
Static Analysis of XSLT Programs

Ce Dong James Bailey
Department of Computer Science and Software Engineering

The University of Melbourne
Victoria 3010, Australia

{cdong, jbailey}@cs.mu.oz.au

Abstract

XML is becoming the dominant standard for representing
and exchanging data on the World Wide Web. The
ability to transform and present data in XML is crucial and
XSLT (Extensible Stylesheet Language Transformations)
is the principal programming language that supports this
activity. Methods for analysis of XSLT programs are
currently an important open issue. .In this paper, we
discuss new methods for analysing XSLT programs, which
return information about reachability, invalid calling
relationships and termination properties. Our methods are
based on the determination of the associations which can
exist between components of an XSLT program, refined
by the knowledge from a DTD. Such analysis is important
for debugging and verification of XSLT programs and also
their optimisation.

Keywords: XSLT, XML, termination analysis

1 Introduction
The extensible markup language XML has recently
emerged as a new standard for information storage,
representation and exchange on the World Wide Web. By
virtue of its self-describing and textual nature, XML is
expected to be used in large volumes and extracted from
diverse data sources and applications on the Web.
Extensible Stylesheet Language Transformations (XSLT)
(Clark 1999) is a popular language for processing XML,
especially in data transformation, reorganization, querying
and formatting. Indeed, XSLT is used as a primary
technology for XML data and server side XSLT
applications have become extremely important for XML
data exchange and publishing.

An XSLT program consists of a set of templates.
Execution of the program is by recursive application of
individual templates to the source XML document. This
recursive application of templates is an essential aspect of
XSLT. However, important problems can arise in
designing XSLT templates. Firstly, some templates within

.Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at Fifteenth Australasian Database Conference
(ADC2004), Dunedin, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 27. Klaus-Dieter
Schewe and Hugh Williams, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

an XSLT stylesheet 1 may never be applied during
execution, regardless of the XML source being input. We
call such templates unreachable templates. Secondly,
there may exist pairs of templates, which appear to call
each other, based on the syntactic structure of the program,
but in fact cannot, due to underlying constraints which
exist within an accompanying DTD. We call these invalid
template calling relationships. Thirdly, the XSLT program
itself may loop forever on some XML input(s). This is the
problem of XSLT termination. Analysis methods that
detect these problems would offer valuable support for the
programmer in debugging and stylesheet design. Current
XSLT processors and tools unfortunately do not offer any
support (e.g. M. Kay 2003).

In this paper, we provide algorithms for dealing with all
three of these problems. Our techniques rely on the
definition of three important data structures. The
DTD-Graph, which captures hierarchical information
within the accompanying DTD, plus two variations of a
Template and Association Graph(TAG), for modelling
components within the XSLT program and relationships
that exist between them. The Raw-TAG, for modelling the
original XSLT designed by the user and the Refined-TAG,
which further uses information from the DTD-Graph, to
achieve a more precise model.

Our principal contributions in this paper are twofold:

• The identification of four important static
analysis questions for XSLT and the definition of
algorithms for determining them: 1) Analysing
reachability, 2) Analysing invalid calling
relationships, 3) Analysing missing templates, 4)
Analysing termination. We are not aware of any
other work which has addressed these problems.

• The definition of important data structures that
are used in the analysis and which also have more
general applicability (e.g. for potential XSLT
program optimisation).

The remainder of this paper is organized as follows:
Section 2 reviews some basic concepts about DTDs,
XSLT and XPath and introduces some definitions. In
section 3, we introduce the Raw-TAG and the
Refined-TAG and methods for their construction. Section 4
overviews the steps of our analysis and section 5 formally
defines the analysis properties. Section 6 discusses related

1 In this paper we will use the terms XSLT stylesheet and XSLT
program interchangeably.

work and section 7 provides a summary and ideas for
future work.

2 Background
We begin by briefly reviewing some concepts regarding
DTDs, XPath and XSLT, though we assume the reader
already has a basic knowledge of these. We also introduce
DTD-Graphs and define an abstract view of XSLT syntax,
which forms the basis for our techniques.

2.1 DTDs
An XML DTD (Bray et al 2000) provides a structural
specification for a class of XML documents. It is used for
validating the correctness of XML data. An example DTD
is in figure 1.

