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21.1 Introduction
Clustering is one of the most fundamental and important techniques in knowledge discovery and

is used in a wide variety of fields, ranging from biomedicine and information retrieval, to financial
analysis and Web mining. Clustering analysis provides a way to automatically identify patterns and

533



534 Data Clustering: Algorithms and Applications

relationships in complex data, to form hypotheses about its structure, and to make predictions for
sub classes of objects.

There exist a large variety of knowledge discovery workflows that rely on clustering. In its basic
form, clustering analysis is used to explore a complex dataset, by automatically identifying object
groupings. Given an input dataset for analysis, a clustering algorithm, such as k-means, can be
executed, producing a clustering as output. This output clustering consists of a set of clusters which
partition the objects in the dataset.

It is well known that the process of clustering is subjective and the clustering that is output is
strongly dependent on the nature of the specific clustering algorithm chosen. Indeed, vastly different
outputs may be possible if one changes the clustering algorithm, or varies the parameters input to a
fixed algorithm. Alternative outputs are also possible according to different pre-processing methods
for the input, such as when applying a feature selection step.

This inherent subjectiveness and instability of clustering is widely recognised and has provided
impetus to the emerging area of multiple clustering analysis. The philosophy here, is that making
the assumption that only a singe clustering exists for a dataset is too strict. Instead, one should
expect that multiple alternative clusterings are reasonable for a dataset. Each one of these alterna-
tives corresponds to a different grouping of the objects and reflects a different perspective, view, or
hypothesis about the nature of the data.

Why might multiple clusterings be reasonable for the same dataset ? Firstly, the data being anal-
ysed could be very complex, containing many features, which may be of different types. Different
combinations of these features (or subspaces) may provide natural alternative perspectives of the
data. The data might also consist of many instances, meaning a diversity of possible sub popula-
tions, resulting in many possible views. Secondly, the data could be temporal in nature and evolving
over time. As the data evolves, concept drift can occur, meaning that different groupings of the data
become stronger or weaker. Thirdly, the data may be spatial in nature, meaning that the different
perspectives have a spatial origin. Fourthly, the data objects may be diverse, due to datasets being
merged or information having been integrated from multiple sources (e.g. a large clinical cohort
study that pools data from multiple sites). Again, this may mean that multiple perspectives of the
data are necessary and natural for knowledge discovery, rather than relying on just a single perspec-
tive.

Given that multiple clusterings or views of the data are possible, it is therefore also important to
consider why they may be important for a user. Firstly, clustering analysis is frequently exploratory
in nature. A user often does not know what behaviour they are looking for. What they need, is to
navigate through and assess multiple alternatives, so they can evaluate different options. Conversely,
the user may have a strong hypothesis (clustering) in mind and desire to verify that no other strong
hypotheses are supported by the data. Secondly, users themselves can differ widely in their require-
ments and expectations. It is therefore unlikely that a single clustering will be appropriate for all
users. Thirdly, a common scenario in data mining studies is that the investigation focuses on a new
or novel clustering algorithm and it is necessary to test the flexibility and limits of this proposed
algorithm, to assess how many alternatives it is able to identify.

Due to these reasons, the area of multiple clustering analysis has been attracting considerable
attention. Indeed several recent workshops have been devoted to the topic [25, 26, 27, 34, 24]. The
literature in the area is also growing fast, with a number of algorithms proposed, which particularly
focus on the problem of generating alternative clusterings, that are each of high quality and also
dissimilar to one another [14, 15, 13, 5, 29, 37, 2, 3, 8, 7, 30, 31, 21, 10, 9].

The focus of this chapter is to review algorithms for generating alternative clusterings, which is
one of the prime tasks in the field of multiple clustering analysis. We also highlight connections to
the areas of multiview clustering and subspace clustering, which are distinct, yet closely related. In
multiview clustering, the aim is to learn a single clustering using multiple sources (representations)
of the data [4, 19, 35, 6, 22, 16]. These sources usually contain the same set of objects, but with
different features. In subspace clustering, the aim is to discover different subspaces, where each sub-
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space contains a good cluster (as opposed to clustering). (See Chapter AAA for more on subspace
clustering methods).

An outline of the rest of this chapter is as follows. In Section 21.2, we present necessary ter-
minology and definitions. In Section 21.3.1, we present a taxonomy of alternative clustering tech-
niques and discuss different dimensions of evaluation. In Sections 21.3.2, 21.3.3, 21.3.4 and 21.3.5,
we review specific approaches for alternative clustering. In Section 21.4, we compare the areas of
multi view clustering and subspace clustering to alternative clustering and identify similarities and
dissimilarities. In Sections 21.5 and 21.6 we outline future directions and conclude.

