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ABSTRACT
Contrast data mining is a key tool for finding differences be-
tween sets of objects, or classes, and contrast patterns are
a popular method for discrimination between two classes.
However, such patterns can be limited in two primary ways:
i) They do not readily allow second order differentiation -
i.e. discovering contrasts of contrasts, ii) Mining contrast
patterns often results in an overwhelming volume of out-
put for the user. To address these limitations, this paper
proposes a method which can identify contrast behaviour
across both classes and also groups of classes. Furthermore,
to increase interpretability for the user, it presents a new
technique for finding the attributes which represent the key
underlying factors behind the contrast behaviour. The as-
sociated mining task is computationally challenging and we
describe an efficient algorithm to handle it, based on binary
decision diagrams. Experimental results demonstrate that
our technique can efficiently identify and explain contrast
behaviour which would be difficult or impossible to isolate
using standard techniques.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—Feature evaluation and selection

General Terms
Algorithms, Design

Keywords
Contrast patterns, Second-order contrast patterns, Group
contrast, Influential attributes, Emerging Patterns

1. INTRODUCTION
Contrast mining is a key tool for finding differences be-

tween sets of objects, or classes. For example, contrasting
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the class of people who are admitted to hospital versus the
class of people who are not admitted to hospital, might re-
veal that young children with diabetes are overrepresented
in the first class compared to the second. Mining of contrasts
can be useful in many situations, such as when comparing
sets of objects between different classes, comparing sets of
objects from different time periods, comparing sets of ob-
jects from different spatial locations, or comparing sets of
objects before and after some medical treatment. A well
known type of contrast pattern (which we term first-order
contrast) are the emerging patterns [2]. They represent com-
binations of attribute values that have a strong ability to
discriminate between two classes. However, existing con-
trast patterns are limited in two significant ways. Firstly,
they cannot identify second-order properties, that require
the mining of ‘contrasts of contrasts’. Such information is
useful for discovering how differentiating factors can vary
across groups. Secondly, an overwhelming number of pat-
terns is often output from mining. E.g. in the census data
set [6], millions of (first-order) contrast patterns that differ-
entiate males from females can be discovered, based on only
the first ten attributes in the data set. What is needed is the
ability to summarise the meaning of a set of (first or second
order) contrast patterns in a highly compact way.

Motivated by these two limitations, we address the fol-
lowing two challenges ’how do we discover and mine second-
order differences?’ and ’how do we identify to the user those
attributes which have the most impact with respect to a col-
lection of second order-differences?’ We propose two solu-
tions: i) A method that discovers the second-order differ-
ences between contrasts for one group of classes, compared
to contrasts for some other group of classes. This problem
differs from standard contrast mining scenarios, since one
needs to be able to compare across groups of classes, as well
as between classes. ii) A technique for ranking attributes,
based on their degree of influence within a collection of sec-
ond order differences. Such a ranking is far easier to inter-
pret by a user, compared to returning millions of patterns.
It aims to identify the key underlying factors responsible for
change across groups.

Second-order differences are meaningful in a number of
interesting situations. Two motivating examples are:

Example 1. In the census data set [6], one might wish
to ask ’what are the differences between males and females,
which are characteristic for one race group, but less char-
acteristic for another race group?’ Alternatively, consider
the domain of plant physiology [12]. Plant biologists would



Figure 1: First order differences within groups and
second order differences across groups

like to discover ’how does the response to a given treatment
differ between the tip and base of a leaf?’ First-order con-
trast mining discovers treatment contrasts, comparing leaf
samples which are given a treatment, against leaf samples
which are not given the treatment. Second-order differenti-
ation then compares treatment contrasts with respect to the
tip of the leaf, against treatment contrasts with respect to the
base of the leaf.

In answering the first part of our research question, we
introduce a class of second-order contrast patterns that we
will call the Group Discriminative Contrast (GDC)
patterns. They correspond to patterns of contrast that
strongly differentiate the classes in one group, but whose
discriminative power (i.e. ability to differentiate the classes)
in the other group is weaker. To explain further, consider
an example of a second-order contrast for the census data
set [6]. When comparing the differences between male and
female across two race groups, i.e. ’White’ and ’Non-White’,
some patterns are able to strongly discriminate males and
females if the individual belongs to the ’white’ race group,
but not if the individual belongs to the other race group.
Figure 1 provides a conceptual diagram explaining the rela-
tionship between the first-order and second-order contrasts.

Example 2. In the census dataset, 1.5% males and 0.4%
females in the ’White’ population satisfy the pattern ’older
than 60 years and worked in a durable manufacturing in-
dustry’. This shows that the rule consisting of age and the
industry can significantly contrast males from females in the
’white’ race group, since there are 4 times more males than
females for which the rule is true. However, this pattern
does not match any individual in the ’non-white’ population
and hence it is not a contrast for that group. We say this
pattern is a Group Discriminative Contrast pattern, since it
is a class contrast (between male and female) for one group
(‘White’), but it is not a class contrast for the other group
(‘Non-white’).

To answer the second part of our research question, we
propose a technique for finding attributes which represent
the underlying factors behind second-order contrast behaviour.
In particular, we identify influential attributes, whose values
can be used to find partitions of the original groups, such
that these partitions show significant differences in contrast
behaviour across the groups. Our work is motivated by the
work in [8] which shows that variation in values for certain
attributes may increase/decrease the discriminative ability

of some contrast patterns. How to assess the degree to which
an attribute is responsible in the discriminative ability of
contrast patterns has so far been an open question. The
number of contrast patterns is usually exponential in the
number of attributes, whereas the number of influential at-
tributes is smaller than the number of attributes.

Example 3. Recall the previous example. Suppose the
‘working industry’ of the individual is not included in the
pattern. In the ’White’ population group, 11.5% males and
15.2% females are 60 years old, or older, and in the ’Non-
White’ population group, 6% males and 10% females belong
to that age group. This shows that considering the age by
itself does not capture a strong contrast in either race group.
Moreover, the industry specification attribute has some de-
gree of group discriminative contrast influence, since when
combined with age information, it helps the differentiation
between males and females in the ’White’ group, but does not
help the differentiation in the ’Non-White’ group. Further-
more, if the industry attribute had a similar effect when com-
bined with many different patterns, we would rank it highly
in terms of overall attribute influence.