<!ELEMENT PLAY (TITLE, PERSONAE, SCNDESCR, PLAYSUBT,
ACT+)>
<!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>
<!ELEMENT PGROUP (PERSONA+, GRPDESCR)>
<!ELEMENT ACT (TITLE, SUBTITLE*, SCENE+)>
<!ELEMENT SCENE (TITLE, SUBTITLE*, (SPEECH |
STAGEDIR)+)>
<!ELEMENT SPEECH (SPEAKER+, (LINE)+)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT PERSONA (#PCDATA)>
<!ELEMENT GRPDESCR (#PCDATA)>
<!ELEMENT SCNDESCR (#PCDATA)>
<!ELEMENT PLAYSUBT (#PCDATA)>
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT LINE (#PCDATA)>
<!ELEMENT STAGEDIR (#PCDATA)>
<!ELEMENT SUBTITLE (#PCDATA)>
<!ATTLIST PLAY CATEGORY CDATA #REQUIRED>

Figure 1: play.dtd for the XML document of
Shakespeare’s plays

<!ELEMENT> in the DTD is used for declaring the syntax
of an element. <!ATTLIST> is used to declare the syntax
of attribute(s) of an element.

In figure 1, <!ELEMENT PLAY (TITLE, PERSONAE,
SCNDESCR, PLAYSUBT, ACT+)> shows that the PLAY
element contains an element sequence of TITLE,
PERSONAE, SCNDESCR, PLAYSUBT and ACT.
<!ELEMENT TITLE (#PCDATA)> shows the declaration
for the leaf element TITLE, namely, an element with
parsed character text value. <!ATTLIST PLAY
CATEGORY CDATA #REQUIRED> shows that there
exists an attribute CATEGORY of element PLAY.
DTDs use well-known regular expression syntax for
describing the structure of child elements:

• +: one or more occurrences of a child element.

• *: zero or more occurrences of a child element.

• ?: zero or one occurrence of a child element .

• element_1 , element_2 : element_1 followed
element_2.

• element_1 | element_2: Either element_1 or
element_2 not both.

2.2 DTD-Graph
We define a structure we call the DTD-Graph, for
summarizing the hierarchical information within a DTD
and removing information that isn’t necessary for our
analysis. This is a rooted, node-labelled graph, where each
node represents either an element or an attribute from the
DTD and the edges indicate element nesting.

Rules used when generating the DTD-Graph are

• The *, ? and + symbols are ignored. For example,
both SUBTITLE* and SUBTITLE+ are treated as
SUBTITLE in the DTD-Graph.

• The alternation operator “|” is treated as
conjunction. For example, <!ELEMENT PERSONAE
(TITLE, (PERSONA | PGROUP)+)> will be regarded as
<!ELEMENT PERSONAE (TITLE, PERSONA,
PGROUP)>

• All attribute declarations are treated as element
declarations in the variation file of original DTD
and start with symbol @. For example,
CATEGORY attribute declared in <!ATTLIST
PLAY CATEGORY CDATA #REQUIRED> will
be merged into its parent element declaration as a
child element use the form as : <!ELEMENT
PLAY (@CATEGORY, TITLE, PERSONAE,
SCNDESCR, PLAYSUBT, ACT)>

The DTD-Graph is a graphical version of the resulting
DTD after the application of these rules. It is a lossy
transformation of the original DTD. This loss is essentially
with respect to information about “how many” children
can occur under a parent element. Information about the
“possibility of existence” of a particular child element is
retained. This means that all documents adhering to the
original DTD, are also valid with respect to the
DTD-Graph. The DTD-Graph is similar to the Dataguide
structure described in (Goldman and Widom 1997).

For example, the DTD in figure 1 can be represented by
the graph in figure 2:

PLAY

TITLE
PERSONAE

PLAYSUBTITLE

SCNDESC

PERSONA PGROUP

GRPDESC

ACT

SCENE

SUBTITLE

SPEECH

STAGEDIR

SPEAKER LINE

@CATEGORY

Figure 2: A DTD-Graph of DTD in figure 1

We will later use the DTD-Graph to help eliminate
potential calling relationships in the XSLT program. A
more detailed description of DTD-Graph generation is
given in figure 3.

Algorithm_1: DTD-GraphGeneration

Input: DTD

Output: DTD-Graph

//Pre-generation

[01]retrieve <!ELEMENT> and <!ATTLIST> tags from DTD

[02]delete all “*”, “+” and “?” symbols in <!ELEMENT> tags

[03]replace symbol “|” in <!ELEMENT> with symbol “,”

[04]delete all inner parentheses in <!ELEMENT> tags

[05]foreach <!ATTLIST> do

[06] merge ATTIBUTE_NAME into corresponding

 <!ELEMENT> tag within the outer parentheses

 as children ELEMENT_NAME

[07] delete <!ATTLIST>

[08]endforeach

//Generation

[09]Graph DTD_Graph=EMPTY

[10]foreach <!ELEMENT> tag do

[11] create a node in DTD_Graph

[12] if (<!ELEMENT> is NOT a leaf node) then

[13] create nodes for its child ELEMENTs in the

 DTD-Graph

[14] create edges from ELEMENT node to each child

 ELEMENT

[15] endif

[16]endforeach

[17]output DTD-Graph

Figure 3: Algorithm for DTD-Graph generation

2.3 Templates in XSLT
We next outline an abstract view of XSLT syntax. We will
assume familiarity with the basics of XSLT. Our analysis
techniques are applicable to XSLT programs that make use
of the following constructs: <xsl:apply-templates>,
<xsl:template>, <xsl:for-each>, <xsl:if>, <xsl:choose>,
<xsl:value-of>, <xsl:copy-of>. This represents a
reasonably powerful and commonly used fragment of the
language. We also place some restrictions on XPath
expression syntax, described later.