21.2 Technical Preliminaries
Let D be a dataset containing N objects o1, . . . ,oN and using n features F1, . . . ,Fn. A (hard)

clustering1 C is a partition of the objects in D into k clusters {c1, . . . ,ck}, where each cluster is a set
of objects and ci ∩ c j = /0. Let the universe of all clusterings of D be denoted as CD . We will also
use the notation Ci to refer to cluster ci of clustering C.

The quality of a clustering may be measured using a function Qual : CD→ [0,1] where higher
values indicate higher quality. A large range of quality measures have been defined, with some well
known examples being the Dunn Index [12], the David Bouldin Index [11] and the Silhouette Width
[33].

Let C1 = {c1, . . . ,ck} and C2 = {c′1, . . . ,c′k′} be two clusterings of D. The similarity between
C1 and C2 may be measured using a function Sim : CD×CD→ [0,1] where higher values indicate
higher similarity. For measuring similarity, there are a number of possible measures, including the
Rand Index [32], Adjusted Rand Index [20], Jaccard Index [17], Normalized Mutual Information
[23] and Adjusted Mutual Information [36]. Measurement of similarity between clusterings is im-
portant, since it provides insight for the user into the relationship between them. When managing
multiple clusterings, assessment of similarity may allow removal of redundant clusterings, selec-
tion of interesting clusterings, or increased understanding about clustering evolution. It is also a key
step when exploring the convergence properties of a clustering algorithm or assessing its output
compared to an expert generated clustering.

Given the large range of measures that can be ‘plugged in’ for measuring quality and similarity,
appropriate choices are often be made in an application dependent way. We will shortly describe the
issues involved in generating alternative clusterings and the different dimensions along which the
existing algorithms may be compared. A general description of the task is as follows:

Definition 21.2.1 Generalized Alternative Clustering: Given a (possibly empty) collection of clus-
terings K = {C1, . . . ,Cm} provided as background knowledge (either K = /0, or K %= /0 and m ≥ 1),
generate j alternative clustering(s) O = {Cm+1, . . . ,Cm+ j}, such that i) ∑m+ j

i=m+1Qual(Ci) is maxi-
mized and ∑i, j∈[1,m+ j] sim(Ci,Cj) is minimized.

The task here corresponds to generating a set of new (alternative) clusterings, where each in-
dividually is of high quality and also the pairwise similarity between the clusterings is low (the
clusterings are distinctive). Three common cases are:

• |K|= 1 and |O|= 1: singular alternative clustering

• K = /0 and |O| = 2: clusterings in O are generated in parallel: simultaneous alternative clus-
tering

1It is also possible to use fuzzy clusterings as the basis for development, but the literature on alternative fuzzy clustering
is less mature and we concentrate on the hard case.
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• |K|> 1 and |O|= 1: sequential alternative clustering

In the next section, we consider the ways in which the behaviour of alternative clustering algo-
rithms can be explained and specified.

21.3 Multiple Clustering Analysis using Alternative Clusterings
In this section, we will first review the different dimensions that may be used for assessing the

behaviour of alternative clustering algorithms. We then describe in detail the different approaches,
broken down according to style of technique.

21.3.1 Alternative Clustering Algorithms: A Taxonomy
Alternative clustering algorithms (ACAs) may be characterized in a range of different ways. We

review the different options in turn.

Format of the input: The input to an ACA consists of the dataset to be clustered, which may be
represented as feature valued instances, or by a similarity matrix for all pairs of objects. A tech-
nique might additionally require features to be either continuous or discrete. In addition to these,
the input may optionally include background knowledge, which is a single existing clustering or a
collection of two or more existing clusterings that are already available. It is not specified where
the background knowledge comes from, it might come from the application of a standard clustering
algorithm, or from user insights.

Format of the output: The output can consist of a single alternative clustering or two or more
alternative clusterings. Some algorithms may place constraints on the number of clusters in each
clustering (e.g. must be equal), or may require that the number of clusters in the output matches
with the number of clusters in the clustering that is input as background knowledge. Also, the
output may either consist of an entire (alternative) clustering, or a partial alternative clustering. The
latter is useful if the user only wishes to change some characteristics (clusters) of the clustering(s)
being used as background knowledge, while keeping other characteristics the same.

Style of output generation: If more than one alternative clustering can be output, is each alter-
native generated one at a time in a greedy fashion (sequential generation) or are all alternatives
generated in parallel (simultaneous generation) ? The latter may produce a more globally optimal
solution. However, the former may be more realistic when one or more existing clusterings exist. It
might also identify some strong clusterings which would be missed by a simultaneous generation
technique.