Challenges: A major challenge of our research is that it
is not obvious how one can develop a concept of second or-
der contrast that is simple, intuitive, and useful in practice.
Addressing this question is a key aim of the paper. On the
mining side, since we are discovering the patterns of second
order contrast, as well as the influence of each attribute in
those patterns, our mining task conceptually requires a re-
peated and potentially expensive exploration of the pattern
space for each possible attribute. It is thus important to be
able to push constraints deep into the mining process.

State of the art: Existing work in contrast mining [2, 15]
has addressed the problem of finding differences between two
classes, but it has not addressed the problem of finding dif-
ferences between differences, i.e. the second-order contrasts.
In regard to ranking how influential an attribute is, exist-
ing feature ranking techniques such as entropy or statistical
measures, purely focus on the ability of a single attribute
to determine a class label. They do not rank an attribute
based on consideration of its participation in multi-variate
behaviour, or on its ability to find subcategories that exhibit
interesting contrast behaviour. This can be very limiting
and may result in important attributes being overlooked.
e.g. Work in [9] has shown that attributes which are ranked
low according to entropy, may still be influential with re-
spect to a set of contrast patterns. Our technique can un-
cover such attributes, since the influence of an attribute is
measured with respect to its behaviour and participation
within combinations of contrast patterns.

This paper makes the following important contributions:

• This paper addresses two levels of contrast: i) the con-
trast between classes within a group, ii) the contrast
of those contrasts between groups. We introduce a for-
mal definition for a novel type of contrast pattern, the
Group Discriminative Contrast pattern, that differen-
tiates the classes within a group, and at the same time,
discriminates between the groups. Furthermore, we in-
troduce a new attribute ranking method that measures
the influence of an attribute with respect to its dis-



criminative power for second-order contrast patterns,
termed the Group Discriminative Contrast Influence.

• We propose a mining technique which can efficiently
explore the pattern space and mine the set of second
order contrasts, as well as rank the degree of influence
for each attribute within this set. Our algorithm is
based on the use of Weighted Zero-suppressed Binary
Decision Diagrams [11] and relies on a novel method
for embedding group discriminative constraints within
a prefix enumeration style framework.

• We experimentally evaluate our technique on real datasets,
and compare our attribute influential scoring method
against other classic feature ranking methods, such as
entropy and correlational techniques. Our experiments
demonstrate the efficiency of our mining technique and
also show that our approach is able to discover some
intuitively meaningful attributes, representing under-
lying influential factors that would be difficult or im-
possible to isolate using standard techniques.

2. PRELIMINARIES
Assume we have a data set D defined upon a set of k

attributes. For every attribute Ai, i ∈ {1, 2..k}, the domain
of its values (or items) is denoted by dom(Ai). Let I be the
aggregate of the domains items across all the attributes, i.e.
I =

Sk

i=1 dom(Ai). An itemset is a subset of I. Let p and q

be two itemsets. We say p contains q if p is a superset of q,
i.e. p ⊇ q. We require that an itemset can contain at most
one item from the domain of any given attribute.

The data set D can be projected to a multi-dimensional
space, where each attribute corresponds to a dimension in
this space, and an itemset corresponds to a subspace. The
projection of p on dimension A, denoted pA, is the item in
itemset p which belongs to the domain of attribute A, i.e.
pA = p∩dom(A). If pA 6= {}, then p is called an A-dependent
itemset, or p depends on the value of attribute A. Given an
A-dependent itemset p, q is the A-generalization of p if q

contains all items in p except the item which belongs to the
domain of attribute A, i.e. q = p \ pA.

Example 4. Let p1 = {x0, y1, z1} be an itemset that de-
pends on 3 attributes, where dom(A1) = {x0, x1}, dom(A2)
= {y0, y1}, and dom(A3) = {z0, z1}. The projection of p1 in
dimension A3 is {z1}, and its A3-generalization is {x0, y1}.

A dataset is a collection of transactions, where each trans-
action is an itemset. The support of an itemset p in dataset
D, i.e. support(p,D), is the fraction of the transactions in
D which contain p (0 ≤ support(p,D) ≤ 1). The support
function is monotonic, that is, for all itemset q such that
p ⊇ q, support(p,D) ≤ support(q, D) .

In the context of first-order contrast mining, a data set
contains a positive class, namely Dp and a negative class
namely Dn. The growth rate of an itemset p, denoted gr(p),
is the ratio between its support in Dp and its support in

Dn, i.e. gr(p) =
support(p,Dp)

support(p,Dn)
. For all itemsets q such that

p ⊇ q, if support(p, Dp) = support(q, Dp), then gr(p) ≥ gr(q),
and if support(p, Dn) = support(q, Dn), then gr(p) ≤ gr(q).
Given α and β threshold values, where 0 ≤ α ≤ 1 and
0 ≤ β ≤ 1, an itemset p is an emerging pattern (EP) [2]
if support(p,Dp) ≥ α and support(p,Dn) ≤ β.

3. GROUP DISCRIMINATIVE CONTRAST
In this section, we define the second-order contrast char-

acteristics between two groups of classes in terms of group
discriminative contrast patterns and group discrimi-
native contrast influential attributes, whose definitions
generalise previous work on emerging patterns (EPs). Con-
sidering the data in a multi-dimensional space, an EP be-
tween the positive and the negative class in a particular
group corresponds to a subspace that contains at least α

positive instances and no more than β negative instances
from that group. Such a subspace may have different con-
trasting ability between the classes in another group though.
Hence, before introducing our second-order contrast defini-
tions, we firstly introduce a formula for measuring the con-
trast strength of a pattern in a particular group, using a
function similar to one in [3] as follows.

