q,O) the density of a query object
q in subspace S. Following (Silverman, 1986), the general formula for multi-
variate kernel density estimation with kernel K and bandwidth parameter hS

in subspace S is defined as follows

f̂S(q,O) = f̂S(q
S , O) =

1

|O|h|S|S

∑
o∈O

K{ 1

hS
(q − o)} (1)

ChoosingK to be a radially symmetric unimodal3 probability density func-
tion, in this paper, we adopt the Gaussian kernel

K(x) =
1

(2π)|S|/2
e−

1
2x

Tx (2)

which is natural and widely used in density estimation.
This then leads to

f̂S(q,O) = f̂S(q
S , O) =

1

|O|(
√
2πhS)|S|

∑
o∈O

exp

(
−distS(q, o)

2

2hS
2

)

where distS(q, o)
2 =

∑
Di∈S

(q.Di − o.Di)
2.

Silverman (1986) suggested that the optimal bandwidth value for smooth-
ing normally distributed data with unit variance is hS opt = A(K)|O|−1/(|S|+4),
where A(K) = {4/(|S|+ 2)}1/(|S|+4) for the Gaussian kernel.

As the kernel is radially symmetric and the data is not normalized in
subspaces, we can use a single scale parameter σS in subspace S and set
hS = σS · hS opt. As Silverman (1986) suggested, a reasonable choice for σS is
the root of the average marginal variance in S.

Using kernel density estimation, we can estimate LS(q | O) as

LS(q | O) = f̂S(q,O) =
1

|O|(
√
2πhS)|S|

∑
o∈O

exp

(
−distS(q, o)

2

2hS
2

)
(3)

3 If it isn’t unimodal, then there could be multiple peaks at different distances from the
query, which is counter to intuition. Similarly, we have no basis for preferring any direction
over another, so symmetry is natural.
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Correspondingly, the likelihood contrast of object q in subspace S is given by

LCS(q,O+, O−) =
f̂S(q,O+)

f̂S(q,O−)
=

|O−|
|O+|

·
(
hS−

hS+

)|S|
·

∑
o∈O+

exp
(
−distS(q,o)2

2hS+
2

)
∑

o∈O−

exp
(
−distS(q,o)2

2hS−
2

)
(4)

We often omit O+ and O− and write LCS(q) if O+ and O− are clear from
context.

3.3 Complexity Analysis

Before developing any algorithms to tackle the contrast subspace mining prob-
lem, let us first investigate its complexity. We will show that the contrast sub-
space mining problem is MAX SNP-hard by constructing a linear-reduction
(L-reduction for short) from the emerging pattern mining problem (Dong and
Li, 1999), which was been shown to be MAX SNP-hard (Wang et al, 2005). The
L-reduction linearly preserves approximability features of the original problem
after the transformation, thus the name “linear reduction”.

To make the discussion self-contained, a brief description of the emerging
pattern mining problem is given as follows. Let D′ = {D′1, D′2, . . . , D′d} denote
a set of d items. A transaction o′i is represented by a binary vector of length d
whose element o′ij = 1 if item D′j is present, and 0 otherwise. A pattern S′ is
a subset of items in D′. A transaction o′i satisfies S′ if o′ij = 1, ∀D′j ∈ S′. A
transaction database O′ is a set of transactions. Let SatO′(S′) denote the set
of transactions in O′ satisfying S′.

Definition 1 Emerging Pattern Mining (EP): Given two transaction
databases O′+ and O′−, find the pattern S′ such that the cost function cEP(S

′) =
|SatO′

+
(S′)| is maximized subject to the feasibility condition |SatO′

−
(S′)| = 0.

We consider the following simplified version of the contrast subspace mining
problem, where the bandwidth parameters hS+ and hS− for all subspaces are
set to the same value h.

Definition 2 Contrast Subspace Mining (CS): Given {q,O+, O−} where
q is the query and O+ and O− are the two classes, find the subspace S maxi-
mizing the cost function

cCS(S, q) =
∑
o∈O+

exp

(
−distS(q, o)

2

2h2

)
/
∑
o∈O−

exp

(
−distS(q, o)

2

2h2

)
(which is equivalent to the likelihood contrast, up to a constant multiplicative

factor |O−|
|O+| ).

In addition, we define the complete contrast subspace mining problem as
follows:
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Definition 3 Complete Contrast Subspace Mining (Complete-CS):
Given {O+, O−} find the subspace S such that the cost function

c(S) = max
oi∈O+

cCS(S, q = oi)

is maximized.

It can be seen that Complete-CS can be solved by solving at most |O+|
CS sub-problems corresponding to unique data points in O+. We will now
prove that Complete-CS is MAX SNP-hard, via the following reduction from
the emerging pattern mining problem.

Reduction 1 The EP → Complete-CS reduction:

– For each item D′i, set up a corresponding dimension Di.
– For each transaction o′i ∈ O′+, insert 2 copies of o′i into O+.
– For each transaction o′i ∈ O′−, insert 2|O′+| identical data points o′i into

O−.
– Insert 1 item (a numeric vector) with all 1’s into O−.
– Let h be an arbitrary user-specified bandwidth parameter, replace each oc-

currence of the 0 value in O = O+ ∪ O− with a unique value in the set
{2γh, 3γh, 4γh . . .} where γ is some fixed large constant.

– Replace each occurrence of the value 1 in O with γh where γ is the same
as the one used above.

This transformation can be done in O(|O+||O−|) time. An example illustrating
the transformation is given in Table 1.

Table 1 An example transformation from a transaction database to a numeric data set
according to the EP → Complete-CS reduction

Database Transactions O+ O−

O′
+

[0, 1, 1, 0]
[2γh, 1γh, 1γh, 3γh]
[4γh, 1γh, 1γh, 5γh]

[0, 1, 0, 0]
[6γh, 1γh, 7γh, 8γh]

[9γh, 1γh, 10γh, 11γh]

O′
−

[1, 1, 0, 0]
[1γh, 1γh, 12γh, 13γh]
[1γh, 1γh, 14γh, 15γh]
[1γh, 1γh, 16γh, 17γh]
[1γh, 1γh, 18γh, 19γh]

[0, 0, 0, 1]
[20γh, 21γh, 22γh, 1γh]
[23γh, 24γh, 25γh, 1γh]
[26γh, 27γh, 28γh, 1γh]
[29γh, 30γh, 31γh, 1γh]
[1γh, 1γh, 1γh, 1γh]

Theorem 1 The reduction EP → Complete-CS defined above is an L-reduction,
denoted by EP →L Complete-CS.

For completeness, the formal definition of the L-reduction (Papadimitriou
and Yannakakis, 1991) is given as follows:
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Definition 4 L-Reduction: let Π1 and Π2 be two optimization problems.
We say that Π1 L-reduces to Π2 if there are two polynomial time algorithms
f, g and constants α, β > 0 such that, for any instance I of Π1, f(I) forms
an instance of Π2 and

– (c1) OPT (f(I)) ≤ αOPT (I) where OPT (.) denotes the optimal value of
the respective optimization problem.