Style of Technique: This describes the overall process of alternative clustering generation. One
class of techniques is unguided generation, where no background knowledge is used for generation
of alternatives. The other class of techniques is guided generation, where background knowledge is
used as input and explicit effort is made to ensure dissimilarity between new clusterings and existing
ones specified in the background knowledge. Guided generation techniques can be further broken
down, according to whether the technique i) relies on the use of inferred constraints to generate
alternatives (constraint based), or ii) operates by generating feature spaces which are orthogonal
to the existing feature space and to each other (orthogonal feature space transformation) . Such
a transformation means the feature space of the alternative clustering(s) is different from that of
the clustering(s) in the background knowledge, or iii) uses an objective function based on infor-
mation theoretic criteria, in order to optimize quality and dissimilarity characteristics (information
theoretic).
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Style of clustering algorithm: Is the method tied to a specific technique (e.g. k-means, hierar-
chical or expectation maximization) ? Or can any clustering algorithm be plugged in ? The latter is
typically possible for the orthogonal feature space transformation style, where once an orthogonal
feature space is discovered, any clustering algorithm can be used to generate the alternative. This
increases flexibility and means an appropriate clustering algorithm can be chosen according to the
dataset and desired cluster characteristics.

Parameter requirements:Apart from the number of clusterings output and the number of clusters
in each, are there any other parameters that must be specified to use the technique ? Many techniques
rely on the use of a regularization/tradeoff parameter, which is used to tune the relative weightings
of quality and dissimilarity criteria in the objective function.

We now proceed with a description of the different approaches, grouped according to the style
of the technique.

21.3.2 Unguided Generation
Unguided generation techniques do not employ any background knowledge for generating the

alternative clustering(s). There are a variety of approaches in this category, ranging from the simple
to the sophisticated.

21.3.2.1 Naive

The most basic technique is the naive method. Using this technique, alternative clusterings are
obtained by i) running a clustering algorithm multiple times, using different parameters each time, or
ii) running different clustering algorithms, or iii) a combination of i) and ii). The advantage of such
an approach is that it is straightforward to implement and any clustering algorithm(s) may be used
The principal disadvantage is that its behavior can be quite random and there is a risk of generating
alternative clusterings that are very similar to one another. Background knowledge is also not taken
into account. Due to the issue of redundancy, post processing is required to filter out clusterings
having a high amount of overlap. Naive generation is a very common technique employed by users
who are not familiar with alternative clustering. It is also often used in conjunction with consensus
clustering, where the alternatives are combined into a single clustering using a voting strategy.

21.3.2.2 Meta Clustering

An extension of the naive technique is the approach of meta clustering [5]. Similar to naive,
meta clustering does not make use of any background knowledge to generate alternatives. Instead,
it adopts a more principled approach to achieve dissimilarity. In particular, k-means is repeatedly
used with i) random choices of initial centroids and ii) different attribute weightings in the distance
functions, according to a Zipf distribution. After generation of alternative clusterings in this fashion,
meta clustering then treats the output clusterings as objects themselves and clusters them using a
cluster difference distance function. This yields a meta level perspective for the clusterings, which
can be explored by the user. Whilst the generation strategy here is more sophisticated than the naive
one, it still does not explicitly ensure that the output clusterings will be dissimilar, but only that
they have a reasonable chance to be dissimilar. Also, the random use of centroids in k-means again
may result in duplicates. Furthermore, the use of differently weighted distance functions, while it
increases the chance of dissimilarity between alternatives, may have an impact on the quality of
the clusterings, since some weightings may produce unnatural output clusterings. For these reasons,
like the naive technique, the results are likely to need postprocessing to reduce redundancy. Again
though, like naive, meta clustering has the advantage of being simple and clean to implement.
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21.3.2.3 Eigenvectors of the Laplacian Matrix

Dasgupta et al [9] show that alternative clusterings can be found by looking at different eigen-
vectors of the Laplacian matrix. The input is a similarity matrix S and no background knowledge is
used. There is the strong requirement that each alternative clustering output is constrained to have
two clusters. The approach is a spectral one, where the objects are represented as a graph, with
edges between nodes indicating pairwise similarities and a partition is generated using a normalized
cut criterion. Let Di,i = ∑ j Si, j and the Laplacian matrix L is L = D−1/2(D−S)D−1/2. The first al-
ternative clustering is found by applying 2-means to the objects represented by e2, the eigenvector
corresponding to the second smallest eigenvalue of L. The mth alternative clustering is produced
by applying 2 means to the objects represented by the m+ 1th eigenvector of L. The dissimilarity
objective is achieved by the orthogonality of the different eigenvectors. Quality is achieved by the
2-means algorithm, but the second and later alternatives will be “suboptimal”, compared to the first,
since the optimality decreases as m increases. The approach has the advantage of being simple to
implement, but the limitation of two clusters in each clustering is restrictive.

