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Abstract. Changes in the distribution of financial time series, particularly stock 
market prices, can happen at a very high frequency. Such changes make the 
prediction of future behavior very challenging. Application of traditional 
regression algorithms in this scenario is based on the assumption that all data 
samples are equally important for model building. Our work examines the use 
of an alternative data pre-processing approach, whereby knowledge of 
distribution changes is used to pre-filter the training dataset. Experimental 
results indicate that this simple and efficient technique can produce effective 
results and obtain improvements in prediction accuracy when used in 
conjunction with a range of forecasting techniques.   
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1 Introduction 

 
Prediction techniques for the behavior of financial time series have been intensively 
studied [1][2].  A prime example is the forecasting of stock prices, which aims to 
forecast the future values of the price of a stock, in order to obtain information about 
its trends and direction of movement and thus allow the development of 
buying/selling strategies to gain competitive advantage. 
 Classic and popular methods for stock price forecasting [3][4] for both univariate 
and multivariate time series data include linear regression, hidden markov models, 
neural networks [11] and support vector machines [7].  
 The underlying data for financial time series may span a frequency as small as 
hourly or as long as several years. The longer the time interval, the more likely it is 
that the data samples will not follow the same distribution [8]. The classic statistical 
[13] and data mining time series prediction methods [14], at least in their simple form, 
do not take into consideration that such changes in distribution over time may occur 
with financial time series data. This can lead to a loss in prediction accuracy, since the 
prediction model that is built places equal value on all samples, even those whose 
distribution is not close to the distribution of the samples in the most recent past. 
 In this paper, we address the challenge of forecasting the behavior of time series 
using distribution change.  In particular, we propose a technique for filtering the 
samples in such time series, in order to project out those samples which appear least 
relevant and retain those samples which appear most relevant for prediction. Our 



proposed Distribution Based Samples Removing (DBSR) algorithm operates by i) 
initially analyzing the time series to determine its different distributions, and then ii) 
reducing the time series by filtering out the samples whose distribution is furthest 
from the recent past. We develop two versions of the algorithm, one parametric and 
the other non-parametric. Our approach is designed to work for regression with 
univariate series that use a five day relative difference in percentage of price (RDP) 
format [16], but the approach can also be applied to original univariate time regressed 
on itself, as well as multivariate time series.   
 Our proposed data filtering method has a number of desirable properties: i) it is 
clean, simple and intuitive, ii) it is easy to implement and runs efficiently, since it is a 
data pre-processing step and thus iii) it can be used in conjunction with many existing 
time series prediction methods. Finally, we find that iv) it can help obtain 
improvements in prediction performance when used as a prior step to produce input 
for classic time series prediction algorithms. 

2 Related work  

There is a large amount of literature dealing with classification and regression for 
financial time series. Descriptions of classic methods can be found in standard 
textbooks such as [1][2][3].  Instead we briefly review related work that can be used 
for dataset filtering or pre-processing, since this is an essential feature of our 
approach. 

Selecting samples from a set can be performed by simple random sampling, 
cluster sampling, systematic sampling, or load shedding [5], but most of these 
methods do not consider the time element that is present when dealing with financial 
time series. Efforts have been by [21][22] to improve these methods and to include 
the time element, by using strategies based on sliding windows [22]. Nevertheless, 
sample selection in time series mostly consists of only selecting a continuous sample 
set, without the possibly of removing non contiguous ranges of samples from the set. 

Investigating the changes in distribution that occur over time within the financial 
time series data and including them in the learning process is an ongoing research 
direction [9] [10] [12]. The benefits of the research in this area are not only 
algorithms that are adjusted to cope with the time element present in the data, but also 
algorithms that run online and can process data streams as well [15].   

3 Distribution Based Samples Removing algorithm 

The notion of examining the nature of distribution change in a time series and using it 
to filter the data samples is inspired by the technique of load shedding [22] using 
sliding windows.  In order to develop an algorithm that can filter based on distribution 
change, we will first need to decide on an appropriate statistic for measuring 
differences in distribution.  