– (c2) Given any solution s of f(I), algorithm g produces a solution g(s) of
I satisfying |cΠ1(g(s))−OPT (I)| ≤ β|cΠ2(s)−OPT (f(I))|, where cΠi(.)
denotes the cost function of the corresponding optimization problem.

Proof First, we note that for any bandwidth value h, we can set γ to a large

value such that exp
(
−distS(q,o)2

2h2

)
can be arbitrarily close to 0 for all q ∈ O

such that qS ̸= oS . The cost function for CS can be computed as

cCS(S, q) =

∑
o∈O+

exp
(
−distS(q,o)2

2h2

)
∑

o∈O−
exp

(
−distS(q,o)2

2h2

) =
|OS,q

+ |+ ϵ+(S, q)

|OS,q
− |+ ϵ−(S, q)

(5)

where OS,q denotes the set of data points in O having values identical to q in
the subspace S, and

ϵ+(S, q) =
∑

o∈O+\OS,q
+

exp

(
−distS(q, o)

2

2h2

)
,

ϵ−(S, q) =
∑

o∈O−\OS,q
−

exp

(
−distS(q, o)

2

2h2

)
.

Let M > 1 be the maximum integer value such that Mγh is a value occurring
in O (e.g. M = 31 in the example in Table 1). Then |S|γ2h2 < distS(q, o)

2 <
M2|S|γ2h2 for all o ∈ O+ ∪O−. Thus

(|O+|−|OS,q
+ |) exp

(
−|S|γ2M2

)
< ϵ+(S, q) < (|O+|−|OS,q

+ |) exp
(
−|S|γ2

)
≪ 1

and similarly

(|O−|−|OS,q
− |) exp

(
−|S|γ2M2

)
< ϵ−(S, q) < (|O−|−|OS,q

− |) exp
(
−|S|γ2

)
≪ 1

Note that limγ→∞ ϵ+(S, q) = 0 and limγ→∞ ϵ−(S, q) = 0. Now, it can be seen
that:

– If a pattern S′ is an emerging pattern, then by construction at least one
object q ∈ O+ must have |OS,q

+ | ≥ 2 and |OS,q
− | = 1. This is because S′

only appears in O′+, and for each transaction o′i ∈ O′+, we have inserted
2 copies of o′i into O+. On the other hand, S′ does not appear in O′− and
the only object having values identical to q in the subspace S is the object
containing all γh’s. Therefore,

cCS(S, q) =
|OS,q

+ |+ ϵ+(S, q)

|OS,q
− |+ ϵ−(S, q)

≥ 2 + ϵ+(S, q)

1 + ϵ−(S, q)
> 1 (6)
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– If a pattern S′ is not an emerging pattern, then by construction all objects
q ∈ O+ must have |OS,q

− | ≥ |OS,q
+ |+ 1 > |OS,q

+ |. Therefore,

cCS(S, q) =
|OS,q

+ |+ ϵ+(S, q)

|OS,q
− |+ ϵ−(S, q)

< 1 (7)

With these observations, we are ready to prove the main complexity result.
We need to verify that the reduction EP → Complete-CS satisfies the two
conditions (c1) and (c2) of the L-reduction.

– (c1) For any instance I of EP, if S′ is the most frequent emerging pattern
with cEP(S

′) = |SatO′
+
(S′)| and |SatO′

−
(S′)| = 0, then the corresponding

optimal S solution for Complete-CS must have a cost value of

c(S) =
2|SatO′

+
(S′)|+ ϵ+(S, q)

1 + ϵ−(S, q)
≃ 2|SatO′

+
(S′)| = 2cEP(S

′) (8)

where q is any data point inO+ corresponding to the transaction containing
pattern S′. This is because for each transaction o′i containing S′ in O′+, we
have inserted 2 copies of o′i into O+. The ‘1’ in the denominator is due to
the object containing all γh in O−. Thus condition 1 is satisfied with α = 2
when γ is sufficiently large.

– (c2) For any solution S of Complete-CS, if c(S) = λ ≥ 2 then the cor-
responding pattern S′ constructed from S will be an emerging pattern.
Further, let [λ] be the nearest integer to λ. Then [λ] must be even, and
[λ]/2 will be the cost of the corresponding EP problem. Let λ∗ denote the
optimal cost of Complete-CS, then∣∣∣∣ [λ]2 − [λ∗]

2

∣∣∣∣ = 1

2
|[λ]− [λ∗]| ≃ 1

2
|λ− λ∗| ≤ |λ− λ∗| (9)

Thus condition 2 is satisfied with β = 1.

�

Since EP →L Complete-CS, if there exists a polynomial time approxima-
tion algorithm for Complete-CS with performance guarantee 1− ϵ, then there
exists a polynomial time approximation algorithm for EP with performance
guarantee 1−αβϵ. Since EP is MAX SNP-hard, it follows that Complete-CS
must also be MAX SNP-hard.

Last, we draw the connection between Complete-CS and CS.

Theorem 2 If there exists a polynomial time approximation scheme (PTAS)
for CS then there must also be a PTAS for Complete-CS.

Proof This is straightforward, as Complete-CS can be solved by a series of
|O+| CS problems.

�
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{D1}

{}

{D1,D3} {D1,D4} {D2,D3} {D2,D4} {D3,D4}

{D2} {D4}{D3}

{D1,D2,D3} {D1,D2,D4}

{D1,D2,D3,D4}

{D2,D3,D4}{D1,D3,D4}

{D1,D2}

Fig. 1 A set enumeration tree.

Unless P=NP, there exists no PTAS for Complete-CS, implying no PTAS
for CS.

The above theoretical result indicates that the problem of mining contrast
subspaces is even hard to approximate – it is impossible (unless P=NP) to
design a good approximation algorithm. In the rest of the paper, we turn to
practical heuristic methods.

4 Mining Methods

In this section, we first describe a baseline method that examines every possible
non-empty subspace. Then, we present the design of our method CSMiner (for
Contrast Subspace Miner) which employs smarter strategies for search.

4.1 A Baseline Method

A baseline naive method enumerates all possible non-empty spaces S and
calculates the exact values of both LS(q | O+) and LS(q | O−), since both
LS(q | O+) and LS(q | O−) are not monotonic with respect to the subspace-
superspace relationship. Then, it returns the top-k subspaces S with the largest
LCS(q) values. To ensure the completeness and efficiency of subspace enumer-
ation, the baseline method traverses the set enumeration tree (Rymon, 1992)
of subspaces in a depth-first manner. A set enumeration tree takes a total or-
der on a set, the set of dimensions in our problem, and enumerates all possible
subsets in the lexicographical order. Figure 1 shows a set enumeration tree
that enumerates all subspaces of D = {D1, D2, D3, D4}.

Using Equations 3 and 4, the baseline algorithm, shown in Algorithm 1,
computes the likelihood contrast for every subspace where LS(q | O+) ≥ δ,
and returns the top-k subspaces. The time complexity is O(2|D| ·(|O+|+|O−|)).