21.3.2.4 Decorrelated k-means and Convolutional EM

The approach by Jain et al [21] is a simultaneous one for generating two clusterings C1 and
C2, without using any background knowledge. Supposing each of the output clusterings has k1 and
k2 clusters respectively, then they are generated in a decorrelated fashion using k-means style. The
objective function has the form:

k1

∑
i=1

∑
x∈Ci1

||x−µi||2 +
k2

∑
j=1

∑
x∈C j

2

||x−ν j||2 +λ∑
i, j
(βTj µi)2 +λ∑

i, j
(αT

i ν j)2

where λ is a parameter used for regularization, µi and ν j are the representative vectors of clus-
tersCi1 andC j

2 respectively and αi and β j are the mean vectors ofCi1 andC j
2 respectively. The initial

two terms correspond to k means type error terms, whilst the second two terms ensure dissimilar-
ity (decorrelation) between the two clusterings. The objective function can be extended to generate
more than 2 clusterings, by including an extra k means type error term for each new clustering and
including a pairwise dissimilarity term for each possible pair of clusterings. An iterative approach is
used to minimize the objective function. The regularization parameter λ is set empirically and it is
also possible to extend the objective to a kernelized version, to handle non linearities. A disadvan-
tage is that the representative vectors in the decorrelated k-means algorithm do not have a natural
interpretation for the user.

In a companion proposal to decorrelated k-means, the work in [21] also outlines a convolutional
EM algorithm, where it is assumed that the data can be modeled as the sum of two mixtures of
distributions, each of which is associated with a clustering. One clustering has k1 clusters, the other
has k2 clusters. Then, since the distribution of the sum of two independent random variables is the
convolution of the distributions, the data is modeled as being sampled from a convolution of two
mixtures. This then leads to the problem of learning a convolution of mixture distributions, using
an expectation maximization method to determine the distributions’ parameters. The technique is
again simultaneous and can be kernelized.

21.3.2.5 CAMI

The CAMI [7] algorithm is designed to discover two alternative clusterings at the same time
using the original data space. Formulating the clustering problem under mixture models, CAMI
optimizes a dual-objective function in which the log-likelihood (accounting for clustering quality)
is maximized, while the mutual information between two mixture models (accounting for the dis-
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tinction between two clusterings) is minimized. The objective function of CAMI can be written
as

 L(Θ,D) = L(Θ1;D)+L(Θ2;D)−η∑
i, j
p(Ci1,C

j
2) log

p(Ci1,C
j
2)

p(Ci1)p(C
j
2)

The first two terms correspond to the likelihood of each of the two clusterings that will be
simultaneously discovered and Θ1 and Θ2 are their parameters. The third term corresponds to the
dissimilarity between the clusterings C1 and C2 as measured by mutual information. The η is a
regularization parameter used to trade off dissimilarity and quality (and which can be specified by
the user). Using Gaussian mixture models, an EM approach can be used to optimize the objective
function.

21.3.3 Guided Generation with Constraints
The next class of techniques uses constraints to guide the generation of one or more alternative

clusterings. The type of constraints and the way they are used distinguishes each of the methods.

21.3.3.1 COALA

The COALA method takes as input a similarity matrix and a single existing clustering as back-
ground knowledge. It uses an hierarchical algorithm. Using the existing clustering, a set of “cannot-
link” constraints are generated, one for each pair of objects in the same cluster. Intuitively, it is less
desirable for objects in these pairs to again be together in the same cluster of the alternative cluster-
ing. A hierarchical clustering approach is then used. At each iteration, COALA finds two candidate
pairs of clusters for a possible merge, one denoted as (q1,q2), called a qualitative pair and the
other denoted as (o1,o2), called a dissimilar pair. The qualitative pair is the one with the minimum
distance over all the pairs of clusters (ensuring the highest quality clusters when merged). The dis-
similar pair has the minimum distance over all the pairs of clusters that also satisfy the cannot-link
constraints (these pairs may be the same). COALA will select just one of these pairs to merge. Given
a tradeoff factor parameter ω, if d(q1,q2)

d(o1,o2)
≥ ω then the pair (o1,o2) is merged. Otherwise, the pair

(q1,q2) is merged. By varying the value of ω, different behaviours can be achieved.
COALA is a simple and intuitive technique and has been used as a baseline method for compar-

ing against in a range of papers. A limitation of COALA is that it is specifically tied to a hierarchical
clustering algorithm. It also was not formulated for the case of generating multiple alternative clus-
terings. However, it is easy to conceive generalizations in which multiple clusterings are used as
background knowledge, yielding a larger set of cannot-link constraints for generating the alterna-
tive clustering.

