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Abstract

Cluster analysis has long been a fundamental task in
data mining and machine learning. However, traditional
clustering methods concentrate on producing a single solu-
tion, even though multiple alternative clusterings may ex-
ist. It is thus difficult for the user to validate whether the
given solution is in fact appropriate, particularly for large
and complex datasets. In this paper we explore the criti-
cal requirements for systematically finding a new clustering,
given that an already known clustering is available and we
also propose a novel algorithm, COALA, to discover this
new clustering. Our approach is driven by two important
factors; dissimilarity and quality. These are especially im-
portant for finding a new clustering which is highly infor-
mative about the underlying structure of data, but is at the
same time distinctively different from the provided cluster-
ing. We undertake an experimental analysis and show that
our method is able to outperform existing techniques, for
both synthetic and real datasets.

1. Introduction

As a fundamental data mining task, cluster analysis
is extremely important. However, traditional clustering
techniques focus on producing only a single solution,
even though multiple alternate clusterings1 may exist. It
is thus difficult for the user to validate whether the given
solution is in fact appropriate, particularly if the dataset is
large and complex, or if the user has limited knowledge
about the clustering algorithm being used. In this case, it
is highly desirable to provide another, alternative cluster-
ing solution, which is high quality, yet different from the
original solution. We illustrate the idea using two examples.

1A clustering is a set of clusters

Example A : Consider a mining task where multiple
sources of data are combined, such as the merging of sev-
eral protein datasets. Suppose a clustering exists for each
data source. After merging, it is possible that several al-
ternative clusterings might be present, each high quality,
yet dissimilar to the others. Using a standard algorithm,
it would be difficult, if not impossible, to extract more than
one of these clusterings directly from the integrated data.

Example B : When searching for documents, a typical
search engine may return a single clustering in which
documents are organized by their topical differences.
However, this may not provide the correct groups for the
task. If a search engine allows its users to ‘cluster again’,
by providing them a new clustering which categorizes
documents differently, users may find their answer.

These examples highlight the attraction of gaining
different perspectives of the data, which may then lead to
providing deeper insight of the data.

Challenges : The main difficulty of discovering high
quality and dissimilar alternate clusterings stems from the
unsupervised nature of cluster analysis and that there exists
no easy definition of what exactly a cluster is. This natu-
rally leads to clustering solutions being highly dependent on
the similarity function implemented by the particular algo-
rithm used [16]. As a result, if one is trying to find multiple
clusterings by just naively applying a number of different
clustering algorithms [22], the following difficulties present
themselves :

• An inability to know which algorithms to apply and
how many, hence a risk of clustering overload

• A risk of collecting highly similar clusterings

• The requirement of a compulsory post analysis to se-
lect the appropriate clusterings.



• A difficulty in quantitatively evaluating the degree of
(dis)similarity/quality for the candidate solutions.

• The inefficiency of running algorithms multiple times.

Indeed, naively trying different clustering algorithms is
crude and far from systematic, if the user is expecting to
gain different types of knowledge from the data. It may
exhibit random and unpredictable behaviour, where the ex-
traction process cannot be parameterized in a meaningful
way to control the outcome. Furthermore, we have found
that it is not just the naive approach which has drawbacks.
Even a current state-of-the-art technique [11] does not al-
ways produce convincing results for this problem.

In this paper, we propose a systematic technique called
COALA2, to retrieve a new clustering which is distinctively
different with respect to a pre-defined clustering that is pro-
vided as background knowledge. Our approach emphasizes
the twin objectives of quality and dissimilarity. We experi-
mentally show it can produce more accurate results than the
most recent work in the area.

1.1. Overview of Our Approach

We now overview our approach in COALA, looking
first at the dissimilarity requirement. We believe that the
‘uniqueness’ of each clustering is vital, if two or more
clusterings are to be shown to the user. This leads us to our
first requirement, the ‘dissimilarity requirement’.

Dissimilarity requirement : Given two clusterings C
and S, they can be presented as solutions if they are as
dissimilar from one another as possible.

Our algorithm addresses this requirement via the use
of instance-based ‘cannot-link’ constraints. This type of
constraint has been proposed in constraint clustering [24].
In essence, given an existing clustering, our algorithm
derives ‘cannot-link’ constraints and uses them to guide
the generation of a new, dissimilar clustering. While the
dissimilarity requirement addresses the issue of difference,
presenting them is meaningless if they are not of high
quality. Therefore, we impose a second requirement
concerning the clustering quality.