It is well known that an XML document can be modelled
as a tree. In XSLT, one defines templates (specified using
the command <xsl:template>) that match a node or a set
of nodes in the XML document tree. XSLT templates
enable the designer to specify how the transformation
should be carried out. Execution of an XSLT program
essentially corresponds to ‘walking’ through the tree,
applying the appropriate templates. Each template has a
selection pattern, specified using the match attribute of the
<xsl:template> element, to indicate for which nodes the
template is applicable. The content of the template
specifies how that node or set of nodes should be

transformed. Before getting into the details of XSLT, we
first give a working example of an XSLT program in
figure 4, that will be used throughout the remaining part of
this paper.

[01]<?xml version="1.0" encoding="UTF-8"?>
[02]<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
[03]
[04] <xsl:template match="/">
[05] <xsl:apply-templates select="PLAY"/>
[06] </xsl:template>
[07]
[08] <xsl:template match="PLAY">
[09] <xsl:for-each select="PERSONAE/PERSONA">
[10] <xsl:copy/>
[11] </xsl:for-each>
[12] <xsl:for-each select="STAGEDIR">
[13] <xsl:copy/>
[14] </xsl:for-each>
[15] <xsl:if test="ACT/TITLE='ACT I'">
[16] <xsl:apply-templates select="ACT/SCENE/TITLE"/>
[17] </xsl:if>
[18] <xsl:if test="ACT/TITLE=’ACT II’">
[19] <xsl:for-each select="ACT/SCENE/LINE">
[20] <xsl:copy/>
[21] </xsl:for-each>
[22] </xsl:if>
[23] <xsl:apply-templates select="PERSONAE"/>
[24] <xsl:apply-templates select="ACT/STAGEDIR"/>
[25] </xsl:template>
[26]
[27] <xsl:template match="PERSONAE">
[28] <xsl:apply-templates select="PGROUP/PERSONA"/>
[29] </xsl:template>
[30]
[31] <xsl:template match="PGROUP/PERSONA">
[32] <xsl:apply-templates select="//PERSONAE"/>
[33] </xsl:template>
[34]
[35] <xsl:template match=" ACT/STAGEDIR ">
[36] <xsl:copy/>
[37] </xsl:template>
[38]
[39]</xsl:stylesheet>

Figure 4: XSLT example designed using the DTD
shown in figure 1

Looking at the example, we see the template element
<xsl:template match=”PLAY/ACT”> represents the node
or node set in the XML tree matching the XPath selection
pattern “PLAY/ACT”. i.e. all ACT nodes with PLAY as
parent node. We will henceforth use <t> to denote use of
the <xsl:template> element.

When the XSLT processor finds a node that matches <t>’s
pattern, that node becomes the context node, and further
processing is then performed with respect to that node.

2.4 XSLT Template Calling Relationships
We now briefly outline the kinds of calling elements and
relationships within an XSLT program.

2.4.1 <xsl:apply-templates>
The <xsl:apply-templates> element is used to instruct the
XSLT processor that it should find any matching templates
for the child node of the current context node. A

construction pattern may optionally be specified using the
select attribute in <xsl:apply-templates>, to select the
nodes for which template matches need to be found. If no
construction pattern appears in a template, then all
children of the current node are processed. In this case, the
processor will provide a series of built-in templates, to
process corresponding nodes. For specifying template
calling relationships in XSLT, we use <a> to denote the
<xsl:apply-templates> statement with (possibly) a
construction pattern. A simple skeleton example of an
XSLT template calling relationship is shown in figure 5.

<t0>

<a1 >

…

</t0>

<t1> … </t1>

Figure 5: A simple template calling relationship
activated by element <a> inside <t>

In this figure, template <t0> calls template <t1> by
application of the statement <a1> inside <t0>. Any node
satisfying the construction pattern of <a1> must also
satisfy the selection pattern of <t1>, for it to be applicable.

An XSLT fragment extracted from figure 4 that uses the
calling structure <t>-<a>-<t> is listed in figure 6.