21.3.3.2 Constrained Optimization Approach

The approach of Qi and Davidson in [31] uses constraints in a different way. It takes the original
dataset X = {x1, . . . ,xn} and transforms it to a new dataset Y = {y1, . . . ,yn} where Y = DX and
D is a transformation matrix representing a distance metric. Any clustering algorithm can then be
applied to the new dataset to generate an alternative to the original clustering.

The objective function is formulated as a constrained optimization task

min
B)0

DKL(py(y)||px(x)) s.t.
1
n

n

∑
i=1

∑
j=1,xi /∈Cj

||(xi−µj)||aB ≤ β

where B=DTD and ||.||B is the Mahalanobis distance using matrix B and B) 0 signifies that B
is required to be positive semi-definite.
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The original dataset X follows probability density function px(x) and dataset Y follows proba-
bility density function py(y). DKL signifies the KL divergence between two distributions and a≥ 1
is a tradeoff parameter, with larger values ensuring higher dissimilarity of the alternative clustering.

The first part of the objective aims to ensure that the transformed data preserves the characteris-
tics of the original data (with the KL distance being zero when they are identical). The second part
of the objective ensures dissimilarity and discourages the original clusters being found, by requiring
each object in the new data space to be closer to the cluster centers of the cluster that it was not
originally part of. To achieve a closed form solution to the objective function, a mixture model of
multivariate Gaussian distributions can be assumed, having the same covariance matrix.

Some advantages of this approach are that i) any clustering algorithm may be used to generate
the alternative clustering, once the new dataset is obtained, ii) the approach extends naturally for
discovering a partial alternative clustering. Users may specify properties of the original clustering
they wish to keep (i.e. some original clusters or groups of objects should remain the same) and then
solve the objective function with the intention of only finding some alternative clusters to add to the
desired original clusters. A limitation of the approach is that it is somewhat unclear what kind of
properties of the original dataset X get preserved in the new dataset Y , due to the generality of the
KL-distance function.

21.3.3.3 MAXIMUS

Work by Bae and Bailey in [3] describes an algorithm known as MAXIMUS for discovering
multiple alternative clusterings in a sequential manner. The MAXIMUS algorithm calculates the
maximum dissimilarity between any currently available clusterings and a potential target alternative
solution, by forming an integer programming model. The objective of this integer programming
model is to maximize the distance between the density profiles of the known clusterings, versus the
unknown target alternative clustering. It then uses the output of the model to generate an alternative
clustering.

MAXIMUS is based on the use of a clustering similarity function known as ADCO, which can
compare clusterings according to their spatial characteristics. At a high level, the ADCO measure
constructs a spatial histogram for each cluster and represents a clustering as a vector containing the
spatial histogram counts for the clusters. The two clusterings can then be compared using vector
operations. Intuitively, the output of ADCO is a containment judgement between a clusteringC1 and
a clusteringC2, expressed as “How much of clusteringC2 is contained in clusteringC1 ?”, or “What
percentage of clustering C2 is contained in clustering C1 ?”.

Using the ADCO measure, one may generate a spatial template to ensure that a single alternative
clustering has maximal (average) dissimilarity from the input background clusterings. This template
describes how many objects must be present in bins within one-dimensional projections of the
feature space. Using the template, a constrained k-means algorithm is used to derive a clustering for
each bin. Next, consensus clustering is then used to combine the clusterings from all the bins into
a single clustering. Thus, the quality of the alternative clustering is achieved by the use of k-means
and consensus clustering. The dissimilarity objective is achieved by using the integer programming
model and the ADCO measure to obtain a spatial template which can be expected to have very high
dissimilarity from the background knowledge clusterings.