Definition 1. Let G1 and G2 be two groups of classes.
Each group G, G ∈ {G1, G2}, contains a positive class and
a negative class. Given an itemset p and a group G, we re-
fer to the positive and the negative class in G, as Dp and
Dn, respectively. Let supportG(p,C) be the support of p in
class C in group G, and grG(p) be the growth rate of p in
group G. The contrast intensity of p in group G, de-
noted CIG(p, Dp, Dn), is the discriminative power between
the positive instances and the negative instances from group
G which are contained in subspace p, and is defined as a
function of the support and growth rate of p:

CIG(p, Dp, Dn) = supportG(p, Dp) ∗
grG(p)

1 + grG(p)

Let p and q be two itemsets, such that p ⊇ q. In a given
group G, the following monotonic properties hold between
their contrast intensities:

• if supportG(p,Dn) = supportG(q, Dn), then
CIG(p,Dp, Dn) ≤ CIG(q, Dp, Dn)

• if supportG(p,Dp) = supportG(q, Dp), then
CIG(p,Dp, Dn) ≥ CIG(q, Dp, Dn)

• if supportG(q, Dp) = 0, then CIG(q, Dp, Dn) = 0 and
CIG(q, Dp, Dn) = CIG(p, Dp, Dn)

3.1 Group Discriminative Contrast Patterns
In this sub-section, we will formally define Group Dis-

criminative Contrast (GDC) Patterns, which corre-
spond to subspaces that have strong contrast intensity be-
tween classes in one group, but they have relatively weaker
contrast intensity in the other group. Firstly though, we
define the following measurement for measuring how much
stronger a subspace is for differentiating the positive and the
negative class in one group than it is for differentiating the
classes in the other group. We refer to the first group as the
primary group, and the latter as the secondary group.

Definition 2. Let G1 and G2 be two groups of classes,
where G1 is the primary group and G2 is the secondary
group. Let Dpi and Dni be the positive and the negative
class in group Gi, respectively. The group-discriminating
power of a pattern p, denoted gCIDiff(p,G1, G2), is the
difference between the contrast intensity of p in group G1

and its contrast intensity in group G2.

gCIDiff(p,G1, G2) = CIG1
(p, Dpi , Dni ) − CIG2

(p,Dpi , Dni )



Figure 2: Subspace q is the generalization of sub-
space p in dimension A3, where pA3

= z1. A triangle
represents a positive instance, a circle represents a
negative instance, in the specific group

Example 5. Figure 2 (a) shows a subspace q in the pri-
mary group G1, which contains 6 positive instances and 5
negative instances. Suppose the total number of positive and
negative instances in each group, respectively, is 10. Hence,
we can calculate CIG1

(q) = 0.6∗ 0.6
0.6+0.5

= 0.33. Figure 2 (b)
shows the same subspace in the secondary group, G2, which
contains 5 positive and 6 negative instances. CIG2

(q) =
0.23. The group discriminating power of q, i.e. gCIDiff, is
0.10, which shows that the contrast intensity of q between
the positive and the negative class in group G1 is larger by
0.10 from its contrast intensity in group G2.

An itemset with a positive group discriminating power
corresponds to a subspace in which the contrast between
the positive and the negative class in the primary group is
stronger than the class-contrast in the secondary group. If
the difference of its contrast strength exceeds a given thresh-
old, then we call that itemset a Group Discriminative Con-
trast pattern, formally defined as follows.

Definition 3. Let p be a subspace that corresponds to
an emerging pattern in group G1. Given a positive mini-
mum threshold, δgdc, p is a group-discriminative con-

trast (GDC) pattern with respect to the primary group
G1, if its group discriminating power is at least δgdc, i.e.

gCIDiff(p, G1, G2) ≥ δgdc.

3.2 Group Discriminative Contrast Influential
Attributes

In this sub-section, we define a measurement, group dis-
criminative contrast influence, for measuring the re-
sponsibility (or influence) of an attribute in the set of group
discriminative contrast (GDC) patterns. To give an anal-
ogy, a subspace can be seen as a window which captures the
contrast intensity between the classes in each group based
on the instances which are contained in that subspace. The
attributes whose values are specified in the pattern corre-
spond to the dimensions of the frame of that window. As
one dimension is removed from, or added to a window, i.e.

the value of an attribute is generalized or specified, its con-
trast intensity may change due to the increase or decrease
in the relative number of positive and negative instances in
the new window. Such an increase of contrast intensity can
thus be used for measuring the responsibility (influence) of
an attribute in a particular pattern, which may vary be-
tween different patterns and different groups. Moreover, an
attribute has some influence in a pattern only if one of its
domain values is contained in the pattern, i.e. the pattern
depends on that attribute.

Hence, we formulate the following requirements for defin-
ing the scoring function that measures the group discrimina-
tive contrast influence of an attribute: i) aggregates the at-
tribute’s influence across all GDC patterns. ii) for each pat-
tern, measures the attribute’s contrast influence in the pri-
mary group. iii) for each pattern, measures the attribute’s
difference of contrast influence between the groups. We refer
to the influence of an attribute in a GDC pattern as its local
influence, and the group-discriminative contrast influence of
an attribute, or the influence of an attribute across all the
GDC patterns, as its global influence. In the remainder of
this section, we use the general term pattern for referring to
a GDC pattern, unless stated otherwise.

Definition 4. Given an attribute A, and a pattern p

such that p is A-dependent, the local influence of A in p,
denoted localInfluence(p, A,G1,G2), measures the attribute’s
group discriminative contrast (GDC) influence locally in sub-
space p. Given the set of all A-dependent GDC patterns, SA,
the global influence of A, globalInfluence(SA, A,G1, G2),
aggregates the GDC influence of A across all patterns in SA,
i.e. globalInfluence(SA, A,G1, G2) =

X

p∈SA

localInfluence(p, A,G1, G2)

If localInfluence(p, A, G1, G2) < 0, we say that attribute A

has a negative influence in p, as it shows that the inclusion of
attribute A weakens the group discriminating power of p. If
globalInfluence(SA, A, G1, G2) > 0, then A is a Group Dis-
criminating Contrast Influential Attribute, or GDC
Influential Attribute for short, which means that A-dependent
patterns exist, and the inclusion of dimension A strength-
ens the overall group discriminating power of those patterns.

An attribute’s local contrast influence in a group:
We now describe the measurement of the local influence of
an attribute in a subspace, based on the following definition
of contrast influence, that measures the gain in the contrast
intensity of the subspace, as a result of including that at-
tribute in its dimensions.