4.2 The Framework of CSMiner

LS(q | O+) is not monotonic in subspaces. To prune subspaces using the
minimum likelihood threshold δ, we develop an upper bound of LS(q | O+).
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Algorithm 1 The baseline algorithm
Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ:

likelihood threshold, k: positive integer
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associ-

ated with likelihood contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, hopt;
5: compute LS(q | O+) and LS(q | O−) using Equation 3;

6: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t.
LS(q|O+)

LS(q|O−)
> LCS′ (q) then

7: insert S into Ans and remove S′ from Ans;
8: end if
9: end for
10: return Ans;

We sort all the dimensions in their standard deviation descending order. Let
S be the set of descendants of S in the subspace set enumeration tree using
the standard deviation descending order. Define

L∗S(q | O+) =
1

|O+|(
√
2πσ′minh

′
opt min)

τ

∑
o∈O+

exp

(
−distS(q, o)

2

2(σSh′opt max)
2

)
(10)

where σ′min = min{σS′ | S′ ∈ S}, h′opt min = min{hS′ opt | S′ ∈ S}, h′opt max =
max{hS′ opt | S′ ∈ S}, and

τ =

{
|S| if

√
2πσ′minh

′
opt min ≥ 1

max{|S′| | S′ ∈ S} if
√
2πσ′minh

′
opt min < 1

We have the following result.

Theorem 3 (Monotonic Density Bound) For a query object q, a set of
objects O, and subspaces S1, S2 such that S1 is an ancestor of S2 in the
subspace set enumeration tree in which dimensions in full space D are sorted
by their standard deviation descending order, it is true that L∗S1

(q | O) ≥
LS2(q | O).

Proof Let S be the set of descendants of S1 in the subspace set enumeration
tree using the standard deviation descending order in O. We define σ′min =
min{σS′ | S′ ∈ S}, h′opt min = min{hS′ opt | S′ ∈ S}, h′opt max = max{hS′ opt |
S′ ∈ S}, and

τ =

{
|S1| if

√
2πσ′minh

′
opt min ≥ 1

max{|S′| | S′ ∈ S} if
√
2πσ′minh

′
opt min < 1

(Note that the computing of σ′min, h′opt min, and h′opt max has linear com-
plexity. As introduced in Section 3.2, σS′ is the root of the average marginal
variance in S′ and hS′ opt depends on the values of |O| and |S′|. Let S′′ ∈ S
such that for any subspace S′ ∈ S, S′ ⊆ S′′. Recall that the dimensions in the
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set enumeration tree are sorted by the standard deviation descending order,
then, σ′min can be obtained by checking dimensions in S′′ \ S1 one by one in
the standard deviation ascending order. Moreover, h′opt min (h′opt max) can be
obtained by comparing hS′ opt with different values of |S′| ∈ [|S1|+1, |S′′|].) As
S2 ∈ S, we have 1 ≤ |S1| < |S2| ≤ max{|S′| | S′ ∈ S}, and σS1 ≥ σS2 ≥ σ′min.
Then, σS2hS2 opt ≥ σ′minh

′
opt min. Thus,

(
√
2πσS2hS2 opt)

|S2| > (
√
2πσ′minh

′
opt min)

τ

Moreover, for o ∈ O, distS1(q, o) ≤ distS2(q, o). Correspondingly,

−distS2(q, o)
2

2(σS2hS2 opt)2
≤ −distS1(q, o)

2

2(σS1h
′
opt max)

2

By Equation 3,

LS2(q | O) =
1

|O|(
√
2πσS2hS2 opt)|S2|

∑
o∈O

exp

(
−distS2(q, o)

2

2(σS2hS2 opt)2

)
≤ 1

|O|(
√
2πσ′minh

′
opt min)

τ

∑
o∈O

exp

(
−distS1(q, o)

2

2(σS1h
′
opt max)

2

)
= L∗S1

(q | O)

�
Using Theorem 3, in addition to LS(q | O+) and LS(q | O−), we also

compute L∗S(q | O+) for each subspace S. We are now in a position to state a
pruning rule based on this theorem.

Pruning Rule 1 Given a minimum likelihood threshold δ, if L∗S(q | O+) < δ
in a subspace S, all superspaces of S can be pruned.

Note that by using depth-first search, the distance between two objects in
a super-space can be computed incrementally from the distance among the
objects in a subspace. Given two objects q and o, let subspace S′ = S ∪ {Di}.
We have distS′(q, o)2 = distS(q, o)

2 + (q.Di − o.Di)
2.

Algorithm 2 shows the pseudo code of the framework of CSMiner. Similar
to the baseline method (Algorithm 1), CSMiner conducts a depth-first search
on the subspace set enumeration tree. For a candidate subspace S, CSMiner
calculates L∗S(q | O+) using Equation 10. If L∗S(q | O+) is less than the mini-
mum likelihood threshold, all superspaces of S can be pruned by Theorem 3.
Due to the hardness of the problem shown in Section 3.3 and the heuristic na-
ture of this method, the time complexity of CSMiner is O(2|D| ·(|O+|+ |O−|)),
the same as the exhaustive baseline method. However, as shown by our em-
pirical study, CSMiner is substantially faster than the baseline method.

As stated in Algorithm 2, CSMiner starts with reading q, O+ and O−. For
a candidate subspace S, CSMiner stores σS+, σS−, σ

′
min, hopt, h

′
opt min, and

h′opt max to compute L∗S(q | O+), and LCS(q). As CSMiner traverses the sub-
space set enumeration tree in a depth-first manner and finds top-k subspaces
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Algorithm 2 CSMiner(q,O+, O−, δ, k)
Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ:

likelihood threshold, k: positive integer
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associ-

ated with likelihood contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, σ′

min, hopt, h′
opt min, and h′

opt max;

5: compute L∗
S(q | O+) using Equation 10;

6: if L∗
S(q | O+) < δ then

7: prune all descendants of S and go to Step 2; // Pruning Rule 1
8: else
9: compute LS(q | O+) and LS(q | O−) using Equation 3;

10: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t.
LS(q|O+)

LS(q|O−)
> LCS′ (q) then

11: insert S into Ans and remove S′ from Ans;
12: end if
13: end if
14: end for
15: return Ans;

with the highest likelihood contrast, CSMiner only stores the likelihood con-
trast information of k candidate subspaces. The space complexity of CSMiner
is O(|O+|+ |O−|+ k). Observe that k ≤ 2|D| (D representing the full space).

4.3 A Bounding-Pruning-Refining Method

For a query object q and a set of objects O, the likelihood LS(q | O), com-
puted by Equation 3, is the sum of density contributions of objects in O to
q in subspace S. In Gaussian kernel estimation, given object o ∈ O, the con-

tribution from o to LS(q | O) is 1
|O|(
√
2πhS)|S| exp

(
−distS(q,o)2

2hS
2

)
. We observe

that the contribution of o decays exponentially as the distance between q and
o increases, and LS(q | O) can be bounded.