Quality Requirement : Given two clusterings C and S,
they can be considered as solutions if they are both high
quality clusterings.

With our approach, the quality requirement is implicitly
dependent on the distance function used by COALA to ag-
gregate the closest objects together. Quality is governed by

2Constrained Orthogonal Average Link Algorithm, where the term
‘orthogonal’ refers to dissimilarity.

a pre-specified ‘quality threshold’, denoted by ω, which de-
fines a numerical minimum bound on the quality required.
For our purposes, the quality of a clustering can be quanti-
tatively measured by use of the Dunn Index [7].

It is important to note that the two requirements can ex-
hibit an inverse relationship. Suppose C is the pre-defined
clustering, then if the quality of the new clustering S is in-
creased, the dissimilarity between C and S may decrease
and vice versa. For such a situation, the quality threshold ω
plays an important role in balancing the trade-off between
the two factors. Its influence on the two requirements will
be discussed further in section 5.4.

With the two requirements in mind, we can now specify
the target problem of our work as follows :

Problem definition : Given a clustering C (provided
as pre-defined class labels) with r clusters, find a second
clustering S with r clusters, having high dissimilarity to C,
but also satisfying the quality requirement threshold ω.

We illustrate our overall objective with respect to these
requirements in Fig. 1. Assume that the Fig. 1(a) was pro-
vided as background knowledge. If two alternate cluster-
ings 1(b) and 1(c) were to be presented by COALA, then
according to our problem definition, Fig. 1(c) would be se-
lected as a preferred solution since it has higher quality (cal-
culated by Dunn index) while it is also more dissimilar to
clustering 1(a) than the clustering 1(c) is to 1(a). Of course,
our problem definition can be extended to be more general
and this is discussed in the future work section 6.

Contributions : Overall, our main contributions in this
paper are as follows :

• We develop a novel algorithm, COALA, which incor-
porates automatically generated constraints to extract a
new clustering with respect to a given clustering. This
algorithm addresses both dissimilarity and quality re-
quirements for the new clustering. We experimentally
show it can outperform the state-of-the-art technique
called CIB [11]. Furthermore, unlike [11], it does not
require knowledge of a joint distribution for the data.3

• We offer the first (to our knowledge) combined quan-
titative measure of both quality and dissimilarity. This
can used to give an overall score for the new clustering
compared to the pre-defined one.

2. Related Work

Conditional Information Bottleneck : The most rele-
vant work in retrieving dissimilar clusterings is called con-

3Note that the extension to COALA, COALACat which handles cate-
gorical attributes actually requires the full dataset (much like CIB cluster-
ing in [11]). See section 4.1 for details.)



(a) Known clustering (b) Extracted clustering A (c) Extracted clustering B

Figure 1. Two possible alternative clusterings shown in 1(b) and 1(c), given the clustering 1(a) as
background information. All clusterings have 2 clusters.

ditional information bottleneck (CIB) [11]. The technique
uses the pre-defined class labels as additional information
with which an alternate clustering is found. The underly-
ing principal of this technique is based on information bot-
tleneck (IB) in [21]. The general idea of IB is that given
two variables (i.e. X representing objects, Y represent-
ing the features), the shared information between these two
variables are maximized while one variable is compressed
through another variable (i.e. C for clusters).

In [11], IB is extended by an introduction of another vari-
able (i.e. Z representing the pre-defined class labels) in
which the new objective is to find the optimal assignment
of X to C while preserving as much information about Y
conditioned on the information provided by the Z.

However, both IB and CIB methods must have joint dis-
tribution information for each variable which may not be
available all the time. Moreover, a lack of related techniques
has led to a limited comparison of the CIB method with any
alternatives techniques.

Our method, on the other hand, is fundamentally differ-
ent in its approach and ability to discover the second cluster-
ing. While in both techniques the background information
is provided, COALA automatically generates constraints
from the background knowledge provided while in [11], the
specific usage and processing of the additional information
are not specified. The CIB method can also be viewed as
performing ‘local-refinements’ to the provided clustering
and then merging the refined clusters to form a dissimilar
clustering [11]. In contrast, we use a cannot-link constraint
set to explicitly guide the clustering generation, giving more
accurate results, while allowing users to balance between
dissimilarity and quality through the quality threshold ω.