Definition 5. Given group G. Let Dp and Dn be the
positive and the negative class in G. Let A be an attribute,
p be an A-dependent pattern, and q be its A-generalization.
The local contrast influence of A in p is the contrast
intensity gained from its A-generalization.

CIGainG(p, A, Dp, Dn) = CIG(p,Dp, Dn) − CIG(q, Dp, Dn)

In the given group, a positive (resp. negative) CIGain of
attribute A in subspace p shows that specifying the value
of attribute A in p strengthens (resp. weakens) the class-
discriminating ability of subspace p. This can be used for



Input parameter(s) Appropriate group measurement Appropriate between-groups measurement

A pattern Contrast intensity (CI) Group discriminating power (gCIDiff)
A pattern + an attribute Contrast influence (CIGain) Group discriminating influence (gCIDiffGain)

Group discriminating influence ratio (gCIDiffGainR)
A set of patterns + an attribute GDC influence (globalInfluence)

Table 1: Measurement categorisation according to input parameters and group applicability

measuring the contrast influence of an attribute in the pri-
mary group (satisfying requirement 2 of the scoring func-
tion). However, it is a group measurement, which does not
tell us about the difference in influence of the attribute with
respect to the secondary group (requirement 3 of the at-
tribute’s influence scoring function).

An attribute’s local contrast influence difference be-
tween groups: The following formula measures the relative
local influence of attribute A, in terms of how much group-
discriminating power is gained as a result of specifying the
value of attribute A in a pattern.

Definition 6. Let p be an A-dependent pattern, and q

be its A-generalization. The group-discriminating influ-
ence of attribute A locally in p, denoted gCIDiffGain, is the
gain in the group discriminating power of p with respect to
its A-generalization. gCIDiffGain(p, A, G1, G2) =

gCIDiff(p, G1, G2) − gCIDiff(q, G1, G2)

Example 6. Recall the subspace examples in Fig. 2. In
group G1, CIG1

(p,Dp1
, Dn1

) = 0.42 and CIG1
(q, Dp1

, Dn1
) =

0.33. Thus, attribute A3 has a positive contrast influence of
0.09 in p. In group G2, attribute A3 has a negative con-
trast influence of -0.17. Thus, the group-discriminating in-
fluence of A3 is 0.50, i.e. gCIDiffGain(p,A3, G1, G2) =
0.33 − (−0.17) = 0.50, which shows that the inclusion of
attribute A3 in p increases the between-groups difference of
its ability to capture contrast between the classes.

Furthermore, gCIDiffGain(p, A,G1, G2) also measures how
much larger is the contrast influence of attribute A in the
primary group than its contrast influence in the secondary
group, locally in subspace p. Re-writing gCIDiffGain() in
terms of the contrast intensities of the subspaces, we have
gCIDiffGain(p,A, G1, G2)

= CIG1
(p) − CIG2

(p) − CIG1
(p \ A) + CIG2

(p \ A)
= CIGainG1

(p, A) − CIGainG2
(p,A)

Note: CIGi
(p) refers to CIGi

(p, Dpi ,Dni ), CIGainGi
(p,A) refers

to CIGainGi
(p,A, Dpi ,Dni ), where i ∈ {1, 2}.

Scoring function formulation: Let A1 and A2 be two
attributes. If A1 has a larger (resp. smaller) group discrim-
inating influence than A2, locally in a given pattern, the
contrast influence of A1 in the primary group is not neces-
sarily larger (resp. smaller) than A2. Thus, to satisfy both
requirement 2 and requirement 3 of the scoring function, we
further define the group-discriminating influence ratio,
denoted gCIDiffGainR, that measures the relative between-
groups difference of the influence of attribute A with respect
to its influence in the primary group, locally in pattern p:

gCIDiffGainR(p,A, G1, G2) =
|gCIDiffGain(p,A, G1, G2)|

CIGainG1
(p,A)

Note that the absolute value of the group discriminating
influence is used in gCIDiffGainR() to preserve the posi-
tive/negative sign of the attribute’s influence in the primary
group. Using this measurement, attribute A1 is more influ-
ential than attribute A2 if the between-groups difference of
contrast influence of A1 is larger than A2, relative to their
respective contrast influence in the primary group.

Finally, we can re-write the global group discriminative
contrast (GDC) influence, given an attribute A, and a set
SA which contains A-dependent GDC patterns, as:
globalInfluence(SA, A,G1, G2) =

X

p∈SA

gCIDiffGainR(p,A, G1, G2)

A positive global influence indicates that an attribute has
helped strengthening the overall group discriminating power
of the GDC patterns. Hence, such an attribute is a key fac-
tor in the contrast behaviour of those patterns. To find a
ranking of GDC influential attributes we sort the at-
tributes so that the attribute with the largest score of global
GDC influence is the most-influential attribute. Some of the
GDC patterns used for measuring the global influence may
correspond to overlapping subspaces. Overlaps cannot be
straightforwardly eliminated, since all GDC patterns may
potentially affect the contrast intensity of the subspace, as
well as the influence of an attribute in that subspace. It
is worth noting that overlaps are not necessarily problem-
atic though, since classifiers based on emerging patterns al-
low overlaps, but have still proven extremely successful (e.g.
[3]). More sophisticated techniques for handling overlaps are
beyond the scope of this paper.

Table 1 shows the characteristics of each measurement
defined in this section. The contrast intensity and group
discriminating power depend on only a single pattern, the
contrast influence and the group discriminating influence de-
pend on a pattern and an attribute. In terms of the group-
dependency, the contrast intensity and contrast influence
are within-group measurements as they depend on a single
group, whilst the group discriminating power and the group
discriminating influence are between-groups measurements.

4. MINING ALGORITHM
This section introduces our algorithm, called mineGDC,

which finds group-discriminative contrast (GDC) patterns
and their influential attributes. Before we describe our al-
gorithm in detail, let us consider a naive algorithm that con-
sists of three steps: i) find all the emerging patterns (EPs)
in the primary group; ii) apply the GDC constraint on those
patterns, i.e. calculate their contrast intensities; iii) for each
attribute, find the dependent patterns and calculate the at-
tribute’s influence in those patterns. This naive mining ap-
proach can suffer from significant redundancy, because not
all of the EPs satisfy the GDC constraint, and many pat-
terns depend on several attributes. Our technique integrates



those three steps and finds the GDC patterns while simul-
taneously calculating the influence of each attribute.