For a query object q and a set of objects O, the ϵ-neighborhood (ϵ > 0)
of q in subspace S is N ϵ

S(q | O) = {o ∈ O | distS(q, o) ≤ ϵ}. We can divide
LS(q | O) into two parts, that is, LS(q | O) = LNϵ

S
(q | O) + Lrest

S (q | O). The
first part is contributed by the objects in the ϵ-neighborhood, that is,

LNϵ
S
(q | O) =

1

|O|(
√
2πhS)|S|

∑
o∈Nϵ

S(q|O)

exp

(
−distS(q, o)

2

2hS
2

)
,

and the second part is by the objects outside the ϵ-neighborhood, that is,

Lrest
S (q | O) =

1

|O|(
√
2πhS)|S|

∑
o∈O\Nϵ

S(q|O)

exp

(
−distS(q, o)

2

2hS
2

)
.
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Fig. 2 An example of an ϵ-neighborhood in a 2-dimensional subspace (within the dashed
circle)

Let distS(q | O) be the maximum distance between q and all objects in O
in subspace S. We have,

exp

(
−distS(q | O)2

2hS
2

)
≤ |O|(

√
2πhS)

|S|

|O \N ϵ
S(q | O)|

Lrest
S (q | O) ≤ exp

(
−ϵ2

2hS
2

)
Example 1 Figure 2 illustrates an example of a ϵ-neighborhood of object q
with respect to object set O in a 2-dimensional subspace S. From Figure 2, we
can see that N ϵ

S(q | O) = {o1, o2, o3, o4, o5}, and distS(q | O) = distS(q, o10).

Using the above, an upper bound of L∗S(q | O+) using ϵ-neighborhood
(N ϵ

S(q | O+) = {o ∈ O+ | distS(q, o) ≤ ϵ}), denoted by L∗ϵS (q | O+), is

L∗ϵS (q | O+) =∑
o∈Nϵ

S(q|O+)

exp
(
−distS(q,o)2

2(σSh′
opt max)

2

)
+ |O+ \N ϵ

S(q | O+)| exp
(

−ϵ2
2(σSh′

opt max)
2

)
|O+|(

√
2πσ′minh

′
opt min)

τ

(11)

where, the meanings of σ′min, h
′
opt min, h

′
opt max, and τ are the same as those

in Equation 10.

Pruning Rule 2 Given a minimum likelihood threshold δ, if L∗ϵS (q | O+) < δ
in a subspace S, all superspaces of S can be pruned.

Moreover, using the ϵ-neighborhood, we have the following upper and lower
bounds of LS(q | O).

Theorem 4 (Bounds) For a query object q, a set of objects O and ϵ ≥ 0,

LLϵ
S(q | O) ≤ LS(q | O) ≤ ULϵ

S(q | O)

where

LLϵ
S(q | O) =

∑
o∈Nϵ

S(q|O)

exp
(
−distS(q,o)2

2hS
2

)
+ |O \N ϵ

S(q | O)| exp
(
−distS(q|O)2

2hS
2

)
|O|(

√
2πhS)|S|
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and

ULϵ
S(q | O) =

∑
o∈Nϵ

S(q|O)

exp
(
−distS(q,o)2

2hS
2

)
+ |O \N ϵ

S(q | O)| exp
(
−ϵ2
2hS

2

)
|O|(

√
2πhS)|S|

Proof For any object o ∈ O \ N ϵ
S(q | O), ϵ2 ≤ distS(q, o)

2 ≤ distS(q | O)
2
.

Then,

exp

(
−ϵ2

2hS
2

)
≥ exp

(
−distS(q, o)

2

2hS
2

)
≥ exp

(
−distS(q | O)2

2hS
2

)
Thus,

|O\N ϵ
S(q | O)|e

−ϵ2

2hS
2 ≥ |O\N ϵ

S(q | O)|e
−distS(q,o)2

2hS
2 ≥ |O\N ϵ

S(q | O)|e
−distS(q|O)2

2hS
2

Correspondingly,

LLϵ
S(q | O) ≤ LS(q | O) ≤ ULϵ

S(q | O)

�

We obtain an upper bound of LCS(q) based on Theorem 4 and Equation 4.

Corollary 1 (Likelihood Contrast Upper Bound) For a query object q,

a set of objects O+, a set of objects O−, and ϵ ≥ 0, LCS(q) ≤ ULϵ
S(q|O+)

LLϵ
S(q|O−) .

Proof By Theorem 4, we have LS(q | O+) ≤ ULϵ
S(q | O+) and LS(q | O−) ≥

LLϵ
S(q | O−). Then,

LCS(q) =
LS(q | O+)

LS(q | O−)
≤ ULϵ

S(q | O+)

LS(q | O−)
≤ ULϵ

S(q | O+)

LLϵ
S(q | O−)

�

Using Corollary 1, we have the following.

Pruning Rule 3 For a subspace S, if there are at least k subspaces whose

likelihood contrast are greater than
ULϵ

S(q|O+)
LLϵ

S(q|O−) , then S cannot be a top-k sub-

space of the largest likelihood contrast.

We implement the bounding-pruning-refining method in CSMiner to com-
pute bounds of likelihood and contrast ratio. We call this version CSMiner-
BPR. For a candidate subspace S, CSMiner-BPR calculates ULϵ

S(q | O+),
LLϵ

S(q | O−) and L∗ϵS (q | O+) using the ϵ-neighborhood. If ULϵ
S(q | O+) is less

than the minimum likelihood threshold (δ), CSMiner-BPR checks whether it
is true that L∗ϵS (q | O+) < δ (Pruning Rule 2) or L∗S(q | O+) < δ (Pruning
Rule 1). Otherwise, CSMiner-BPR checks whether the likelihood contrasts
of the current top-k subspaces are larger than the upper bound of LCS(q)

(=
ULϵ

S(q|O+)
LLϵ

S(q|O−) ). If not, CSMiner-BPR refines L∗S(q | O+), LS(q | O+) and
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LS(q | O−) by involving objects that are out of the ϵ-neighborhood. S will be
added into the current top-k list if L∗S(q | O+) ≥ δ and the ratio of LS(q | O+)
to LS(q | O−) is larger than one of the current top-k ones. Note that the
computational cost for L∗S(q | O+) can be high, especially, when the size of
O+ is large. Thus for efficiency, we employ a tradeoff between Pruning Rule 1
and Pruning Rule 3. Specifically, when we are searching a subspace S, once we
can determine that S cannot be a top-k contrast subspace, then we terminate
the search of S immediately. Therefore, CSMiner-BPR accelerates CSMiner
by avoiding the cost for computing the likelihood contributions of objects out-
side the ϵ-neighborhood to q when L∗ϵS (q | O+) < δ (Pruning Rule 2) or there

are at least k subspaces whose likelihood contrast are greater than
ULϵ

S(q|O+)
LLϵ

S(q|O−)

(Pruning Rule 3).
Computing ϵ-neighborhood is critical in CSMiner-BPR. The distance be-

tween objects increases when dimensionality increases. Thus, the value of ϵ
should not be fixed. The standard deviation expresses the variability of a set

of data. For subspace S, we set ϵ =
√
α ·

∑
Di∈S

(σ2
Di

+ + σ2
Di

−) (α ≥ 0), where

σ2
Di

+ and σ2
Di

− are the marginal variances of O+ and O−, respectively, on di-

mension Di (Di ∈ S), and α is a system defined parameter. Our experiments
show that α can be set in the range of 0.8 ∼ 1.2, and is not sensitive. Algorith-
m 3 provides the pseudo-code of CSMiner-BPR. Theorem 5 guarantees that
no matter how the neighborhood distance (ϵ) is varied, the mining result of
CSMiner-BPR is unchanged.