Clustering with background knowledge : A num-
ber of techniques have also utilized background knowl-
edge to guide their clustering process. In constraint clus-
tering [6, 24], knowledge is expressed as ‘must-link’ and
‘cannot-link’ constraints to produce more efficient and ac-
curate clusters. In [3, 13], negative information about unde-
sired structures or features is provided to ensure that clus-
tering process avoids these information and focusing on the

clusterings in ‘positive’ data. However, unlike COALA’s
automatic generation of constraints, these negative informa-
tion is presumed to be provided by a manual process.

Ensemble Clustering : Generating multiple clusterings
and merging them to offer a final consensus clustering is
the objective of ensemble clustering [10] which we briefly
described in the section 1.1. Ensemble clustering adopts
several clustering generation methods which all can be con-
sidered as a naive method. These clusterings are typically
generated by a) applying many algorithms, b) changing ini-
tial conditions of an algorithm and c) random samples of
data. For the reasons already stated in section 1.1, however,
these methods are unlikely to be effective in extracting high
quality, dissimilar clusterings.

Feature Selection and Subspace Clustering : Finally,
we note that feature-based methods, such as selecting cer-
tain features or applying dimension reduction methods are
not practical. As explained in [12], such an attempt may
cause useful information to be omitted and it is difficult to
select associated features in a very high dimensional space.
Furthermore, our method suggested here is different to the
idea of subspace clustering [18]. Although subspace clus-
tering uncovers a number of clusters from varying projec-
tions of features, the key difference is that we are discover-
ing a completely new clustering, rather than just individual
clusters. While it might be possible to create clusterings
from subspace clusters, it is not at all obvious how to deal
with problems such as subspace cluster overlap and dupli-
cation and we believe it to be a separate research issue.

3. Notations

Let D = {x1, x2, .., xn} be a set of n objects. Let C and
S represent two clusterings, each partitioning D into r clus-
ters (C = {c1, c2, ..cr} and S = {s1, s2, .., sr}). We will
typically use C to denote as the existing clustering that is
provided as background knowledge and S as the new clus-
tering retrieved by our technique with respect to C. Further,
we denote d(ci, cj) to be the distance between clusters ci

and cj .



Cannot-link Constraints : A cannot-link constraint is
a pair of distinct data objects (xi, xj) where i �= j. For a
clustering S to satisfy this type of constraint, the objects xi

and xj must not be in the same cluster.
In our method, a set of cannot-link constraints, L, is au-

tomatically generated from the provided clustering C, prior
to the actual clustering process of COALA (refer to Algo-
rithm 1). These constraints are used to ensure that given two
clusters si and sj of S, they cannot be merged if they con-
tain any pairs of objects which were from the same cluster
in C.

4. COALA

Underlying model : COALA is built upon an agglom-
erative hierarchical clustering algorithm. This kind of al-
gorithm typically starts by treating each object as a single
cluster and then iteratively merges a pair of clusters which
exhibit the strongest similarity. Upon each merge, the pair-
wise similarity between the newly formed cluster and each
of the remaining clusters is then re-calculated.

Distance (similarity) function : The similarity func-
tion of hierarchical algorithms can be one of many different
types (i.e. Euclidean distance, density, entropy) and meth-
ods (i.e. average distance, mutual information). Although
many of them are effective, we use the average-linkage
(AL) [23] algorithm to calculate the distance, because of
its accuracy and robustness. The AL technique determines
the similarity between clusters by calculating the average
distance of all pairwise objects between clusters.

Preliminary process : An important component of
COALA is the use of ‘cannot-link’ constraints to ensure that
the second clustering S is dissimilar from the given cluster-
ing C. These constraints are generated prior to the actual
clustering process and described in Algorithm 1). The algo-
rithm creates one cannot-link constraint, per pair of objects
which are in the same cluster in C4. We describe the role of
these constraints in the next part of COALA.

Algorithm 1 GenerateConstraints
Require: clustering C = {c1, c2, .., cr}, constraint set L =

{}
1: for i = 0 to r do
2: for j = 0 to |ci| do
3: for k = j + 1 to |ci| do
4: L = L ∪ addConstraint(xj , xk) {add object

pair (xj , xk) to the set L, where xj , xk ∈ ci}
5: end for
6: end for
7: end for

4Through an efficient use of data structures and set functions available,
one does not actually need to implement the algorithm exactly as written.