Mining challenges: Our mining task is challenging due
to three reasons: i) It explores both the pattern space (for
finding the GDC patterns) and the feature space (for find-
ing the GDC influential attributes). Since the feature space
has O(n) search space, where n is the number of features,
and the pattern space has O(2n) search space, performing
the search in both spaces can be space and computationally
expensive. None of the existing pattern mining or feature
selection techniques deal with both search spaces simulta-
neously, which is a noteworthy feature of our algorithm. ii)
Mining patterns with a GDC constraint is challenging be-
cause it depends on relative measurements of contrast inten-
sity differences and ratio across groups. Such a constraint
cannot be easily handled using the existing contrast pattern
mining techniques, such as in [10], as they can only han-
dle one positive and one negative class. iii) The influence
scoring function for an attribute depends on the contrast
intensity differences between each pattern and its general-
ization, and also the ratio of such differences across groups,
which increases the computational complexity.

We address those challenges using a compact and efficient
database representation, called a Weighted Zero-suppressed
Binary Decision Diagram (WZDD) [11], which is a directed
acyclic graph (DAG) data structure and has previously been
used for efficient frequent pattern mining. WZDDs are use-
ful for mining the second-order contrast, since they allow
compact representation and efficient manipulation of the
multiple classes and their intermediate projections.

Overview of mineGDC: To give a general overview, our
mining framework follows a prefix growth mechanism which
is typically used in the classical mining framework for find-
ing frequent patterns [11], and EPs [10]. It recursively grows
prefixes of the patterns and projects conditional databases
which contain subsets of the database which are relevant
to each prefix, allowing efficient support calculation. The
classical infrequent prefix pruning strategy for finding EPs
prunes a prefix (and its supsersets) if its support in the pos-
itive class is less than the minimum threshold. The exist-
ing framework cannot solve our mining challenges, since the
GDC constraint depends on 4 databases (i.e. two classes
from both groups). Our technique projects secondary databases
for all of those four classes for each prefix. To efficiently cal-
culate the GDC influence calculation for all attributes, the
global influence score is updated as soon as a GDC pattern
is found, for each attribute whose values are contained.

Based on the monotonicity of contrast intensity, if the
support of an itemset in the positive class is 0, then its con-
trast intensity and its supersets’ are also 0. Therefore, when
performing the conditional database projections, we order
the classes so that the negative class (from each group) is
projected only if the conditional positive class is not empty.

4.1 Weighted Zero-suppressed Binary Decision
Diagrams (WZDDs)

A Weighted Zero-suppressed Binary Decision Diagram [11]
(WZDD) is a DAG of labeled nodes and weighted edges. It
consists of one source node, multiple internal nodes, and two
sink nodes, sink-0 and sink-1, respectively. Each internal
node has two child nodes, and it may have multiple parent

(a) D1 (b) D2 (c) Identical nodes are
shared across D1 and D2

Figure 3: Examples of WZDD databases; D1 =
{abe(2),ace(1),ab(1)}, D2 = {bce(1),abc(2),be(1)}; Var.
ordering: a < b < c < d < e

nodes. The nodes are ordered so that the label of a node’s
children must be of higher index than the parent node. An
internal node N with label x, denoted N = node(x, Nx, Nx),
encodes the set of itemsets S, s.t. S = (x × Sx)

S

Sx,
where Nx encodes set Sx, and Nx encodes Sx. The op-
eration (x×Sx) denotes a set-multiplication between x and
Sx. Sink-0 encodes the empty set (∅); sink-1 encodes the
set of empty itemsets ({∅}). Each path to sink-1 repre-
sents an itemset in the database. The weight of N , denoted
weight(N), refers to the weight of the edge incoming to N

which represents the total support of the itemsets in S.
WZDDs merge all identical nodes for ensuring that each

node is unique (canonical), which is also enforced across mul-
tiple WZDDs. The efficiency of WZDD routines relies on its
caching mechanism which stores the result its intermediate
computations, so that the computed result can be re-used
if the computation is re-visited. Fig. 3(a) and (b) show two
WZDDs which represent two databases D1 and D2, that
contain itemsets (with their support values): D1 = {abe:2,
ace:1, ab:1}, D2 = {abc:2, bce:1, be:1}. The merged WZDDs
(in Fig. 3(c)) share the bottom node e. Solid lines link each
node N to Nx, and the dotted lines to Nx. Sink-0 nodes are
omitted from the illustrations in this paper.

4.2 Mining Second-Order Contrast With WZDDs
We will describe our mining algorithm as shown in Al-

gorithm 1. The input databases correspond to the classes
from both groups, represented as WZDDs. The positive
class in the primary group serves as the pattern generator,
since prefixes of the patterns are prefixes of the itemsets in
this class. Prefixes are recursively grown using the item in
the top node of the pattern generator. For each prefix, con-
ditional database projections are performed for each input
database, using the WZDD routines defined in [11] (line 3).
Once the current prefix item and its supersets have been
processed, the databases are reduced (line 4) to remove the
current item. Let x be the top-item which belongs to the
domain values of attribute A. Patterns which contain x are
found from the conditional databases (line 5-6), all of which
are A-dependent. Thus, the influence of attribute A can be
incremented immediately after all patterns that contain x

have been found (line 7-8), allowing the influence of all the
attributes to be found as the algorithm returns. Detailed ex-
planation about the influence calculation will be given later.

Once all patterns that contain the top-item have been
found, other prefixes are grown from the reduced databases
(line 9-10). The recursion terminates when the longest pre-



Algorithm 1 Mine GDC patterns and calculate the GDC
influence of each attribute
mineGDC( Dgen, [Dn1,Dp2, Dn2] )
Dgen : the generator data set, corresponds to the positive class
in group G1

Dn1: the negative class in group G1

Dp2, Dn2: the positive and negative classes in group G2.
All inputs are represented as WZDDs

1: x = the label of the top-node in Dgen.
2: D = a class in [Dgen,Dn1, Dp2,Dn2]
3: D(x) = x-conditional of database D.
4: D(x) = reduce database D by item x.