[01]<?xml version="1.0" encoding="UTF-8"?>
[02]<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
[03]
[04] <xsl:template match="/">
[05] <xsl:apply-templates select="PLAY"/>
[06] </xsl:template>
[07]
[08] <xsl:template match="PLAY">
 …
[25] </xsl:template>
 …
[35]</xsl:stylesheet>

Figure 6: An XSLT fragment with the template calling
relationship structure of <t>-<a>-<t>

In figure 6, the template calling will occur from a <t>
template <xsl:template match="/"> to another <t>
template <xsl:template match="PLAY">, via the <a>
calling element <xsl:apply-templates select="PLAY"/>.
Here, the XSLT processor will check the correspondence
of the sets of nodes obtained by evaluating the
construction pattern of <a> and the sets of nodes obtained
by evaluating the selection pattern of <t>. If the two sets
intersect, there is a calling relationship.

2.4.2 <xsl:for-each>
Similar to functional programming, one can write XSLT
programs using either a folding or an unfolding style. The
example in figure 5 presented a folding style calling
relationship. It is generally used for the template calling

with multiple callers. To use the unfolding style, the
element <xsl:for-each> is used within a template. This is
generally used for template calling relationships having a
single caller. We use <f> to denote the <xsl:for-each>
element with a construction pattern. A simple unfolding
XSLT template calling relationship example is shown in
figure 7.

<t0>

 <f1>….. </f1>

</t0>

Figure 7: A simple example for the unfolding style
XSLT template calling relationship

In this example the processor would try to find matches for
all children of the context node, satisfying the construction
pattern in template <f1>. We will denote <t>-<a>-<t> and
<t>-<f> for the folding and unfolding template calling
relationship styles respectively.

An XSLT fragment extracted from figure 4 that uses the
template calling structure from figure 7 is listed in figure 8.
The <xsl:for-each> element is in fact considered to be a
template and so in this example, there is a calling
relationship between the outer template in line 8 and the
inner template in line 12.

…
[08] <xsl:template match="PLAY">
 …
[12] <xsl:for-each select="STAGEDIR">
[13] <xsl:copy/>
[14] </xsl:for-each>
 …
[25] </xsl:template>

…

Figure 8: An XSLT fragment with the template calling
relationship structure of <t>-<f>

It is worth noting that there are some important differences
between function calling in imperative languages such as
C or Java and XSLT template calling. In such languages,
functions are called explicitly by name, whereas the XSLT
template calling mechanism is based on pattern matching.
Templates are not explicitly called by name, rather,
pattern matching is activated by a calling statement (e.g.
<a> in <t>) or for-each structure (e.g. <f> in <t>) and a
template which matches the corresponding pattern
expression is chosen for execution.

2.5 <xsl:if> and <xsl:choose>
XSLT uses the elements <xsl:if> and <xsl: choose> for
achieving branching. For both of these cases, we need to
describe a more complex conditional template calling
relationship. In this paper, we use <c> to denote all
conditional elements in XSLT, including <xsl:if> and
<xsl:choose>. A simple example is shown in figure 9.

<t0>

 <c1><a1></c1>

 <c2><f2>…</f2></c2>

</t0>

<t1> …</t1>

Figure 9: A simple example for conditional template
calling relationship

The example in figure 9 means that <t0> is the parent
template(caller) match for the context node, <t1> will be
called iff <c1> is true, the <a1> is a calling statement
within <t0>; <f2> will be called iif <c2> is true. We use
<t0>-<c1>-<a1>-<t1> and <t0>-<c2>-<f2> to denote the
cases of two conditional template calling relationship in
figure 9.

Two fragments of the XSLT program from figure 4 are
shown below in figure 10, which present the conditional
template calling relationships. The apply statement in line
16 will only occur if the ‘if’ test in line 15 is true. The
‘for-each’ template in line 19 will only be called if the ‘if’
test in line 18 is true.

[15] <xsl:if test="ACT/TITLE='ACT I'">
[16] <xsl:apply-templates select="ACT/SCENE/TITLE"/>
[17] </xsl:if>

 …
[18] <xsl:if test="ACT/TITLE=’ACT II’">
[19] <xsl:for-each select="ACT/SCENE/LINE">
[20] <xsl:copy/>
[21] </xsl:for-each>
[22] </xsl:if>

…

Figure 10: An example of conditional template calling
relationship

Table 1 provides a summary for the XSLT template calling
relationships we have discussed.

 Folding Unfolding

unconditional <t>-<a>-<t> <t>-<f>

Conditional <t>-<c>-<a>-<t> <t>-<c>-<f>

Table 1: Summary for the basic structures of XSLT
template calling relationship

2.6 XPath
Selection patterns (S. Maneth and F. Neven 2000) in
XSLT are specified using a subset of the XPath language
(a separate W3C recommendation) and can be used in the
match attribute of the <xsl:template> elements. For
example “PLAY/ACT/SCENE/SPEECH” is an XPath
expression that selects “SPEECH” nodes from the XML
tree along the path of “PLAY/ACT/SCENE/”.