We choose to use the Wilcoxon rank sum method (WXN) [13], which is a non-
parametric test that assesses whether two sets of data samples follow the same 



distribution. It is easy to implement, efficient and a well known statistical test. We 
adopt the WXN method and use the change points it detects. The WXN paradigm is 
as follows: we set a fixed window on n points, [1,n], and starting after it, a sliding 
window of n points as well, [n+1, 2n], as shown in Figure 1. We move the second 
window and compare if the samples in both windows follow same distribution: if that 
is the case, we continue moving the second window, until the distribution changes. 
The change point will be at the last sample of the second window (point 2n+k); we 
move the first window just after that point [2n+k+1, 3n+k], the second window comes 
after the first one [3n+k+1, 4n+k] and we repeat the process for the rest of the dataset. 
 
Figure 1: The Wilcoxon method with fixed reference window 

 
 

After the WXN method has detected all the distribution change points in the 
training set of the time series, the mean (average) value of each window is calculated 
and compared to the mean value of the last (most recent in time) window: the 
difference between the mean value for a given window with index j, and the mean 
value of the last window, called ∆avg[j,last]=meanj-meanlast is calculated, all  
differences are then normalized into the range of [0,1], giving us the value for 
dj=∆avg[j,last]Normalized.  
 

    d j = Δavg[ j, last]Normalized = abs( Δavg[ j, last]
max

i
(Δavg[i,last])

)          (1) 

 
To gain an idea about likely behavior, we ran the WXN method on several real life 

time series (described in detail later in the paper) and the results showed the general 
pattern of Figure 2: some samples in the distant past were more similar to the most 
recent window than were some samples in the more recent past. We can see from 
Figure 2 moving left to right, there are windows in the most distant past with very 
similar distribution (windows 1 and 2) to the last window, and also windows in the 
not so distant past with quite different distribution (window 8) to the distribution of 
the last window. This confirmed our belief that many real time series are non-
stationary, and that it is potentially promising to investigate methods for the filtering 
of samples based on similarity of distribution. 
 
 
 



Figure 2: Example of dj =∆avg[j,last]Normalized value between the distribution windows 
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We develop two versions of a Distribution Based Samples Removing (DBSR) 
Algorithm, one parametric and the other non-parametric. They both use information 
about the distribution changes in the time series for making the decision about which 
samples of the dataset to remove. 

3.1  Distance value – threshold based decision 
 
The parametric based DBSR (P-DBSR) algorithm requires the user to analyze the 
distribution change data: the size of the windows and the value of the distance to the 
most recent window. It requires a threshold value, between 0 and 1, and removes the 
samples from the windows where the distance to the most recent window is above the 
threshold value. The structure of the P-DBSR algorithm is as follows: 

Algorithm P-DBSR 
 
  Stage 1: change point detection 
1:   Input:  time series dataset X = {xi | i = 1..m } 
2:  Output: reduced time series X = {xi | i = 1..k, k<m } 
3:   Initial: reference windows W1 and W2, window size n, threshold value p,  

W1={x1, ..xn}, W2={xn+1,..,X2n}, number of change points cPoints=0, distance  
values dj=∆avg[j,last]Normalized. 

4:   While not the end of dataset 
5:    Compare distribution for W1 and W2 
6:  If W1 and W2from the same distribution 
7:   Move W2 one sample forward 
8:  Else 
9:   Detect change point, cPoints += 1 
10:   Set W1 to start after W2, then W2 after W1    
11:  EndIf 
12:  EndWhile 



  Stage 2: parameter based dataset reduction 
13:  Calculate normalized distance values to the last window dj, j=1.. cPoints+1 
14:  For all windows 
15:   If window distance dj > p value 
16:    Remove the current window 
17:  EndIf 
18:  EndFor 
19:  Return reduced dataset X = {xi | i = 1..k, k<m } 
 
Figure 3: The parametric DBSR datasets, before and after removing the windows 
 
 

 
   

This version of the algorithm has several advantages: the user has access to the 
detailed information about the distribution, and can see how it changes over time, 
therefore getting insight into the volatility of the samples that will be used for 
forecasting; it will also indicate regions where the data may be noisy, and thus 
beneficial to remove. 
 We choose such value for p that would result in an amount is large enough for us 
to expect the final regression to be significantly different. Shown in Figure 3, the 
samples where the normalized distance was greater than the p value are in the black 
sections, and are removed at the end of the algorithm.   