5: Grow prefixes which contain item x:
6: resx = mineGDC(Dgen(x), [Dn1(x),Dp2(x),Dn2(x)])

7: Update attribute influence from item x and the x-conditional
8: GDC patterns: calcInfluence(x, resx, G1, G2, G1(x))

9: Grow prefixes which do not contain item x:
10: resx = mineGDC(Dgen(x), [Dn1(x), Dp2(x), Dn2(x)])

11: Build the output node : result = node(x, resx, resx)
12: return result
13: Terminal cases:
14: Case 1: Dgen contains an empty itemset
15: pref = the prefix which projects the current data sets.
16: Check GDC-constraint on pref , using its support*
17: in each class
18: if (pref is a GDC pattern) then return sink-1
19: else return sink-0
20: end if
21: Case 2: Dgen is empty: return sink-0

(*): support(pref ,D) can be calculated using the WZDD rou-

tine: weight(Dpref ), where pref is an itemset and Dpref is its

conditional database.

fix for a particular candidate pattern has been found (line
14), or when the pattern generator is empty (line 21). For
each fully grown candidate pattern, let it be pref , the GDC-
constraint is checked (line 16-17) based on its support in each
class which is represented as the weight of the WZDD node
representation. To include pref in the final output node,
a sink-1 is returned (line 18), which incrementally builds
up the final output WZDD. Finally, the output node con-
tains the GDC patterns found from both the x-conditional
databases and from the reduced databases (line 11).

Updating an attribute’s influence: The procedure shown
in Algorithm 2 calculates the influence of attribute A in a
given set of A-dependent patterns, given all of those pat-
terns contain the particular item r which is an item from
the domain of A. The inputs are four databases, the first
two correspond to the r-conditional databases for finding the
contrast intensities of the patterns, the next two databases
correspond to the reduced databases which exclude item r

for finding the contrast intensities of the generalized pat-
terns. The framework is similar to the pattern growth frame-
work, which recursively projects conditional databases for
each class, but the projections are guided by prefixes of
the given patterns (line 1-8). The influence calculation is
performed when it finds the database projections for the
longest prefix of a particular pattern (line 11-21). Using the
projected conditional databases represented as WZDDs, the
contrast intensity and the contrast influence of the attribute
can be easily computed using the pattern’s support values
which correspond to the weight of the relevant WZDDs.

The efficiency of this procedure relies on the use of WZDD’s
caching mechanism which allows intermediate computations,

Algorithm 2 Calculate the GDC influence of item r in P

calcInfluence(r, P, [G1(r), G2(r),G1,G2]) :-
P : GDC patterns and their gCIDiff values
G1(r) = [Dp1(r), Dn1(r)]: r-conditional databases from group G1

G2(r) = [Dp2(r), Dn2(r)]: r-conditional databases from group G2

G1 = [Dp1, Dn1]: r-reduced databases from group G1

G2 = [Dp2, Dn2]: r-reduced databases from group G2

All inputs are represented as WZDDs

1: x = the label of the top-node in Dp1.
2: Gi = a group in [G1(r),G2(r), G1, G2]
3: Gi(x) = x-conditional of databases from DpGi

and DnGi

4: Gi(x) = reduce DpGi
and DnGi

in group Gi by x

5: Calculate influence of r in patterns which contain x:
6: calcInfluence(r, Px, [G1(r.x), G2(r.x), G1(x),G2(x)])
7: Calculate influence of r in patterns which do not contain x:
8: calcInfluence(r, Px, [G1(r.x), G2(r.x), G1(x),G2(x)]))
9: return
10: Terminal cases:
11: Case 1: P contains an empty itemset
12: pref = the itemset that projects G1(r), G2(r)

13: prefgen = the itemset that projects G1, G2, i.e. the
14: A-generalization of pref
15: Calc. gCIDiff for pref :
16: gCIDiffspec = CI(pref,G1(r)) - CI(pref, G2(r))
17: Calc. gCIDiff for prefgen:
18: gCIDiffgen = CI(prefgen,G1) - CI(prefgen, G2)
19: A = the attribute whose domain contains item r
20: Update the global GDC influence of attribute A:

21: influence[A] +=
gCIDiffspec−gCIDiffgen

gCIDiffspec

22: return
23: Case 2: P is empty:return

Note: CI(pref ,Gi) is calculated using the weight of the WZDD

nodes of the relevant classes,

such as projecting secondary databases, to be shared across
functions. So, the database projections performed in calcIn-
fluence() may re-use the cached results from the database
projections performed in mineGDC(), and vice versa, which
avoids redundant computations.

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

In this section we evaluate our method and the perfor-
mance of our algorithm for mining second-order contrasts.
Our algorithms were implemented in C++, using the WZDD
library routines developed in [11]. All experiments were con-
ducted on two Intel Xeon 3 GHz CPUs, 4 GB RAM, running
Solaris. We carried out experiments on two real UCI data
sets [6]: census and satimage. The objectives of our exper-
iments include: i) to compare the volume of GDC patterns
with emerging patterns (EPs), ii) to evaluate our proposed
GDC based attribute ranking by comparing it against other
methods; iii) to show that meaningful contrast influential
attributes can be discovered by our method; iv) evaluate
the runtime performance of our mining algorithm. In the
census data set, we choose to find the first-order differences
between male (as positive class) and female, and the second-
order differences between two race groups: ’White’, and the
other races (combination of all other races in the data set)
which we label as ’Non-White’.

Patterns volume comparison: Figure 4(a) shows the
number of patterns in the census data set using the first
20 attributes, with GDC-constraint: α = 1%, β = 0.5%,



and a varying δgdc, i.e. the minimum group discriminating
power. In the ’white’ race group, there are 5 million EPs.
When δgdc is very small, almost every EP is a GDC pattern.
As δgdc increases to 0.05, the number of GDC patterns drops
by roughly 10% from the EPs. We identify 17 GDC influen-
tial attributes in such a scenario (shown in Table 3a). The
satimage dataset has similar trends for the pattern volume
comparison (shown in Figure 4b). The number of GDC pat-
terns can still be overwhelming, but our technique can find
the attributes which help explain the second-order contrast
behaviour of those patterns, which we will discuss shortly.