Construction patterns are specified using the full XPath
language and can be used in the select attribute of the
element <xsl:apply-templates>, <xsl:for-each> and
<xsl:value-of>. If the construction pattern is missing
from an <xsl:apply-templates> element, we assume it is
equal to ‘//*’ (which is a safe approximation of the
semantics for our analysis).

In this paper, we place some further restrictions on the
syntax of XPath for use in construction and selection
patterns (since the full XPath language is very difficult to
analyse precisely). We define a fragment we call
simple-XPath(similar to J. Bailey et al. 2002). This
disallows the use of any axis other than child, parent, self,
descendant-or-self and the use of functions. It represents a
useful and reasonably expressive fragment. The syntax is
given by the following grammar.

e denotes an XPath expression, P denotes a path
expression, q denotes a qualifier, n denotes an element or
attribute:

e::= (‘/’ | ‘//’ | ‘./’ | ‘.//’) p

P::= P ‘/’P | P ‘//’ P | P ‘ [’ q ‘]’ | n | * | @n | @* | .

q::= e | p

So an XPath expression starts by establishing a context,
followed by a path expression p and then an optional
qualifier. We allow the use of any construction patterns
that conform to this grammar. We allow the use of any
selection patterns which conform to this grammar and
additionally do not make any use of the symbol ‘.’.

We now further define some useful terminology and
operators for XPath expressions. Expressions enclosed in
‘[’ and ‘]’ in an XPath expression are called qualifiers. If
we delete all qualifiers (along with the enclosing brackets)
from an XPath expression, we are left with a path of nodes.
We call this path the distinguished path of the expression
and the node at the end of the distinguished path is the
distinguished leaf of the expression. The nodeset of an
XPath expression e, is a set of nodes, namely those
matched by the distinguished leaf of the expression. The
nodeset of e, denoted nodeset(e), is one of an element
name n, or * (where * denotes any element name), or @n,
or @* (denoting any attribute). The nodeset can be
determined as follows.

Let p be the distinguished path of e. If the leaf of p is @n
or @*, nodeset(p) is either {@n} or {@*}. If the leaf of p
is n or *, then nodeset(p) is either {n} or {*}. Otherwise
nodeset(p) is {*, @*}, which represents ‘all possibilities’.

XPath is also used within <xsl:if> elements for describing
test conditions. E.g. <xsl:if test=”ACT/TITLE=’ACT II’
”>, where ACT/TITLE is the XPath test expression. We
require XPath test expressions to have the same syntax as
selection patterns described above.

Our algorithms will require a function Eval, for selecting
the set of nodes in the DTD-Graph, that match a simple
XPath expression p. Eval(p) applies the XPath expression
p to the DTD-Graph, treating the DTD-Graph as a rooted
XML document tree (if the DTD-Graph has cycles, some
extra work to ensure termination is needed, but we omit

the details). It thus returns the set of matching nodes in the
graph for the expression p.

3 XSLT Raw Template and Association Graph
(Raw-TAG)

We now describe construction of a Template and
Association Graph for modelling the structure and calling
relationships between the components of the XSLT
program. To construct this graph, we first create a
succinct version of the original XSLT program. This uses
the previously mentioned abbreviations for the xsl element
names (t for template, a for apply-templates, f for for-each,
etc) and deletes any occurrences of <xsl:copy-of> (since it
can have no effect on calling relationships). E.g. our
previous example now becomes:

[01]<?xml version="1.0" encoding="UTF-8"?>
[02]<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
[03]
[04] <t match="/">
[05]
[06] </t>
[07]
[08] <t match="PLAY">
[09] <f select="PERSONAE/PERSONA">
[10]
[11] </f>
[12] <f select="STAGEDIR">
[13] <xsl:copy/>
[14] </f>
[15] <c test="ACT/TITLE ='ACT I'">
[16] <xsl:apply-templates select="ACT/SCENE/TITLE"/>
[17] </c>
[18] <c test="ACT/TITLE ='ACT II'">
[19] <f select="ACT/SCENE/LINE">
[20]
[21] </f>
[22] </c>
[23]
[24]
[25] </t>
[26]
[27] <t match="PERSONAE">
[28]
[29]
[30]
[31] <t match="PGROUP/PERSONA">
[32]
[33] </t>
[34]
[35] <t match=" ACT/STAGEDIR ">
[36]
[37] </t>
[38]
[39]</xsl:stylesheet>