Theorem 5 Given data set O, query object q, minimum likelihood threshold
δ, and parameter k, for any neighborhood distances ϵ1 and ϵ2, CSϵ1(q | O) =
CSϵ2(q | O), where CSϵ1(q | O) (CSϵ2(q | O)) is the set of contrast subspaces
discovered by CSMiner-BPR using ϵ1 (ϵ2).

Proof We prove by contradiction.
Assume that subspace S ∈ CSϵ1(q | O) but S ̸∈ CSϵ2(q | O). As S ∈

CSϵ1(q | O), we have (⋆) LS(q | O+) ≥ δ. On the other hand, S′ ̸∈ CSϵ2(q |
O) means that (i) L∗ϵ2S (q | O+) < δ, or (ii) ∃S′ ∈ CSϵ2(q | O) such that

S′ ̸∈ CSϵ1(q | O) and
UL

ϵ1
S (q|O+)

LL
ϵ1
S (q|O−)

< LCS′(q). For case (i), as LS(q | O+) ≤
L∗S(q | O+) ≤ L∗ϵ2S (q | O+), we have LS(q | O+) < δ, contradicting (⋆). For

case (ii), as LCS(q) ≤
UL

ϵ1
S (q|O+)

LL
ϵ1
S (q|O−)

, we have LCS(q) < LCS′(q), contradicting

S′ ̸∈ CSϵ1(q | O).

�

Corollary 2 Given data set O, query object q, minimum likelihood threshold
δ, and parameter k, the mining result of CSMiner-BPR, no matter what the
value of parameter α is, the output is the same as that of CSMiner.

Proof For subspace S, suppose ϵ, computed by parameter α, is greater than
distS(q | O). We have N ϵ

S(q | O) = O. Correspondingly, ULϵ
S(q | O+) = LS(q |



18 Lei Duan et al.

Algorithm 3 CSMiner-BPR(q,O+, O−, δ, k, α)
Input: q: a query object, O+: the set of objects belonging to C+, O−: the set of objects belonging

to C−, δ: a likelihood threshold, k: positive integer, α: neighborhood parameter
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated

with likelihood contrast 0
2: for each subspace S in the subspace set enumeration tree, searched in the depth-first manner

do
3: compute ϵ, σS+, σS−, σ′

min, hopt, h
′
opt min, and h′

opt max;

4: Nϵ
S(q | O+)← ∅; Nϵ

S(q | O−)← ∅; distS(q | O−)← 0;
5: for each object o ∈ O+ ∪O− do

6: distS(q, o)2 ← distSp (q, o)2 + (q.D′ − o.D′)2; // Sp(= S \ {D′}) is the parent of S.
7: if o ∈ O+ and distS(q, o) < ϵ then
8: Nϵ

S(q | O+)← Nϵ
S(q | O+) ∪ {o};

9: end if
10: if o ∈ O− then
11: if distS(q, o) < ϵ then
12: Nϵ

S(q | O−)← Nϵ
S(q | O−) ∪ {o};

13: end if
14: if distS(q | O−) < distS(q, o) then

15: distS(q | O−)← distS(q, o);
16: end if
17: end if
18: end for
19: compute ULϵ

S(q | O+), LLϵ
S(q | O−) and L∗ϵ

S (q | O+); // bounding
20: if ULϵ

S(q | O+) < δ then
21: if L∗ϵ

S (q | O+) < δ then
22: prune all descendants of S and go to Step 2; // Pruning Rule 2
23: end if
24: compute L∗

S(q | O+);
25: if L∗

S(q | O+) < δ then
26: prune all descendants of S and go to Step 2; // Pruning Rule 1
27: end if
28: else

29: if ∃S′ ∈ Ans s.t.
ULϵ

S(q|O+)

LLϵ
S

(q|O−)
≥ LCS′ (q) then

30: compute L∗
S(q | O+) using Equation 10; // refining

31: if L∗
S(q | O+) < δ then

32: prune all descendants of S and go to Step 2; // Pruning Rule 1
33: else
34: compute LS(q | O+) and LS(q | O−) using Equation 3; // refining

35: if LS(q | O+) ≥ δ and ∃S′ ∈ Ans s.t.
LS(q|O+)

LS(q|O−)
> LCS′ (q) then

36: insert S into Ans and remove S′ from Ans;
37: end if
38: end if
39: end if
40: end if
41: end for
42: return Ans;

O+), LL
ϵ
S(q | O−) = LS(q | O−), and L∗ϵS (q | O+) = L∗S(q | O+). Then the

execution flow of CSMiner-BPR (Algorithm 3) is the same as that of CSMiner
(Algorithm 2). Furthermore, by Theorem 5, the mining result of CSMiner-BPR
is unchanged no matter what the value of neighborhood distance is.

�



Title Suppressed Due to Excessive Length 19

Table 2 Data set characteristics

Data set # objects # attributes # classes
Breast Cancer Wisconsin (BCW) 683 9 2

Climate Model Simulation Crashes (CMSC) 540 18 2
Glass Identification (Glass) 214 9 2

Pima Indians Diabetes (PID) 768 8 2
Waveform 5000 21 3

Wine 178 13 3

5 Empirical Evaluation

In this section, we report a systematic empirical study using real data sets to
verify the effectiveness and efficiency of CSMiner (CSMiner-BPR). In general,
we study how sensitive are our methods to the running parameters, such as δ,
k, and α, in terms of discovered contrast subspaces and running time; and how
sensitive are our methods to different bandwidth values and kernel function, in
terms of the similarity of mining results. All experiments were conducted on a
PC computer with an Intel Core i7-3770 3.40 GHz CPU, and 8 GB main mem-
ory, running Windows 7 operating system. All algorithms were implemented
in Java and compiled by JDK 7. We set δ = 0.001, k = 10 and, α = 0.8 as
defaults in our experiments.

5.1 Effectiveness

We use 6 real data sets from the UCI machine learning repository (Bache
and Lichman, 2013). We remove non-numerical attributes and all instances
containing missing values. Table 2 shows the data characteristics.

As shown in Table 2, BCW, Glass, PID andWine are typical small data sets
which contain hundreds of objects with around 10 numerical attributes. The
objects in BCW, Glass and PID are divided into 2 classes, respectively, while
the objects in Wine are divided into 3 classes. Compared with BCW, Glass,
PID and Wine, CMSC and Waveform contain more numerical attributes. We
note that CMSC is an unbalanced data set, in which the number of objects
in the two classes are 46 and 494, respectively. Among all selected data sets,
Waveform containing 5000 objects is the largest one with the highest dimen-
sionality.