Ranking comparison: The census data set contains sev-
eral household attributes and income attributes describing
census data from the year 1970. With threshold values
α = 1%, β = 0.5%, and δgdc = 0.05, we found 17 influen-
tial attributes for capturing group discriminative contrasts
with the ’white’ race group as primary group (Table 3a), out
of 20 attributes which are included in our experiment. To
evaluate our attribute ranking, we compare it against other
rankings which are based on entropy measure [5], and the
statistical Pearson’s correlation measure.

The entropy-based ranking is based on the information
gain of an attribute, which measures its ability to improve
class discrimination. The columns in Table 4 show the info
gain of each attribute in each group, and the info-gain dif-
ference across the groups, labeled IGDiff. Attributes group-
quarter-type (i.e. the type of housing) and marital-status
appear in the top-5 attributes in our GDC based ranking as
well as in this entropy-based ranking. It shows our technique
is able to identify such attributes whose male-vs-female dis-
crimination ability is stronger in the ’white’ group than their
discrimination ability in the other group. Group quarter and
farm attributes, which are highly ranked by entropy, how-
ever, are not identified by our method. It suggests that
patterns containing those attributes have weak group dis-
criminating contrast influence. If we look closer at their info
gain differences, the values are actually very small, which
means that there is no significant difference of their class dis-
crimination ability across the groups, explaining why they
are not identified by our method. Our attribute ranking
identifies other influential attributes which have low ranks
in the entropy-based ranking, which shows the ability of the
GDC based ranking to identify the interdependency between
multiple attributes, whereas an entropy measure treats each
attribute independently. Later in this section, we will show
a more interesting result regarding those attributes whose
entropy-based ranks are lower than their GDC-based ranks.

The top-10 attributes found using a correlation measure
are listed in Table 5. For each attribute, Corr(g) is the
Pearson’s correlation coefficient between the values of that
attribute in the positive class and the values of that attribute
in the negative class in group g. A large correlation value
indicates that an attribute is a poor class-discriminator in
g, because its values vary closely between the classes. The
score of correlation difference between groups, denoted Cor-
rDiff = Corr(G2) - Corr(G1), measures how much an at-
tribute correlates with the classes in the secondary group,
but does not correlate with the classes in the primary group.
The most influential attribute in our ranking(see Table 3a),
i.e. group-quarter-type, has a negative correlation difference
score, meaning that it is a weaker class discriminator in the
primary group compared to the secondary group. Like the

entropy measure, this result shows that a correlation mea-
sure does not to identify the interdependency between mul-
tiple attributes, which can be identified by our method.

A meaningful discovery: The attributes which are influ-
ential for capturing GDC patterns when the ’white’ race is
chosen as primary group are shown in Table 3a. The GDC
influential attributes when the ’non-white’ race is chosen as
primary group are shown in Table 3b. Attributes that have
positive global GDC influence for one race group but have
zero or negative influence in the other group are marked by
asterisks (*). Interestingly, the first two attributes, group-
quarter-type, (i.e. type of housing), and num-of-families-in-
household, are the top-2 attributes in both groups, suggest-
ing that they have an equally high importance for finding
group-discriminative male-vs-female contrast in each group.

Based on the GDC based ranking for each race group, at-
tribute monthly-rent appears to be influential only for the
’white’ race and not for the other race group. Since it does
not appear in the top-5 attributes in the other rankings (i.e.
entropy-based and correlation-based), it shows that when
considered individually, it does not differentiate the male
and female differences across groups. However, our ranking
suggests that monthly-rent can help capture the group dif-
ferences when it is combined with some other attribute(s)
within GDC patterns. To give a specific example, we found
that specifying monthly rent in the following rule:

’do not live with a spouse, and monthly rent > $125,’

increases the between-groups difference of this rule’s male-
vs-female discriminating ability. Based on this rule, some-
one who does not live with a spouse and pays high monthly
rent, is more likely to be a male in the ’white’ race group, but
without considering monthly rent, it is equally likely that the
individual is a male or a female, in either race group. This
example shows that a GDC influential attribute can help
identify important sub-categories (corresponding to GDC
patterns) in the population, such as a category of people
who do not live with a spouse and pay high monthly rent,
in which there is a strong differentiation between male and
female in the ’white’ race group but there is not a strong dif-
ferentiation between male and female in the other group 1.

Time performance of mining algorithm: We measure
the runtime performance of our algorithms for mining the
GDC patterns and their influential attributes in the census
and satimage data sets, with a varying minimum group dis-
criminating power threshold, δgdc. Table 2 shows the class
sizes in each data set. We implemented 2 algorithms: i)
naive: a two-phase algorithm which finds the GDC patterns,
then for each attribute, calculates its influence by project-
ing the relevant patterns. ii) mineGDC: the algorithm de-
scribed in Sec. 4.3 which simultaneously finds the influential
attributes in the pattern mining phase. Figures 5a and 5b
show the runtime for each algorithm from the two datasets.
When δgdc is high, there exist only a few patterns, for which
both algorithms have similar runtime. As δgdc decreases, the
mineGDC algorithm can achieve up to 4 times speed up than
the naive algorithm, since mineGDC visits patterns which

1This rule corresponds to our intuition since it is likely that
there are much more white people who pay high rent than
non-white people, hence, the amount of rent is more useful
for discriminating male and female in the white population
than it is for the non-white population.