Figure 11: The succinct XSLT of figure 4

We term the graph that will be created the Raw-TAG (Raw
Template and Association Graph). The term Raw is used
to indicate it is based on the “raw’’ XSLT program
(without reference to the DTD). The Raw-TAG is a rooted
node-labelled graph. There are two kinds of nodes in TAG.
Nodes used to represent template elements in XSLT (<t>
and <f>), are called template nodes and are represented
graphically by rounded rectangles. Nodes used to
represent calling statement elements (<a>) and conditional
elements (<c>) in XSLT and value selections
(<xsl:value-of>) are called association nodes and are

represented graphically by diamonds. Information such as
element name, pattern value and line number in the XSLT
program are recorded as the node label. We use edges
between template nodes and association nodes to represent
the structure and calling relationships between
components of the program.

We note that the Raw-TAG will be an approximation of the
calling relationships. Edges really represent the
‘possibility’ that calling might occur. The lack of an edge
between nodes, represents the fact that a calling
relationship is impossible.

We now describe the rules for creating edges between the
template nodes and association nodes in table 2. After
creating all the nodes, all pairs of template and association
nodes are examined and edges created if certain conditions
hold.

Structure Edge Creation

<t>-<e>
Edge(t,e), if e is one of a,f,v or c and
parent(t,e)

<f>-<e>
Edge(f,e), if e is one of a,f,v or c and
parent(t,e)

<c>-<e>
Edge(c,e), if e is one of a,f,v or c and
parent(t,e)

<a>-<t>
Edge(a,t), if NodeSet(Ca) ∩ NodeSet(Ct) <>
empty

Table 2: The rules of creating the edge of Raw-TAG

The first three rules in this table are based on checking the
existence of parent child relationships between node pairs
and follow straightforwardly from the program syntax.
The intuition is that if the second element is nested inside
the first, then a call can be said to happen between the first
and the second. The fourth <a>-<t> rule checks whether
the nodes that could be matched by the construction
pattern of <a> intersect with the nodes that could be
matched by the selection pattern of <t>. If the intersection
is true, then the calling relationship is possible, otherwise
it would be impossible.

Figure 12 is the Raw-TAG of the XSLT stylesheet shown
in figure 4. The root (stylesheet node is a special case and
we assume it has an implicit apply-templates call).

<stylesheet>,
02

<t
match="/">,04

<f
select="PERSONAE/PE

RSONA">,09

<t
match="PLAY">,08

<f
select="STAGEDI

R">,12

<t
match="PERSONAE">,27

<f
select="ACT/SCENE/L

INE">,19

<t
match="PGROUP/PERS

ONA">,31

,05

<c
test="ACT/TITLE/text(

)='ACT I'">,15

<a
select="ACT/SCENE/TIT

LE"/>,16

<a
select="//PERSONAE"

/>,32

<a
select="PGROUP/PERSONA"

/>,28

,23

<c
test="ACT/TITLE/text()=

'ACT II'">,18

<t
match="ACT/STAGEDI

R">,35

<a
select="ACT/STAGED

IR">,24

Figure 12: The Raw-TAG of the XSLT stylesheet in

figure 4

It can be seen that there is an edge from the stylesheet to
each of the five templates that have been defined. As an
example, the template from line 31 (in the bottom left of
the graph) can call the template from line 27 (in the top
right of the graph), via the apply templates statement on
line 32 (represented using the diamond association).

3.1 Refined-TAG
The Raw-TAG is based solely on the syntactic structure of
the XSLT program. Tests for calling relationships rely
only on either element nesting or simple nodeset
equivalences. We now describe how to construct a more
precise structure, we call the Refined-TAG, which uses
information from a supplied DTD (assuming one exists)
that describes the nature of the XML input. The nodes of
the Refined-TAG are the same as the nodes of the
Raw-TAG. The set of edges in the Refined-TAG is a subset
of the set of edges in the Raw-TAG (i.e. some of the
Raw-TAG edges are eliminated based on DTD
information). We will shortly define the rules for selecting
which edges are in the Raw-TAG, but not in the
Refined-TAG. We begin with some more notations.

Let Ca, Cv, Cf be arbitrary construction patterns of <a>,
<v> and <f> nodes respectively. Let Ct be an arbitrary
selection pattern for the <t> node and let Cc be the test
expression for an <if> node. Let Cx be one of Ca, Cv and Cf.
Then Cx' is the expression Cx modified so that it will be
evaluated with respect to all descendants of the root node.
The function Strip removes an initial ‘./’ if one exists.

Cx' = Cx , if Cx begins with ‘/’ or ‘//’

 = //Strip(Cx), otherwise

e.g. If Cx=q/r/s[a], then Cx' = //q/r/s[a]. If Cx = ./q/r/s[a],
then Cx'=//q/r/s[a].