We assessed the algorithm over a range of values for the threshold - between 0.3 
and 0.8. Some datasets had many windows with distributions similar to that of the last 
window, and in order to remove a significant amount of samples (around 30-35 %), 
those datasets required the threshold value set low. The datasets where there were 
windows with distribution quite different from the one of the last windows needed a 
threshold value set usually around 0.7 to remove the same percentage (30-35%) of 
samples. Even though the value for p was different for each dataset, the amount of 
samples removed was roughly the same for all datasets. We did so as we prefer to 
have same ratio of before and after dataset size, in order to test if removing such large 
amount of samples would be beneficial, regardless off the dataset. 

  



3.2  Distance value – percentage based decision 
 
Our non-parametric DBSR (NP-DBSR) algorithm again accesses information about 
the distribution change and distribution distance with respect to the most recent 
window.  As the distance is normalized in the range of 0-1, the algorithm uses that 
value to determine the portion of the window to be removed – e.g. if the normalized 
distance value for a given window is 0.7, the algorithm will remove 70% of the 
samples of that window. In other words, the samples from each window are filtered in 
proportion to the amount of their dissimilarity to the last window.  This gives 
windows with a moderate value (moderate dissimilarity) for the distance some chance 
to contribute samples. Since distances are normalized, it will result in the most distant 
window having all of its instances removed, and the most recent window having no 
instances removed.  Shown in Figure 4, we can see we have the same windows with 
different distributions (marked with different patterns) before and after, with the 
windows after being smaller, as the have samples being removed from them.  
 The structure of the NP-DBSR algorithm is as follows: 
 

Algorithm NP-DBSR 
 

Stage 1: change point detection (lines 1 - 12) 
 Stage 2: parameter free dataset reduction 

13:  Calculate normalized distance values to the last window d 
dj=∆avg[j,last]Normalized.j, j=1.. cPoints+1 
14:  For all windows 
15:   Remove dj *100 percent of the samples of the current window 
16:  EndFor 
17:  Return reduced dataset X = {xi | i = 1..k, k<m } 
 
Figure 4: Non parametric DBSR, before and after reducing the windows 
 

 



4 Datasets  

Our research was focused on forecasting stock market prices, as they are continuous 
series that can change very quickly, and are of great interest to both investors and 
researchers. We tested stock market prices of 12 random companies, with each dataset 
containing between 290 and 700 samples, recorded daily from a randomly chosen 
period between 1997 and 2010 [17][19]. We also tested a simulated dataset, where 
there did not exist many changes in the distribution, as well as the S&P quarterly 
index time series [18]. The stock market datasets were divided into a training and 
testing set, in the ratio of 9:1. We only focused on short term forecasting, so that the 
learning time of the machine learning models was small. The names of the companies, 
along with the number of samples and windows (changes) detected are listed in Table 
1. 
Since our technique focuses on data pre-processing, it can be used in conjunction with 
a large class of existing algorithms for time series prediction.  We evaluated the use of 
our technique in conjunction with Linear Regression (LR), Pace Regression (PR), 
Support Vector machines (SVM) and Multilayer Perceptron (MLP). We did not 
evaluate the use of the popular ARIMA model, since that required an incompatible 
dataset format. We used the WEKA [19] software to run our experiments. 
 
Table 1: Datasets used in the experiments 
 

ID Name Samples/ 
windows ID Name 

Samples/ 
windows 
(changes) 

1 Amazon.com 422/13 8 Hewlett-
Packard 612/27 

2 Apple Computer 461/23 9 IBM 309/16 

3 American Express 415/20 10 Island Pacific, 
Inc. 520/17 

4 British Airways 
(ADS) 260/8 11 Johnson & 

Johnson 406/16 

5 Colgate-Palmolive 
Co. 462/25 12 Simulated 

Dataset 475/22 

6 eBay Inc. 520/22 13 S&P Quarterly 
Index   323/17 

7 FedEx 423/17 14 Walt Disney 
Company 428/13 

 
We used the five day relative difference in percentage of price (RDP) format [16]. 

The attributes by which the forecasted value was calculated were the 5, 10, 15 and 20 
past days difference in percentage(RDP-5, RDP-10, RDP-15 and RDP-20), as well as 
a 15 day exponential moving average(EMA15). This type of transformation makes 



the data more symmetrical and closer to a normal distribution. The formulas that 
describe the RDP data format are listed in Table 2. 