Data set Group 1 Group 2
Positive class Negative class Positive class Negative class

Census White.Male (2957) White.Female (3089) Not-White.Male (448) Not-White.Female (525)
Satimage C1 (1072) C7 (1038) C2+C3 (1440) C4+C5 (885)

Table 2: Class sizes in each data set
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Figure 4: Comparison between the number of GDC
patterns and emerging patterns
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Figure 5: Runtime comparison between mineGDC

algorithm and naive algorithm

Rank Att.name GDC influence
1 group-quarter-type 38408.1
2 num-of-families(in-household) 38408.1
3 monthly-rent* 36215.1
4 relationship-to-householder 35590.2
5 marital-status* 24987.3
6 house-ownership* 24971.6
7 mother-location(in-household)* 23022.3
8 father-location(in-household)* 15495.5
9 age-of-eldest-child(in-household) 11012.2
10 family-total-income* 7033.2
11 spouse-location(in-household) * 5756.4
12 age-of-youngest-child(in-household) 4424.0
13 num-of-fathers(in-household) 1171.1
14 family-size* 275.6
15 family-unit 119.8
16 age 119.2
17 house-value* 2.5
18 num-of-couples(in-household) 0.0
19 farm 0.0
20 group-quarter 0.0

Rank Att.name GDC influence
1 num-of-families(in-household) 872.8
2 group-quarter-type 871.3
3 num-of-fathers(in-household) 315.1
4 father-location(in-household) 313.5
5 relationship-to-householder 300.0
6 num-of-couples(in-household)* 54.9
7 age-of-eldest-child(in-household) 11.6
8 age 4.3
9 family-unit 4.0
10 age-of-youngest-child(in-household) 2.3
11 marital-status 0.0
12 family-size 0.0
13 spouse-location(in-household) 0.0
14 mother-location(in-household) 0.0
15 family-total-income 0.0
16 monthly-rent 0.0
17 house-value 0.0
18 house-ownership 0.0
19 farm 0.0
20 group-quarter 0.0

(a) ’white’ race as primary group (b) ’non-white’ race as primary group

Table 3: Attribute ranking by GDC (global) influence (a) with ’white’ race as the primary group, and (b)
with ’non-white’ race as the primary group; Attributes with 0 GDC influence scores do not appear in any
GDC pattern in the given group; Attributes marked by (*) have positive GDC influence in at most one group

Rank Att.name IG(G1) IG(G2) IGDiff
1 marital-status 0.973 0.952 0.021
2 group-quarter-type 0.995 0.983 0.012
3 house-ownership 0.999 0.988 0.010
4 group-quarter 0.999 0.989 0.009
5 farm 0.999 0.995 0.005
6 num-of-fathers 0.999 0.995 0.004
7 num-of-families 0.999 0.995 0.004
8 monthly-rent 0.999 0.995 0.004
9 house-value 0.999 0.995 0.004
10 age-of-youngest-child 0.999 0.995 0.004

Table 4: Attribute ranking by group information
gain (IG) difference; G1=’white’ race group, G2 =
’non-white’ race group

Rank Att. name Corr(G1) Corr(G2) CorrDiff
1 num-of-families -0.006 0.158 0.164
2 age -0.005 0.099 0.104
3 mother-location -0.007 0.086 0.094
4 family-size -0.020 0.054 0.075
5 father-location 0.008 0.046 0.039
6 marital-status -0.009 0.025 0.034
7 house-value -0.018 -0.004 0.015
8 farm -0.002 0 0.002
9 family-unit -0.009 -0.015 -0.006
10 monthly-rent -0.008 -0.015 -0.007

Table 5: Attribute ranking by group correlation dif-
ference; G1 = ’white’ race group, G2 = ’non-white’
race group



are shared by numerous attributes only once. This shows
that the attribute’s influence calculation can be performed
efficiently using our technique, as WZDD allows multiple re-
use of intermediate database projections when finding the
patterns and calculating the influence of the attributes.

6. RELATED WORK
Our method for measuring an attribute’s influence is pat-

tern based, which has not been addressed in previous work.
Existing feature selection techniques have a common objec-
tive of finding attributes which are most relevant to the data
classification. Entropy [5] based techniques measure the
class discriminating ability of an attribute independently of
the other attributes. A recent work [7] proposes a correlation-
based technique for finding a set of features which have high
inter-correlation among themselves, and low correlation with
the other features. Their method for measuring the signif-
icance of an attribute-set may be used for measuring the
discriminating ability of an attribute in first-order contrast
as well as second-order contrast. The difference, however, is
that our model can identify subspaces, instead of the entire
data space, in which second-order contrast occurs.

Group discriminative contrast patterns being identified in
this paper correspond to subspaces of high class-contrast in
the primary group and low class-contrast in the secondary
group. Mining interesting subspaces has been previously
studied for solving other data mining problems, such as in [1]
for finding outliers in high-dimensional data sets. However,
there has not been any work which addresses the problem of
second-order differentiation. Work [13] addresses the prob-
lem of finding contrast sets, which are first-order contrasts
between multiple groups (i.e. classes) of data instances.

Work in [2, 15], proposed techniques for finding (first-
order) contrasts between classes. Moreover, work in [14]
studies a technique for comparing frequent patterns between
classes, which may be extended to comparing contrast pat-
terns between groups. However, their method cannot iden-
tify the influence of each attribute that causes the differ-
ences, which is a novel aspect of our technique. Previous
work in [4] uses χ2-test to measure the significance of an
item in the discriminating power of an emerging pattern.
Such a measure may be used for measuring the attribute’s
local influence in a pattern in a given group of classes, but
unlike our method, the χ2 measure is independent to which
class is chosen as the positive (or negative) class.

7. CONCLUSION AND FUTURE WORK
To conclude, we have introduced a method for finding

attributes which are influential for capturing contrast be-
tween classes in a group, as well as the (second-order) con-
trast across groups, which we call group discriminative con-
trast (GDC) influential attributes. Our experiments showed
that our method can overcome the limitation of classical at-
tribute selection techniques, which do not take into account
the inter-dependency between multiple attributes which may
vary between patterns, and across groups. Using our method,
moreover, an influential attribute can help explaining the
key underlying factors of the contrast behaviour that is found
in certain data sub-categories, instead of considering the en-
tire data as in other classical feature selection techniques.
We proposed a mining algorithm based on the use of a DAG
data structure, namely the Weighted Zero-suppressed Bi-

nary Decision Diagram, which explores both the pattern
space and the feature space simultaneously, and allows com-
pact representation and efficient projections of multiple data-
bases. For future work, variations for the attribute’s influ-
ence measurements may be interesting to investigate,and ex-
ploring the usefulness of the influential attributes for solving
multiple-class classification problems.
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