Special case: If Cx = ‘.’, then define Cx' = ’//*’.

The function Concat is used to concatenate two XPath
expressions Cx and Cy and make the concatenated result
which will be evaluated with respect to all descendants of
the root node. If Cy is an expression with respect to the root
node then the output is just Cy.

Concat(Cx, Cy) = Cx' /Strip(Cy) , if Cy does not begin

 with ‘/’ or ‘//’

 =Cy ,otherwise

e.g. Concat(q/r/s, ./a/b/c)=/q/r/s/a/b/c.

Concat(q/r/s, /a/b/c)=/a/b/c.

The rules for removing edges are now described. These
rules use the function Eval to check if XPath expressions
are valid with respect to the DTD. Assume e is one of
{c,v,a,f}:

Edge Type Edge Removal Condition

edge(t, e) Eval(Concat(Ct, Ce))= empty
edge(a, t) Eval(Ca') ∩ Eval(Ct')= empty

Table 3: The rules of removing the edges from
Raw-TAG and create Refined-TAG

The first rule removes an edge if the concatenated path
between a <t> node and a {c,v,a,f} node is invalid with
respect to the DTD-Graph. The second rule removes an
edge if none of the nodes that could be selected by a
construction pattern in the <a> element intersect with any
of the nodes that could be selected by the selection pattern
in the <t> element. The DTD-Graph is used to find the
sets of possible nodes that could be selected by a given
pattern.

Figure 13 is the Refined-TAG of the XSLT program from
figure 4. The edges which have been removed from the
Raw-TAG are the edge from <t match=”PLAY”> to <f
select=“STAGEDIR”>, the edge from <t match=
“PLAY”> to <f select=“ACT/SCENE/LINE”> , the edge
from root node(<stylesheet>) to <t
match="ACT/STAGEDIR"> and the edge from <t select=
“PLAY”> node to <t match="ACT/STAGEDIR">. The
first is impossible because the path “//PLAY/STAGEDIR”
doesn’t exist in the DTD graph, the second is impossible
because the path “//PLAY/ACT/SCENE/LINE” doesn’t
exist in the DTD graph , the third is impossible because the
path “//ACT/STAGEDIR” doesn’t exist in the DTD-Graph
and The forth is impossible because the path
“//PLAY/ACT/STAGEDIR” doesn’t exist in the DTD
graph (we assume the root node has an implicit
apply-templates statement).

<stylesheet>,

02

<t match="/">,04

<f
select="PERSONAE/PE

RSONA">,09

<t
match="PLAY">,08

<f
select="STAGEDI

R">,12

<t
match="PERSONAE">,

27

<f
select="ACT/SCENE/L

INE">,19

<t
match="PGROUP/PERSONA">

,31

,05

<c
test="ACT/TITLE/text()=

'ACT I'">,15

<a
select="ACT/SCENE/

TITLE"/>,16

,32

<a
select="PGROUP/PERSONA"

/>,28

,23

<c
test="ACT/TITLE/text()=

'ACT II'">,18

<t
match="ACT/STAGEDIR">,

35

<a
select="ACT/STAGED

IR">,24

Figure 13: The Refined-TAG of the XSLT stylesheet in
figure 4

4 The overview of processing
Figure 14 summarises our analysis approach.

DTD XSLT

Invalid Template
Calling Relationship

Checking

Static Analysis

DTD-Graph Raw TAG

Invalid Template
Calling

Relationship Set

DTD PARSER XSLT PARSER

Refined TAG

Termination
Checking

Unreachable
Template Checking
Missing Template

Checking

Unreachable
Template Set

Missing Template
Set

 Termination Result

Figure 14: The procedure of XSLT analysis

As can be seen, the main steps in the process are:

Step_1: Parsing the supplied DTD and generating the
DTD-Graph.

Step_2: Generating the Raw-TAG by parsing the given
XSLT stylesheet and applying the rules in Table 2

Step_3: Generating the Refined-TAG from the Raw-TAG
by using the DTD-Graph and the rules in Table 3.

Step_4: Outputting the desired analysis information
(unreachable template set, missing template set, invalid
template calling relationship set and termination
determination result), either by direct examination of the
Raw-TAG, or by comparing the Raw-TAG with the
Refined-TAG.

In the next section, we discuss the information which can
be found by our analysis.

5 Analysis Information
We now describe the properties we can analyse using our
method. We envisage all of these properties as being
helpful to the XSLT designer in identifying possible
program errors.

5.1 Unreachable Templates
Unreachable templates correspond to parts of the program
code that will never be executed at run-time. Their
presence may represent either an error in the program or a
possible opportunity for code optimisation.