In order to use MAXIMUS, it is necessary to specify the binning strategy for representing the
density profile (10 bins equi density is recommended as a default). Unlike some other algorithms,
MAXIMUS does not require the user to specify a regularization parameter to trade off between the
quality and dissimilarity objectives.
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21.3.4 Orthogonal Transformation Approaches
Our next class of approaches approach the task of alternative clustering from a feature space

perspective. Using an existing clustering as background knowledge, this style of approach constructs
a new feature space which is ‘orthogonal’ to the data space that is characterised by the existing
clustering. Once this orthogonal feature space is generated, any clustering algorithm can be used
in this space to generate an alternative clustering. Thus, the objectives of quality and dissimilarity
are decoupled, with the former being tied to the use of the chosen clustering algorithm and the
latter being tied to the characteristics of the orthogonal space that gets generated. Overall, these
approaches have an appealing mathematical formulation based on linear algebra. They are also
relatively efficient. A limitation is that the orthogonality requirement may be too strict for some
datasets and it is not always clear how it trades off against the quality of the clustering.

21.3.4.1 Orthogonal Views

Work by Cui et al in [37] presents two approaches that can generate multiple alternative clus-
terings, in a sequential manner. Each alternative clustering is determined by subsets of features of
the data set, which are best described by the clustering. Given a clusteringC1, a subset of features is
found that are well represented inC1 and then another set of features is found, which are orthogonal
to the first subset. Their first approach carries out a transformation as follows: Each data object xi
from cluster j is projected onto its cluster center µj and then a residue is found by projection onto
an orthogonal subspace:

xnewi = (I−
µjµTj
µTj µj

)xi

One then clusters the data in this orthogonal subspace to obtain an alternative clustering. The
method may be executed iteratively to generate multiple alternative clusterings. A version where the
input is a soft (fuzzy) clustering is also outlined.

In the second approach, a feature subspace F2 that is a good representation for the clustering
C1 is first found using principal component analysis on the mean vectors of C1. The data X is then
projected to a subspace that is orthogonal to F2 and a clustering algorithm applied to the new data
Xnew to generate an alternative clustering C2. Specifically

Xnew = ((I−F2(FT2 F2)
−1FT2 )X

Again, the method can be applied iteratively to generate further alternative clusterings.

21.3.4.2 ADFT

Work By Davidson and Qi [10] describes the ADFT approach to finding an alternative clustering,
using a set of instance level constraints. This approach is also a transformation approach like that of
[37]. However, instead of characterizing the background knowledge clusteringC1 according to mean
vectors or a feature subset, it is characterized using instance must-link and cannot-link constraints
and then a distance function DC1 is learnt using these constraints. This distance function can be
decomposed using singular value decomposition into DC1 = HSA, where H is the hanger matrix, S
is the stretcher matrix and A is aligner matrix.

Once the characteristic distance function DC1 has been learnt, an alternative distance function
can be computed and is equal to HS−1A. This alternative distance function is then employed to
generate a new dataset Xnew = (HS−1A)X . The alternative clustering is then found by applying any
clustering algorithm on Xnew.

This method has an advantage over the approach of [37], since it can be applied in situations
where the dimensionality of the dataset is smaller than the number of clusters (as is common for
spatial data).
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21.3.5 Information Theoretic
Another approach to the generation of alternative clusterings is based on the use of objective

functions using information theoretic principles. Such approaches are mathematically attractive and
incorporate the use of mutual information (or similar) to measure the strength of correlations be-
tween clustering. Several algorithms fall into this category, beginning with the approach of Gondek
and Hofmann [15], which was the first (to our knowledge) alternative clustering algorithm to be
proposed.

21.3.5.1 Conditional Information Bottleneck (CIB)

The conditional information bottleneck approach (CIB) for alternative clustering was described
in [14, 15]. This algorithm takes as input an existing clustering C1 as background knowledge and
sequentially generates a single alternative clustering C2 by optimizing the objective function

max
C2

(I(C2;F |C1) − λ1I(C2;X) + λ2I(C2;F))

where F is the features, X is the objects and the existing clustering is C1. The term I(C2;F |C1)
corresponds to the mutual information between the new alternative clustering being discovered and
the features, given the pre-defined clustering. The term I(C2;X) corresponds to the mutual informa-
tion between the desired alternative clustering and the objects (this is desired to be small, to avoid
being overly confident about the groupings) and I(C2;F) corresponds to the mutual information
between the desired alternative clustering and the features (we want this to be high). The symbols
λ1 > 0 and λ2 > 0 are regularization parameters, used to trade off the different components of the
objective function. The approach of [15] describes an alternating optimization scheme with deter-
ministic annealing, which can be used for generating C2 with this objective function. In practice,
this style of approach has been found to behave particularly strongly for document datasets.

21.3.5.2 Conditional Ensemble Clustering

The CIB approach of [14, 15] was further extended in [13], which introduced the CondEns
(Conditional Ensemble) alternative clustering algorithm.