For each data set, we take each record as a query object q, and all records
except q belonging to the same class as q forming the set O1, and records
belonging to the other classes forming the set O2. Using CSMiner, we compute
for each record (1) the inlying contrast subspace taking O1 as O+ and O2 as
O−, and (2) the outlying contrast subspace taking O2 as O+ and O1 as O−. In
this experiment, we only compute the top-1 subspace. For clarity, we denote
the likelihood contrasts of inlying contrast subspace by LCin

S (q) and those of
outlying contrast subspace by LCout

S (q). The minimum likelihood threshold
(δ) is set to 0.001.
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Tables 3 ∼ 7 list the joint distributions of LCin
S (q) and LCout

S (q) in each
data set. Consider that the query object has the same class label as objects in
O1 in the original data set. Thus, it is expected that, for most objects, LCin

S (q)
are larger than LCout

S (q). However, interestingly a good portion of objects have
strong outlying contrast subspaces. For example, in CMSC, more than 40%
of the objects have outlying contrast subspaces satisfying LCout

S (q) ≥ 103.
Moreover, we can see that, except PID, a non-trivial number of objects in
each data set have both strong inlying and outlying contrast subspaces (e.g.,
LCin

S (q) ≥ 104 and LCout
S (q) ≥ 102).

Figures 3, 4 show the distributions of dimensionality of top-1 inlying and
outlying contrast subspaces with different minimum likelihood thresholds (δ),
respectively. The dimensionality distribution is an interesting feature charac-
terizing a data set. For example, in most cases the contrast subspaces tend
to have low dimensionality. However, in CMSC and Wine, the inlying con-
trast subspaces tend to have high dimensionality. Moreover, we can see that
with the decrease of δ, the number of subspaces with higher dimensionality is
typically increased.

5.2 Efficiency

To the best of our knowledge, there is no previous method tackling the exact
same mining problem. Therefore, we evaluate the efficiency of CSMiner and its
variations. Specifically, we implemented the baseline method (Algorithm 1). To
evaluate the efficiency of our pruning techniques for contrast subspace mining,
we also implemented CSMiner (Algorithm 2), and CSMiner-BPR (Algorith-
m 3) using the bounding-pruning-refining method.

We report the results on the Waveform data set only, since it is the largest
one with the highest dimensionality. We randomly select 100 records from
Waveform as query objects, and report the average runtime. The results on
the other data sets follow similar trends.

Figure 5 shows the runtime with respect to the minimum likelihood thresh-
old δ. A logarithmic scale has been used for the runtime to better demonstrate
the difference in the behavior between CSMiner and the baseline. The base-
line performs exhaustive subspace search and thus its runtime is unchanged
across different δ values. For CSMiner and CSMiner-BPR, as δ decreases, their
runtime increase exponentially. However, the heuristic pruning techniques im-
plemented in CSMiner and CSMiner-BPR accelerate the search substantially
in practice. Moreover, CSMiner-BPR is slightly more efficient than CSMiner.

Figure 6 shows the runtime with respect to the data set size, which is mea-
sured by the number of objects. Again, the runtime is plotted using the loga-
rithmic scale. We can see that our pruning techniques can achieve a roughly
linear runtime in practice. Both CSMiner and CSMiner-BPR are considerably
faster than the baseline method, and CSMiner-BPR is slightly more efficient
than CSMiner.
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Table 3 Distribution of LCS(q) in BCW (δ = 0.001, k = 1)

LCout
S (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total
L
C

i
n

S
(q

) < 104 0 3 0 7 23 33
[104, 105) 7 4 2 4 7 24
[105, 106) 21 21 5 8 9 64
[106, 107) 184 33 5 4 9 235
≥ 107 121 31 74 66 35 327

Total 333 92 86 89 83 683

Table 4 Distribution of LCS(q) in CMSC (δ = 0.001, k = 1)

LCout
S (q)

[10, 102) [102, 103) [103, 104) [104, 105) ≥ 105 Total

L
C

i
n

S
(q

) < 103 1 11 12 2 0 26
[103, 104) 6 35 47 6 6 100
[104, 105) 10 46 44 8 2 110
[105, 106) 11 40 32 8 2 93
≥ 106 39 110 50 11 1 211

Total 67 242 185 35 11 540

Table 5 Distribution of LCS(q) in Glass (δ = 0.001, k = 1)

LCout
S (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 102 0 0 0 1 7 8
[102, 103) 2 8 4 4 7 25
[103, 104) 28 91 6 4 5 134
[104, 105) 1 4 0 0 3 8
≥ 105 0 1 0 30 8 39

Total 31 104 10 39 30 214

Table 6 Distribution of LCS(q) in PID (δ = 0.001, k = 1)

LCout
S (q)

< 1 [1,3) [3,10) [10, 30) ≥ 30 Total

L
C

i
n

S
(q

) < 1 0 0 1 0 0 1
[1, 3) 2 241 62 8 2 315
[3, 10) 36 328 31 3 0 398
[10, 30) 23 23 2 0 0 48
≥ 30 3 3 0 0 0 6

Total 64 595 96 11 2 768

Table 7 Distribution of LCS(q) in Waveform (δ = 0.001, k = 1)

LCout
S (q)

[1, 3) [3,10) [10, 102) [102, 103) ≥ 103 Total

L
C

i
n

S
(q

) < 10 0 24 34 8 2 68
[10, 102) 204 676 772 190 71 1913
[102, 103) 471 1049 981 228 56 2785
[103, 104) 53 103 67 4 4 231
≥ 104 0 2 1 0 0 3

Total 728 1854 1855 430 133 5000

Table 8 Distribution of LCS(q) in Wine (δ = 0.001, k = 1)

LCout
S (q)

< 1 [1,3) [3,10) [10, 102) ≥ 102 Total

L
C

i
n

S
(q

) < 103 0 13 8 7 5 33
[103, 104) 1 18 11 4 0 34
[104, 105) 2 23 12 5 2 44
[105, 106) 3 7 5 1 0 16
≥ 106 7 20 16 4 4 51

Total 13 81 52 21 11 178
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(a) BCW (b) CMSC

(c) Glass (d) PID

(e) Waveform (f) Wine

Fig. 3 Dimensionality distributions of top inlying contrast subspaces (k = 1)

Figure 7 shows the runtime with respect to the dimensionality of the data
set. The runtime is also plotted using the logarithmic scale. As dimensional-
ity increases, more candidate subspaces are generated. Correspondingly, the
runtime increases exponentially. However, our heuristic pruning techniques
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(a) BCW (b) CMSC

(c) Glass (d) PID

(e) Waveform (f) Wine

Fig. 4 Dimensionality distributions of top outlying contrast subspaces (k = 1)

implemented in CSMiner and CSMiner-BPR speed up the search in practice.
Moreover, CSMiner-BPR is faster than CSMiner.