Merge candidate generation : Once the preliminary
step is complete, COALA proceeds in an agglomerative
fashion (algorithm 2), by first creating n clusters, with each
cluster ci containing a single object xi. The algorithm then
iterates until all objects are grouped together into one clus-
ter (line 2). At each iteration, COALA finds two candi-
date pairs of clusters for a possible merge, one denoted as
(q1, q2) (line 3), which we call a ‘qualitative pair’ and the
other denoted as (o1, o2) (line 4), which we call a ‘dissimi-
lar pair’. The qualitative pair is the one with the minimum
distance over all the pairs of clusters (ensuring the highest
quality clusters when merged). The dissimilar pair has the
minimum distance over all the pairs of clusters that also
satisfy the cannot-link constraints (these pairs may be the
same). COALA will select just one of these pairs to merge
(discussed shortly).

The purpose of finding the dissimilar pair, is to achieve
the dissimilarity of the clustering S, with respect to C, at
each merge step. If we assume that the points in the quali-
tative pair (q1, q2) were in the same cluster in C, then by
merging the dissimilar pair (o1, o2), we are avoiding the
same grouping structures as C and constructing a dissimilar
clustering S. Hence, if we continue to prefer the dissimi-
lar pair over the qualitative pair, then we are ‘progressively’
building a clustering S which is dissimilar from C.

However, it is actually infeasible to always merge the
dissimilar pair and at some point in the agglomerative
process, we reach a point where no clusters actually satisfy
the cannot-link constraints [5] in line 4. From this point on,
we proceed with merges of the qualitative pairs.

Merge determination : It is not ideal, however, to al-
ways select the dissimilar pairs for merging, as this ignores
the quality component. The ideal scenario would be to
merge a dissimilar pair, whose quality (or in our case, dis-
tance calculated by AL algorithm), is also reasonable. On
the other hand, regardless of how dissimilar the two clusters
are, if their quality is poor, then selecting the qualitative pair
would be more appropriate for the merge.

The quantitative determination of selecting which pair
to merge, is made by comparing the distance between the
qualitative pair d(q1, q2) against the distance between the
dissimilar pair d(o1, o2) and comparing the ratio against the
quality threshold ω (line 5) (which is a value between 0 and
1, and provided as an initial parameter to the algorithm).
The rationale behind this comparison is to assure that the
distance for the dissimilar pair is at least ω close to the
distance for the qualitative pair. Therefore, if the dissimilar
pair is too far apart with respect to ω, then it is more
appropriate to retain quality by merging the qualitative
pair. In fact, we can define two types of merges given two
candidates (q1, q2) and (o1, o2) :

Qualitative merge : qualitative merge is performed if



Algorithm 2 COALA
Require: dataset D = {x1, x2, .., xn}, quality threshold

ω, constraint set L, d(ci, cj) returns a distance between
clusters ci and cj

1: ci = {xi} ,∀i where 1 ≤ i ≤ n, ci ∈ C {C is a set of
clusters}

2: for k = |D| to 1 do
3: (q1, q2) = minDist(ci, cj)∀i, j

where 1 ≤ i, j ≤ n
{minDist finds a pair of clusters with minimum av-
erage distance, (q1, q2) is a qualitative pair}

4: (o1, o2) = minDist(ci, cj)
such that satisfyConstraint(ci, cj , L)
{(o1, o2) is a dissimilar pair}

5: if d(q1,q2)
d(o1,o2)

≥ ω then
6: cq1 = merge(cq1 , cq2) {move all objects in cq1 to

cq2}
7: remove(cq2) {cq2 is now redundant}
8: else
9: co1 = merge(co1 , co2)

10: remove(co2)
11: end if
12: end for
13:

14: function satisfyConstraint(ci, cj , L)
15: satisfy = true
16: for k = 0 to |ci| do
17: for l = 0 to |cj | do
18: if (xk, xl) ∈ L where xk ∈ ci, xl ∈ cj then
19: satisfy = false
20: break
21: end if
22: end for
23: end for
24: return satisfy

dq

do
< ω. This means that merging (o1, o2) is expected to

degrade the quality of S far more in relation to any dissim-
ilarity gained. Therefore, it is better to merge (q1, q2) in
order to retain quality of S.

Dissimilar merge : dissimilar merge is performed if
dq

do
≥ ω. This means that merging (o1, o2) is expected to

retain the quality of S, while at the same time achieving
dissimilarity from C.