CondEns operates in three stages. 1) Given the clustering C1 = {c1, . . . ,ck} as background
knowledge, for each cluster ci, a local clustering is generated using any clustering algorithm. This
yields k local clusterings. 2) Each of the k local clusterings is extended into a global clustering,
by assigning instances not already part of a local clustering, to one of its clusters. 3) The k global
clusterings are then combined using a consensus technique based on the conditional information
bottleneck, to yield a single alternative clustering.

Like the approach of [15], CondEns also performs well for text datasets. A limitation of CondEns
is its guarantees about the dissimilarity of the alternative clustering are somewhat unclear, since the
clusters in the original clustering c1 may be quite similar amongst themselves. This means that the
alternative clustering may in turn be similar to the background knowledge clustering.

21.3.5.3 NACI

The NACI algorithm was proposed by Dang and Bailey in [8] and targets scenarios where the
borders between clusters in the alternative clustering may not be linearly separable.

At a high level, its objective function can be expressed as finding an alternative clustering C2,
given a clustering C1 as background knowledge, according to

C2 = argmax
C2

{I(C2;X)−ηI(C1;C2)}

where



Alternative Clustering Analysis: A Review 543

I(C1;C2) = ∑
Ci1

∑
C j

2

(p(Ci1,Ck2)− p(Ci1)p(C
j
2))

2

where η is a regularization parameter, p(·, ·) is the probability density and the mutual infor-
mation I(C1;C2) is in fact a quadratic form of the mutual information, which has the advantage of
being amenable to density estimation using a Parzen window technique with Gaussian Kernel. This
objective can then be used as a component within a hierarchical clustering framework, to generate
an alternative clustering. To use NACI, choices must be made for both the regularization parameter
and the kernel parameter.

Another approach in the same spirit as NACI is that of minCEntropy [29], which instead of
using a hierarchical algorithm with the quadratic mutual information, instead uses a k-means style
algorithm with quadratic mutual mutual information. The style is again sequential and requires
specification of a kernel width parameter and a tradeoff parameter.

21.3.5.4 mSC

The final method we mention in this section is the mSC alternative clustering approach out-
lined in [30]. This is a spectral approach which can simultaneously generate multiple alternative
clusterings.

Rather than being based on mutual information, it uses the Hilbert-Schmidt Independence Cri-
terion (HSIC) to assess the correlation between clusterings. Like mutual information, the HSIC is
also able to recognize non linear dependencies. Specifically, the mSC technique embeds the HSIC
measure within a spectral clustering framework. The objective is a dual function, where at each
iteration, one term is fixed and the other term is optimized. The user is able to specify the number
of alternative clusterings that are desired and the number of clusters in each.

21.4 Connections to Multiview Clustering and Subspace Clustering
We have thus far reviewed a range of techniques that can be used for generating alternative clus-

terings, which is a core component for multiple clustering analysis. We now mention the connections
that exist between alternative clustering analysis and two other directions: multiview clustering and
subspace clustering.

Multiview clustering is also concerned with multiple clusterings, but from a different angle.
In multiview clustering, one is provided with multiple sources or representations of data (multi-
ple views) and then wishes to learn a single clustering which is both consistent with and a good
reflection of the multiple views. A prototypical example are Web pages, which may be modeled
using features which describe the frequencies of words occurring in the page (View 1), or modeled
using features which describe the links into the page (View 2), or modeled using features which
describe the anchor text in the links going out from the page (View 3). It has been found that us-
ing the information in all views simultaneously, one can generate a better quality clustering than if
just only using a single view obtained by merging the feature spaces. A particular benefit of mul-
tiview clustering is that using multiple views to produce a clustering can reduce the effect of noise
within individual views. i.e. If one were to use a single view to derive a clustering, the presence
of noise may corrupt the clusters and make the detection of cluster structure more difficult. Using
multiple views to cluster, however, lessens the likelihood of noise within a view being dominant
and instead emphasizes the commonalities between views and their contribution towards the overall
cluster structure.
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Broadly speaking, there are two kinds of approaches for multiview clustering [22]. In the first
approach (centralized), the multiple views are used in parallel to cluster the dataset [4, 38, 6]. In
the second approach (distributed), a clustering is generated for each view independently and the
clusterings are then later merged to produce a single clustering [22, 16].