As stated in Section 4.3, CSMiner-BPR employs a user defined parameter
α to define the ϵ-neighborhood. Table 9 lists the average runtime of CSMiner-
BPR for a query object with respect to α on each real data set. The runtime



24 Lei Duan et al.

0.01 0.04 0.07 0.1 0.13

10
0

10
2

10
4

10
−1

10
1

10
3

δ

R
un

tim
e 

(s
ec

)

 

 

Baseline
CSMiner
CSMiner−BPR

Fig. 5 Scalability test w.r.t δ
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Fig. 8 Relative runtime of CSMiner-BPR
w.r.t k (δ = 0.01, α = 0.8)

of CSMiner-BPR is not sensitive to α in general. Experimentally, the short-
est runtime of CSMiner-BPR (bold values in Table 9) happens when α is in
[0.6, 1.0].

Figure 8 illustrates the relative runtime of CSMiner-BPR with respect to
k on each real data set, showing that CSMiner-BPR is linearly scalable with
respect to k. Note that we show relative performance in Figure 8 so that
the scalability of CSMiner-BPR with respect to k on different data sets can
be compared in one figure. The absolute performance of CSMiner-BPR with
k = 10, δ = 0.01 and α = 0.8 can be found in Table 9.

5.3 Sensitivity to the Bandwidth

To test the sensitivity of the top-k contrast subspaces with respect to the
bandwidth value, we begin by defining the similarity measure for two lists of
top-k contrast subspaces.

For any two subspaces S1 and S2, we measure the similarity between S1 and

S2 by the Jaccard similarity coefficient, denoted by Jaccard(S1, S2) =
|S1∩S2|
|S1∪S2| .
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Table 9 Average runtime of CSMiner-BPR w.r.t α (k = 10, δ = 0.01)

Data set
Average runtime (millisecond)

α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4
BCW 20.97 20.14 17.76 16.32 15.59
CMSC 11446.2 11643.5 12915.1 14125.0 15210.2
Glass 16.13 15.83 15.62 15.69 15.76
PID 4.21 4.17 4.23 4.25 4.29

Waveform 6807.1 7102.3 7506.7 7874.7 8183.7
Wine 18.51 18.16 18.42 18.69 19.12

Given a positive integer r, let Pr be the set of all permutations of the set {i |
1 ≤ i ≤ r}. Correspondingly, |Pr| = r!. For permutation P ∈ Pr, we denote the
j-th (1 ≤ j ≤ r) element in P by P [j]. For example, by writing each permuta-
tion as a tuple, we have P3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.
Suppose P = (2, 3, 1), then P [2] = 3.

To the best of our knowledge, there is no previous work on measuring
the similarity between two ranked lists of subspaces. Given two ranked lists
of top-k contrast subspaces ℓ1 and ℓ2, without loss of generality, we follow
the definition of average overlap (Webber et al, 2010) (also named as average
accuracy (Wu and Crestani, 2003), or intersection metric (Fagin et al, 2003)),
which derives the similarity measure by averaging the overlaps of two ranked
lists at each rank, to measure the similarity between ℓ1 and ℓ2. In addition,
in consideration of the fact that each subspace in a list is a set of dimensions,
we introduce the Jaccard similarity coefficient into the overlap calculation.
Specifically, let ℓ1[i] be the element (subspace) at rank i (1 ≤ i ≤ k) in list ℓ1.
The agreement of lists ℓ1 and ℓ2 at rank r (1 ≤ r ≤ k), Agr(ℓ1, ℓ2, r), is

Agr(ℓ1, ℓ2, r) =
1

r
max{

r∑
i=1

Jaccard(ℓ1[P1[i]], ℓ2[P2[i]]) | P1, P2 ∈ Pr}

Then, the similarity between ℓ1 and ℓ2, denoted by Sim(ℓ1, ℓ2), is

Sim(ℓ1, ℓ2) =
1

k

k∑
r=1

Agr(ℓ1, ℓ2, r) (12)

Clearly, 0 ≤ Sim(ℓ1, ℓ2) ≤ 1. The larger the value of Sim(ℓ1, ℓ2), the more
similar ℓ1 and ℓ2 are.

Given a set of objects O, and a query object q, to find top-k contrast
subspaces for q with respect to O by CSMiner (Algorithm 2), as discussed
in Section 3.2, we first fix the bandwidth value hS = σS · hS opt, and use
the Gaussian kernel function to estimate the subspace likelihood of q with
respect to O in subspace S. We then vary the bandwidth value from 0.6hS

to 1.4hS for density estimation in S. Let ℓhS
be the top-k contrast subspaces

computed using the default bandwidth value hS , and ℓ
h̃S

be the top-k contrast
subspaces computed using other bandwidth values. For each object q ∈ O, we
discover top inlying contrast subspaces and top outlying contrast subspaces
of q by CSMiner using different bandwidth values. Figure 9 illustrates the
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average value of Sim(ℓhS
, ℓ

h̃S
) of inlying contrast subspaces with respect to

k, and Figure 10 illustrates the average value of Sim(ℓhS
, ℓ

h̃S
) of outlying

contrast subspaces with respect to k. From the results, we can see that the
contrast subspaces computed using different bandwidth values are similar in
most data sets. As expected, using a bandwidth whose value is closer to h
causes less difference. Moreover, we observe that with increasing k, the value
of Sim(ℓhS , ℓh̃S

) slightly increases.

5.4 Comparison with Epanechnikov Kernel

Besides Gaussian kernel (Equation 2), another possible kernel for multivariate
kernel density estimation is the multivariate Epanechnikov kernel

Ke(x) =

{
1
2cd
−1(d+ 2)(1− xTx) if xTx < 1

0 otherwise

where cd is the volume of the unit d-dimensional sphere, and can be expressed
by making use of the Gamma function. It is,

cd =
πd/2

Γ(1 + d/2)
=

{
πd/2/(d/2)! if d ≥ 0 is even
π⌊d/2⌋2⌈d/2⌉/d!! if d ≥ 0 is odd

where d!! is the double factorial.
PluggingKe(x) into Equation 1, the density of a query object q with respect

to a set of objects O in subspace S can be estimated as

f̂S(q,O) =
1

|O|h|S|S

∑
o∈O∧ distS(q,o)2

h2
S

<1

(
1

2
c|S|
−1(|S|+ 2)(1− distS(q, o)

2

h2
S

)

)
(13)

where hS is the bandwidth for subspace S.
Similar to calculating the bandwidth using Gaussian kernel in Section 3.2,

we calculate hS as follows.

hS = σS · hS opt

As Silverman suggested (Silverman, 1986), σS is a single scale parameter that
equals to the root of the average marginal variance in S, and hS opt is the
optimal bandwidth value which equals to A(K)|O|−1/(|S|+4), where A(K) =
{8c|S|−1(|S|+ 4)(2

√
π)|S|}1/(|S|+4) for the Epanechnikov kernel.