Therefore, by specifying different values of ω, we can
control the degree of dissimilarity and quality. We illustrate
the above two types of merges in Fig. 2. Assume that the
current iteration step has generated two merge candidates -
(q1, q2) and (o1, o2) - where the first pair has the closest dis-
tance (the qualitative pair), while the latter is the closest dis-
tance pair which also satisfy the cannot-link constraints (the
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(a) qualitative merge
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(b) dissimilar merge

Figure 2. Comparing ‘qualitative merge’ and
‘dissimilar merge’. Figure 2(a) emphasizes
the similarity between two clusters with a
high ω value, while Fig.2(b) highlights merg-
ing dissimilar clusters led by a low ω value.

dissimilar pair). We assume that d(q1, q2) ≤ d(o1, o2) since
a qualitative pair is likely to have shorter distance than the
dissimilar pair whose distance depends on the constraints.

If ω was set to a relatively high value, then we are effec-
tively emphasizing quality for the clustering S more than
the dissimilarity. This means that in Fig. 2, d(q1,q2)

d(o1,o2)
may

not be greater than ω and therefore COALA does not select
(o1, o2) to merge. In other words, although this pair satisfies
the dissimilarity requirement via cannot-link constraints,
with respect to ω, the quality of the clustering would be
degraded too much. Thus COALA proceeds with the pair
(q1, q2) (qualitative merge in Fig. 2(a)).

In contrast, setting ω to a low value relaxes the quality
requirement and focuses more on the dissimilarity require-
ment. Therefore, the dissimilar pair (o1, o2) is more likely
to be chosen for the merge. We later investigate the influ-
ence of the threshold value ω, in our experimental analysis.

Overall, the behaviour COALA can be ‘tuned’ by the
user through different values of the threshold. Indeed, by
applying various ω values and by using quantitative mea-
sures of dissimilarity and quality, users can actually learn
whether the new clustering found is of any value. Of course
it is also quite reasonable for the user to use a default value
for ω. In fact, this is what we do in practice for our experi-
ments, setting ω = 0.6.

4.1. COALACat

Although similarity functions based on geometric dis-
tances work well for numerical data, it is often true that
datasets contain categorical attributes, whose values cannot
be naturally ordered in a metric space. Therefore, clus-
ter analysis of categorical values has been studied exten-
sively and there are numerous methods to handle the prob-
lem [4, 14]. The COALA algorithm faces a similar problem
with categorical attributes and in this section we show how
to modify our algorithm to handle this type of data.



The extended algorithm called, COALACat (COALA-
Categorical), and implements a similarity measure based
on the entropy of clusters, as introduced by the ACE al-
gorithm [4]. It was shown in [4], that ACE surpasses many
of the traditional categorical clustering algorithms in accu-
racy. Moreover, as the algorithm uses a bottom-up hierar-
chical method and has a simple, intuitive evaluation of clus-
ter entropy values, it is a good choice to use for extending
COALA.

The merge procedure of COALACat is identical to that
of COALA in Algorithm 2. However, its similarity function
is based on the overall expected information or entropy of
clusters. Extending the notation mentioned in section 3, let
us now consider dataset D = {x1, x2, .., xn} of n objects
described by r attributes {a1, a2, .., ar}. Let xi [aj ] refer to
the value of object xi on attribute aj . Assume that for each
attribute value aj (where 1 ≤ j ≤ r), aj takes a value from
its domain Aj . There are a finite number of distinct categor-
ical values in domain Aj and the number of distinct values
is denoted as |Aj |. Let p(xi [aj ] = v), v ∈ Aj , represent
the probability of xi [aj ] = v. The classical definition of
entropy for such the sample set D is as follows:

H(c) = −
d∑

j=1

∑

v∈Aj

p(xi [aj ] = v|D)log2p(xi [aj ] = v|D)

(1)
which calculates the amount of ‘expected information’ con-
tained in cluster C where we assume that xi ∈ c. The intu-
ition for the above function is that if two clusters have simi-
lar distributions of categorical values, then merging them to-
gether will not distort the H(c) dramatically, but combining
two dissimilar distributions causes higher distortion. Hence
at each iteration, a pair of clusters which has the minimum
amount of ‘information distortion’ is merged.

min∆H(cnew) = H(ci,j) − H(ci) (2)

The rest of the COALACat algorithm to find a high qual-
ity, dissimilar clustering with constraints using threshold ω
is identical to that of COALA. Finally, as mentioned in sec-
tion 1.1, COALACat requires the original dataset to mea-
sure the entropy values (much like CIB clustering in [11])
while COALA functions straight from the similarity associ-
ation matrix (for numerical attributes).