In more detail for the centralised approach, Bickel and Scheffer [4] consider the setting of a
dataset which has been generated by a mixture model and the objective is to determine the param-
eters for each of the components of the mixture. They develop both a multiview EM algorithm and
a multiview k-means algorithm, which is based on an assumption of independence between views.
They find that the multiview EM algorithm is able to optimize the agreement between the views
and that it can achieve a significant improvement in performance compared to a single view version.
They also evaluate an agglomerative multiview approach, but find that its results are not improved
compared to a single view version. Zhou and Burges [38] consider a spectral clustering approach
and propose an algorithm that generalizes the (single view) normalized cut to incorporate informa-
tion from multiple views (graphs). The approach uses a random walk technique that traverses the
vertices of both graphs, to derive a multiple graph cut which is good on average for both graphs.
They find their approach consistently performs better than just using a single view. Chaudhuri et
al [6] address the problem of clustering in high dimensions and how to discover a lower dimen-
sional subspace, in which a standard clustering algorithm can then be applied. In their work, this
lower dimensional subspace is found using the information from multiple views, where each view
is composed of a mixture of distributions. A canonical correlation technique is used for subspace
learning.

In more detail for the distributed approach, Long et al [22] propose a pattern based technique
based on the use of a mapping function. After independently clustering each view, these clusterings
are then combined into a single view using the mapping function. The objective function minimizes
the averaged mapped distance of the views to the overall clustering, using an iterative algorithm.
Greene and Cunningham [16] tackle the problem by proposing a matrix factorization approach.
Specifically, a matrix is constructed that summarizes all the clusterings (one clustering per view).
This matrix is then factorized (possibly with some approximation error) into the product of two
non-negative matrices. The first contains information about the contribution of each cluster from
the views to the overall, final clustering. The second matrix describes the membership of objects in
the final clustering.

A key issue for multiview clustering is how to balance the relative contributions of the views and
ensure that noisy views do not degrade the final result [35]. Another key issue for multiview cluster-
ing is how to handle application specific multiview integration. For example, the techniques needed
to combine multiple views in a document domain, may be quite different from what is appropriate
for combining multiple views in a protein (bioinformatics) domain. The multiview paradigm has
also been extended to the discovery of subspaces, rather than aiming to produce only one, overall
clustering [19].

Like alternative clustering, subspace clustering is also concerned with discovering multiple so-
lutions. Here though, the principal aim is to discover multiple clusters, each hidden in a lower di-
mensional subspace, rather than discovering multiple clusterings. The motivation is that the dataset
can contain features which are irrelevant to and confusing for clustering structure. Removing these
features can make the clustering structure clearer and of better quality. Some well known examples
include CLIQUE [1], MAFIA [28] and DENCLUE [18]. Issues for subspace clustering analysis
include ensuring the dissimilarity between subspace clusters (which may otherwise have large over-
lap) and controlling the number of subspace clusters (which may be exponential in the number of
features).
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21.5 Future Research Issues
There are a number of issues that still remain to be explored in alternative clustering analysis.

1. Many good approaches have been proposed for generating alternative clusterings. These have
tended to be evaluated on synthetic data, or small real-world data. Their degree of scalability
is thus often untested. In order to extend the reach and applicability of alternative clustering,
some more serious evaluation will be needed that is based on the use of very large datasets.

2. Discovery of alternative clusterings is intuitively reasonable. However, it will be important to
identify application scenarios and compelling case studies where alternative clusterings have
influence for a real application area. Good visualization tools for alternative clusterings could
have potential impact here.

3. A number of alternative clustering methods are capable of generating more than one alterna-
tive. This raises the issue of how many alternatives is sufficient. Is this an issue which is user
dependent, much like choosing the number of clusters, or are there more principled ways to
evaluate the viability of alternatives ? Coupled with this issue, is the companion question of
how many clusters should be included in each alternative clustering.

4. The traditional notion of a ‘complete’ alternative may sometimes be too strict. Instead, a
user may sometimes desire partial alternatives, where the new clustering is similar in some
respects, but different in other respects to the existing clustering(s). Work by Qi and Davidson
[31] is a promising basis here.

21.6 Summary
We have reviewed the area of alternative clustering analysis. The impetus for the field has come

from the complexity and heterogeneity of today’s datasets. Users wish to obtain not only a single
view or hypothesis of their data, but instead be presented with several alternatives.

We have seen that a number of approaches for alternative clustering exist, possessing consider-
able diversity in their technical details. At the core of each though, is the capability to generate new
clusterings which achieve a balance between being novel and being different from clusterings that
are already known.

The area has grown rapidly in the last few years and we believe it has a bright future. As the tech-
niques become more widely known, the generation of alternative clusterings may become common
place. This invites the following speculation “In the future, might every clustering be accompanied
by an alternative clustering ?”
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