We implemented CSMiner (Algorithm 2) using the Epanechnikov kernel for
contrast subspace mining as follows. Given a subspace S, let S be the set of
descendants of S in the subspace set enumeration tree using the standard de-
viation descending order. Then, LS(q | O+) and LS(q | O−) can be computed
by Equation 13, and L∗S(q | O+) =

1

|O|(σ′minh
′
opt min)

τ

∑
o∈O∧ distS(q,o)2

hmax
S

2 <1

(
1

2
cmin
S
−1

(dmax
S + 2)(1− distS(q, o)

2

hmax
S

2 )

)
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Fig. 9 The similarity scores of inlying contrast subspaces using different bandwidth values
with respect to k (δ = 0.001)
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Fig. 10 The similarity scores of outlying contrast subspaces using different bandwidth
values with respect to k (δ = 0.001)
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where hmax
S = (σSh

′
opt max), cmin

S = min{cd | |S| < d ≤ dmax
S }, dmax

S =
max{|S′| | S′ ∈ S}, and the meaning of σ′min, h

′
opt min, h

′
opt max, τ are the

same as those in Equation 10.

Technically, the Epanechnikov kernel could also be implemented using the
CSMiner-BPR approach (Algorithm 3). However, the performance improve-
ment by the bounding-pruning-refining method would be less significant. The
reason lies in the fact that on the one hand, different from using the Gaussian
kernel that each object o has a non-zero likelihood contribution to the query

object q, the contribution of o satisfying distS(q,o)2

h2
S

≥ 1 is 0 (by the definition)

to q when uses the Epanechnikov kernel. On the other hand, computing the
neighborhood requires additional computational overhead.

Note that when using the Epanechnikov kernel, f̂S(q,O−) = 0 if for any

object o ∈ O−,
distS(q,o)2

h2
S

≥ 1. Correspondingly, LCS(q) = f̂S(q,O+)

f̂S(q,O−)
= +∞.

Given data set O (composed by O+ and O−), we denote by O+∞
E the set of ob-

jects whose maximum likelihood contrast, computed using the Epanechnikov
kernel, is infinity. That is, O+∞

E = {o ∈ O | ∃S s.t. LCS(o) = +∞}.

Let ℓG be the top-k contrast subspaces computed using the Gaussian k-
ernel, and ℓE be the top-k contrast subspaces computed using the Epanech-
nikov kernel. For each object q ∈ O, we discover the top-10 inlying contrast
subspaces and the top-10 outlying contrast subspaces of q using the Gaussian
kernel and the Epanechnikov kernel, respectively, and compute Sim(ℓG, ℓE)
in each data set. For subspaces whose likelihood contrast values are infinity
(LCS(q) = +∞), we sort them by f̂S(q,O+) in descending order. Tables 10
and 11 list the minimum, maximum and average values of Sim(ℓG, ℓE), as well
as the ratio of |O+∞

E | to |O|.

From the results, shown in Tables 10 and 11, we can see that the value of

Sim(ℓG, ℓE) is related to
|O+∞

E |
|O| . Specifically, the smaller the value of

|O+∞
E |
|O|

the more similar ℓG and ℓE are. For example, when mining inlying contrast

subspaces (Table 10), the values of
|O+∞

E |
|O| in BCW, CMSC, Waveform and

Wine are larger than 0.5, which is larger than the values of
|O+∞

E |
|O| in PID and

Glass, while the values of Sim(ℓG, ℓE) are lower in BCW, CMSC, Waveform
and Wine than those values in PID and Glass. When mining outlying contrast

subspaces (Table 11), we note that the values of
|O+∞

E |
|O| are less than 0.1 in

BCW, Glass and PID, while the values of Sim(ℓG, ℓE) in these data sets are
over 0.9.

Furthermore, we compute Sim(ℓG, ℓE) in O\O+∞
E for each data set except

CMSC, because for CMSC, O \O+∞
E = ∅. From the results shown in Table 12

(inlying contrast subspace mining) and Table 13 (outlying contrast subspace
mining), we can see that ℓG is more similar to ℓE without considering the
objects whose maximum likelihood contrast is infinity.



Title Suppressed Due to Excessive Length 29

Table 10 Similarity between top-10 inlying contrast subspaces using different kernel func-
tions in data set O (δ = 0.001)

Data set O
Sim(ℓG, ℓE) |O+∞

E
|

|O|Min Max Avg
BCW 0.168 0.980 0.539 590/683 = 0.864
CMSC 0.066 0.826 0.391 540/540 = 1.0
Glass 0.242 0.984 0.814 76/214 = 0.355
PID 0.620 1.0 0.924 1/768 = 0.001

Waveform 0.189 0.981 0.690 2532/5000 = 0.506
Wine 0.159 0.993 0.670 145/178 = 0.815

Table 11 Similarity between top-10 outlying contrast subspaces using different kernel func-
tions in data set O (δ = 0.001)

Data set O
Sim(ℓG, ℓE) |O+∞

E
|

|O|Min Max Avg
BCW 0.239 1.0 0.916 67/683 = 0.098
CMSC 0.174 0.926 0.614 540/540 = 1.0
Glass 0.358 1.0 0.906 16/214 = 0.075
PID 0.655 1.0 0.938 1/768 = 0.001

Waveform 0.364 0.998 0.820 894/5000 = 0.179
Wine 0.209 1.0 0.804 40/178 = 0.225

Table 12 Similarity between top-10 inlying contrast subspaces using different kernel func-
tions in data set O \O+∞

E (δ = 0.001)

Data set O \O+∞
E

Sim(ℓG, ℓE) |O \O+∞
E |

Min Max Avg
BCW 0.643 0.980 0.922 93
Glass 0.720 0.984 0.929 138
PID 0.620 1.0 0.924 767

Waveform 0.324 0.981 0.754 2468
Wine 0.527 0.988 0.904 33

Table 13 Similarity between top-10 outlying contrast subspaces using different kernel func-
tions in data set O \O+∞

E (δ = 0.001)

Data set O \O+∞
E

Sim(ℓG, ℓE) |O \O+∞
E |

Min Max Avg
BCW 0.561 1.0 0.934 616
Glass 0.629 1.0 0.925 198
PID 0.655 1.0 0.938 767

Waveform 0.437 0.998 0.836 4106
Wine 0.482 1.0 0.863 138

6 Conclusions

In this paper, we studied the novel and interesting problem of mining contrast
subspaces to discover the aspects in which a query object is most similar to a
class and dissimilar to another class. We demonstrated theoretically that the
problem is very challenging and is MAX-SNP hard. We presented a heuristic
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method based on pruning rules and upper and lower bounds of likelihood
and likelihood contrast. Our experiments on real data sets clearly show that
our method improves contrast subspace mining substantially compared to the
baseline method.

As future work, we intend to investigate the use of contrast subspaces for
improving the accuracy of supervised learning methods. It is also interesting to
consider using contrast subspaces to characterize a given data set. Moreover,
we will explore parallel computation approaches to improve the efficiency of
CSMiner, and extend CSMiner for complex data sets involving both nominal
and numerical values.
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