4.2. Quantitative Evaluation

Once a new clustering is found, it is important to evaluate
the dissimilarity and quality in a quantitative manner, and
we provide these measures in this section.

Dissimilarity : A number of measures exist for com-
paring similarity/dissimilarity between two clusterings. We
have chosen to use the Jaccard index [19], which is a well

known measure based on ‘pair-counting’ technique, that ob-
serves object-to-cluster assignments between two cluster-
ings. It is defined by the function below :

J(C,S) =
N11

N11 + N01 + N10
(3)

where N11 is the number of pairs of points in the same
cluster for both C and S and N00 measures the number of
pairs that are in different clusters in C and S. N01 and N10

are the number of pairs where a pair belongs to the same
cluster in one clustering, but not the other. This effectively
measures a ratio between the ‘agreement’ and ‘disagree-
ment’ between clusterings. Jaccard returns a value between
0 and 1, where a higher value indicates higher dissimilarity.

Quality : To quantitatively measure the quality of a clus-
tering, we employed a generalized Dunn index [7], which
has proved to be an effective measure in Bezdek’s experi-
ments [2] compared to others. It is defined as follows:

Dunn index : Let C = {c1, .., ck} be a clustering, δ :
C×C → R+

0 be a cluster-to-cluster distance and ∆ : C →
R+

0 be a cluster diameter measure, then Dunn index is

DI(C) =
mini�=j {δ(ci, cj)}
max1≤l≤k {∆(cl)} (4)

Higher values of the index indicate higher quality. For
COALACat which takes categorical values, we have calcu-
lated the average information distortion of each clustering,
instead of the Dunn index.

Overall Clustering Score : We also propose to com-
bine the two measures and provide an overall score on the
clustering generated. As mentioned earlier, the quality and
dissimilarity requirements may share an inverse relation-
ship which leads us to adapt a widely used metric called
F-Measure [15]. This has been traditionally applied to in-
formation retrieval systems, to coalesce the precision and
recall values and calculate the harmonic mean to act as an
overall score. This measure has also been used in [8], for
other clustering contexts. Following the definition of F-
Measure [15], we define the overall DQ-Measure as below.

DQ(C,S) =
2J(C,S)DI(C,S)

J(C,S) + DI(C,S)
(5)

where J corresponds to Jaccard index (dissimilarity) and
DI refers to Dunn index (quality). The DQ(C,S) works
well for our purpose, capturing the inverse relationship be-
tween two variables effectively and in our case, indicates
the validity of the clustering in terms of both dissimilarity
and quality requirements.

5. Experiments

For our experimental analysis, we have implemented two
competing approaches, the naive method and CIB [11], as



well as our COALA approach (and COALACat). The naive
method takes the clustering generation approach used in en-
semble clustering [10] which we described in section 1.1.
For our purpose, the behaviour of the naive technique is to
apply the k-means algorithm multiple times to the dataset,
with each application parameterized by different random
initial points. It is worth noting, however, that this naive
method does not exactly solve the problem of finding a new
clustering, given an existing one. Rather, it separately gen-
erates two clusterings from scratch. When comparing the
algorithms, we used Jaccard index, Dunn index and DQ-
Measure to compute dissimilarity, quality and overall score
respectively, for the new clustering retrieved.

Our experiments are organized as follows. Firstly, we
tested numerical datasets (synthetic and real world), to com-
pare COALA with the other two methods. Secondly, we
clustered categorical datasets with COALACat. Thirdly, we
investigated the inverse relationship between the dissimilar-
ity and quality. In all experiments, a default quality thresh-
old of ω = 0.6 was used, a value which we have found gives
effective results.

5.1. Synthetic Datasets

Four synthetic datasets were prepared for the experi-
ments. We constructed each dataset to contain two differ-
ent clusterings (similar to Fig. 1). The datasets, however,
differed in their dimensionality and also in the number of
clusters they contained (refer to Fig. 3).

(a) clustering A (b) clustering B
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Figure 3. Visual representation of some of the
synthetic data used.