 
Table 2: RDP data format - attributes and forecast output 
 

Input variables Output variable 

EMA15 p(t)-EMA15(t) 

RDP-5 (p(t)-p(t-5))/p(t-5)*100 

RDP-10 (p(t)-p(t-10))/p(t-10) *100 

RDP-15 (p(t)-p(t-15))/p(t-15)*100 

RDP-20 (p(t)-p(t-20))/p(t-20)*100 

RDP+5 
 
 

100*)(/))()5(( ipipip −+
 

)()( 3 iEMAip =  

5 Experiments 

The performances of the two versions of the algorithm were evaluated through the 
root mean square error (RMSE) metric. The results presented in Table 3 show the 
change in the RMSE value as captured in the formula:  
 

(DBSR reduced dataset RMSE value) / (Full dataset RMSE value) * 100,  
 
for both versions of the algorithm. i.e. The relative error using the filtered time 

series compared to using the full time series.  In many cases for the machine learning 
methods, both versions of datasets filtered with our algorithms performed better than 
the machine learning methods trained on the full dataset, and in virtually all of them, 
employing at least one version of the algorithm resulted in a RMSE smaller than the 
methods trained on the full dataset.  

The parametric method often yielded a smaller RMSE than the non-parametric 
method. The results in Table 3 also highlight some stability properties of the learning 
methods. As we can see from the RMSE reductions, the Linear Regression, Pace 
Regression and Support Vector Machines performed very similar when trained on the 
full datasets and on the reduced datasets as well, while Multilayer Perceptron 
performed poorly when trained on the full dataset, but had quite an improvement in 
performance when trained on some datasets filtered by the DBSR algorithm, but also 
had a large decrease in other cases. 
  



Table 3: DBSMR algorithm change in RMSE values.  Performances show percentage 
of RMSE error using our filtering approach compared to error without our filtering 
approach.  Lower numbers indicate better performance for our filtering approach.  
 

ID 
P-
DBSR 
p-val 

LR 
P-
DBSR 

LR 
NP-
DBSR 

PR  
P-
DBSR 

PR 
NP-
DBSR 

SVM 
P-
DBSR 

SVM  
NP-
DBSR 

MLP 
P-
DBSR 

MLP 
NP-
DBSR 

1 0.5  98.30 95.72 98.07 93.82 100.2 96.56 61.32 64.04 

2 0.3 92.53 95.11 91.86 95.49 86.98 96.87 114.6 103.6 

3 0.4 92.06 83.91 97.35 85.34 103.6 94.82 120.4 106.6 

4 0.7 94.95 99.93 97.28 99.55 97.19 96.89 84.51 102.3 

5 0.8 98.72 101.1 98.12 98.89 98.52 99.37 105.3 98.56 

6 0.6 99.32 104.7 100.1 103.4 100.9 107.1 99.00 126.9 

7 0.6 98.77 98.51 97.77 99.65 95.71 99.86 181.3 105.8 

8 0.5 95.77 97.38 95.72 96.37 99.14 100.2 60.59 91.52 

9 0.7 95.22 97.80 98.44 97.07 94.31 99.93 100.6 86.12 

10 0.5 100.9 99.27 102.9 99.69 96.90 95.73 78.31 83.74 

11 0.7 91.66 97.82 94.37 100.6 95.05 103.3 95.54 95.68 

12 0.5 96.81 94.57 96.78 94.53 98.53 95.22 84.92 107.1 

13 0.5 93.40 93.98 91.75 90.96 90.75 125.8 158.8 139.6 

14 0.5 98.70 104.2 98.97 102.4 97.23 102.8 81.08 109.6 

6 Conclusion 

Samples in financial time series datasets can be from different distributions and this 
creates challenges and opportunities for forecasting.  We have developed data 
filtering algorithms that assess the importance of samples from a time series and 
retain those with most similarity to the recent past. Our experimental results show that 
the distribution of the data is indeed an important factor to consider, as we achieved 
reductions in forecasting error for time series with both few and many changes in the 
distribution. We believe our proposed DBSR algorithm is a simple and promising way 
to employ information about the distribution in the learning and prediction process.   

In the future, we plan to investigate alternative methods to the Wilcoxon test for 
detecting distribution change and also investigate methods for stronger coupling of 
the distribution detection and prediction stages. 
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