For the naive method, we applied k-means algorithm
three times using different initial points (therefore generat-
ing three clusterings). By comparing pairwise clusterings,

we selected the two clusterings which returned the highest
DQ-Measure score. Since the naive method does not use
the background information, a clustering which is of higher
quality was selected as a ‘known’ clustering. Our objective
in this experiment was to validate whether the algorithms
are able to correctly extract the two clusterings included in
the dataset. The result of the experiment is shown in Fig. 4.

It can be seen that CIB and COALA all perform well by
finding the correct clustering when applied to these datasets,
with COALA performing slightly better, since a few points
were not clustered as expected with CIB. On the other hand,
the results clearly highlight the nature of naive method,
which does not correctly deduce hidden structures. The
only datasets for which it was able to find the expected clus-
tering were A and C. For dataset B, an incorrect clustering
was retrieved, while for D it retrieved the exactly same clus-
tering. This arises because the naive method is unable to
control the extraction process.

5.2. Real World Data

We also examined the performance of the three ap-
proaches on a number of real world data sets. Figure 5
shows the comparisons with four datasets (ESL, glass, ve-
hicle, ionosphere). These datasets already have pre-defined
class labels, which were supplied to COALA and CIB as the
existing clustering C to generate an alternative clustering S.

Figure 5 clearly shows that COALA outperforms its ri-
vals in all cases in terms of the overall DQ-Measure. For the
dissimilarity and quality of the retrieved clusterings (Fig.
5(a) and 5(b)), COALA extracts high quality clusterings
while its dissimilarity is also relatively high. The overall
DQ-Measure in Fig. 5(c) clearly indicates the superior per-
formance of COALA over the naive method and CIB.

The naive method again gives unstable results, for some
datasets it retrieves a clustering of reasonable dissimilarity
and quality (i.e. ESL) yet in other cases, it does not extract
any new information from data (i.e. ionosphere, where the
dissimilarity is actually zero).

Furthermore, when we studied further the new cluster-
ings returned by COALA, it was interesting and unexpected
to discover that in nearly all datasets, COALA actually ex-
tracted a clustering which was of higher quality than the
pre-defined clustering provided. Such a clustering can be
extremely valuable as it offers not only new information,
but better grouping structures underlying the data.

Finally, we can consider the new clustering found by
COALA as an additional way to group the data objects.
For example, in the dataset vehicle, the given class labels
organize vehicles into either ‘OPEL’, ‘SAAB’, ‘BUS’ and
‘VAN’ classes. However, these labels cannot highlight com-
mon properties shared by vehicles across different classes.
The additional clustering offered by COALA consists of
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Figure 4. Comparison of three algorithms applied to four synthetic datasets.
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Figure 5. Comparison of three algorithms applied to four real-world datasets.

new groups of vehicles which are somewhat at the ‘sec-
ondary level’, yet this still contains valuable information.
This can be also viewed as effectively emphasizing another
subset of features giving rise to a different clustering which
normally would not surface, because of a more dominant
clustering present on other features.

5.3. Experiments for COALACat

For COALACat, we used two categorical datasets -
‘vote’ and ‘breast-cancer’. Unlike the Dunn index, a low
value in the entropy-based quality measure indicates a good
clustering. Therefore, this value was appropriately normal-
ized ( |max+∆Q|

max ), where max is the upper bound and ∆Q
is the difference in average entropy values. The results are
shown in Fig. 6 and show that even for these categori-
cal datasets, COALACat is providing clusterings which are
highly dissimilar and of good quality, giving the better re-
sults overall compared to naive and CIB.

5.4. Impact of Quality Threshold ω

We described in sections 1.1 and 4 the inverse relation-
ship between the two requirements which is controlled by
the quality threshold ω. We now study the influence of this
threshold in more detail. We applied COALA to the real
world datasets - ‘ESL’, ‘glass’ and ‘vehicle - varying the
ω threshold value from 0 to 1. Figure 7(a) shows the in-
crease in the quality of clustering retrieved, as the threshold
increases, while Fig. 7(b) shows the decrease in the dissim-
ilarity between two clusterings as the threshold increases.

These figures support our definitions of qualitative merge
and dissimilar merge stated in section 4, where emphasiz-
ing one requirement effectively degrades the other. This in-
verse relationship is also supported by the decreasing slope
of ‘dissimilarity vs. quality’ graph displayed in Fig. 7(d),
7(e) and 7(f). While it is possible to try varying values of
threshold, we have found that in practice, setting ω = 0.6
offered the best results for both dissimilarity and quality.

Finally, as we will discuss in the following section, the
quality and dissimilarity measures themselves have limi-
tations and this could explain the occasional inconsistent
‘rises’ and ‘falls’ of the values in these graphs.

6. Discussions and Future Work

Advantages of COALA : Our experimental results indi-
cate that COALA is more effective than other approaches.
Also, while the current state-of-the-art technique CIB re-
quires the joint distribution, COALA only requires a sim-
ilarity function between pairs of points and uses a read-
ily available agglomerative hierarchical algorithm. More-
over, with cannot-link constraints and the quality threshold,
COALA is able to derive a clustering of high quality and at
the same time dissimilar from the existing clustering. We
have also extended COALA to handle categorical attributes
in COALACat which also produced more accurate results
over other methods tested.

Performance of COALA : Despite the flexible and intu-
itive clustering process, hierarchical algorithms are charac-
terized by a high complexity [17]. In COALA, generating
cannot-link constraints (algorithm 1) takes O(n2). The it-
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Figure 6. Comparison of three algorithms applied to two real-world categorical datasets.
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Figure 7. Dissimilarity, quality and overall score given by Jaccard index, Dunn index and DQ-Measure
respectively for three datasets as the quality threshold ω value changes.

eration and merge steps typically take O(dn2 + n2 log n)
where d is the cost of calculating the distance function.
Calculation of the distance function takes O(n2) complex-
ity followed by O(n2) selection steps, each having cost of
O(log n). Validating whether a pair of clusters satisfy con-
straints also takes O(N2) time. In a typical setting, where
we consider d to be constant, or very small w.r.t. log n, we
can simplify the overall process of COALA to O(n2 log n).

To overcome this high complexity, a number of exten-
sions have been proposed, such as using a new data struc-
ture called quad tree [9] or applying a parallel clustering
technique [20]. Furthermore, employing other more effi-
cient clustering models (i.e. partitioning algorithms - k-
means) may also enhance the performance and accuracy
of COALA. Moreover, selecting an appropriate distance
function remains as a non-trivial task. One might consider

more sophisticated methods which combine multiple func-
tions [16], or applying techniques to learn about distance
functions through various means [25].

Measuring Dissimilarity and Quality : In the experi-
mental section, we have used the Jaccard and Dunn indices
to evaluate the dissimilarity and quality of clusterings, but
these measures also have their drawbacks.

The Jaccard index is limited in only considering the
point-to-cluster assignments, while there are other factors
that could differentiate clusterings, such as cluster centroids
and density profiles [26]. Therefore, utilizing these various
factors can lead to more accurate comparisons.

Dunn index has been effective for measuring quality, but
it is known to be overly sensitive to outliers and prefers
compact and well-separated clusters [1]. In fact, we have
seen some inconsistencies in Fig. 7, where the increase in



the quality as the ω value increases is, sometimes not con-
tinuous. For future work, we would like to investigate other
measures for validating quality. Lastly, in our experiments,
we assumed that the alternate clustering has the same num-
ber of clusters as the pre-defined clustering. However, in
future, we would like to extend COALA to handle varying
numbers of clusters between the new and old clusterings.

Extraction of Multiple Clusterings : In this paper we
only considered a task of extracting a single alternate clus-
tering S, with respect to the given clustering C. However,
it is certainly possible for several clusterings to be present
in data and therefore, it would be useful to discover mul-
tiple alternate clusterings. Intuitively, extracting multiple
clusterings would be carried out by recursively applying
COALA while accumulating cannot-link constraints gen-
erated at each iteration. Of course at some point it would
not be ideal to continue generating new clusterings, as their
quality may dramatically decrease after all important rela-
tionships are exhausted from data.

7. Conclusion

We have described a new system, COALA, which gener-
ates a new clustering, with respect to a pre-defined, existing
clustering. This is an important problem which has not been
dealt systematically in previous work.

COALA addresses both dissimilarity and quality
requirements for the new clustering and we have experi-
mentally shown it outperforms other techniques. We also
offered a combined quantitative measure of both quality
and dissimilarity and showed that it is a reasonable and
effective way to evaluate clusterings. We described some
limitations of the current COALA system and identified a
number of interesting avenues for extension.
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