Definition_1: An unreachable template is a template that
will not be matched during XSLT program execution on
any input XML document conforming to the given DTD.

We can find sets of unreachable templates by direct
examination of the Refined-TAG, as the following
proposition shows.

Proposition_1: An unreachable template is a template
node in the Refined-TAG which cannot be reached by any
directed path beginning from the root (stylesheet) node.

Recall that although there exist edges in the Refined-TAG
that could not be followed at run-time, the absence of
edges between nodes has been constructed precisely and
thus it is safe to deduce unreachability, if a path can’t be
found. In the Refined-TAG of XSLT example in figure
13, the template nodes labelled by <f
select="ACT/SCENE/LINE">, <f match="STAGEDIR">
and <t match="ACT/STAGEDIR"> correspond to
unreachable template nodes.

5.2 Missing templates
It is possible that within an XSLT program, there may be a
construction pattern which will never be matched by any
selection pattern of an <xsl:template> element (rather like
a function call to a non-existent function). We term this
situation as a missing template. i.e. There appears to be a
call to a template which does not exist. This is a likely
indication that there is an error in the program. Such
missing templates can be found again by direct
examination of the Refined-TAG.

Proposition_2: An <a> association node without any
outgoing edge in the Refined-TAG indicates the existence
of a missing template.

Information about such missing templates can then be
checked by the program author to check for possible
errors.

In the Refined-TAG of XSLT example in figure 13, the
association nodes labelled by indicates a missing
template.

5.3 Invalid Template Calling Relationships
When writing complex XSLT programs, it is easy for
invalid template calling relationships to occur. These are
calling relationships which seem to exist due to the
syntactic structure of the XSLT program, but in fact cannot
occur due to the constraints present within the DTD. The
occurrence of such a situation may likely correspond to
errors in the XSLT code design, arising from the designer
having an inadequate knowledge of the DTD. Such errors
would normally be more difficult to detect, since they are
not the result of incorrect syntax, but instead manifested by
incorrect transformation output.

Definition_2: An invalid template calling relationship is a
pair of template nodes, with a path existing between them
in the Raw-TAG, but no path existing between them in the
Refined-TAG.

For example, the <t match=”PLAY”>-<f
select=”STAGEDIR”>, the <t match=”PLAY”>-<f
select=”ACT/STAGEDIR”> and the <t
match=”PLAY”>-<t select="ACT/SCENE/LINE"> are
three invalid template calling relationships in the XSLT
stylesheet shown in figure 4.

5.4 Program Termination
An infinite template calling loop can have catastrophic
consequences and result in the failure of execution of the
transformation. Current XSLT processors offer no support
for detecting or handling such infinite behaviour. Instead,
outputs are often cryptic stack overflow errors, or a blank
output window in the browser. It is thus important to be
able to verify whether a given XSLT program can be
guaranteed as being terminating for all possible inputs.

Definition_3: An XSLT program is terminating if
execution halts for all possible input XML documents that
conform to the DTD. Otherwise it is non-terminating.

A conservative termination analysis can be performed
with respect to the Refined-TAG, as the following
proposition shows.

 Proposition_3: An XSLT program is terminating if no
cycle exists in the Refined-TAG. Otherwise, it is possibly
non-terminating.

Looking at the example XSLT shown in figure 4, we
would conclude that it is possibly non-terminating, since
there is a cycle including the nodes of <t
match="PGROUP/PERSONA">, , <t match="PERSONAE"> and
 in the Refined-TAG
in figure 13. Observe that we cannot deduce definite
non-termination from the presence of cycle, since edges in
the Refined-TAG only represent possible calling
relationships.

6 Related work
To the authors’ knowledge, no other work has been done
on graph based static analysis of XSLT.

XPath analysis and XPath based XML query optimization
have been considered in a large number of papers, e.g. S.
Abiteboul and V. Vianu in 1997, A. Deutsch and M.
Fernandez et al in 1999, Li and Moon in 2000. A schema
tree based on XML for XML view query was proposed by
C. Li, P. Bohannon, H. F. Korth, P.P.S. Narayan. 2003.
The schema is established based on the XML and XML
query view, but not from the DTD. L. Villard, N. Layaida
developed an incremental XSLT transformation processor
and provided some XSLT analysis based on the
incremental XML. The emphasis is on optimisation rather
than analysis though. The work in (Maneth and Neven
2000) gives an automata theoretical analysis of XSLT
programs, but does not include the use of a DTD. An

XSLT template call-graph was described in (Jain,
Mahajan, and Suciu 2002) as part of a translation scheme
from XSLT to SQL. It differs from our work, since they
focus on the model of <t>-<a>-<t> calling structure and
the behaviour of <xsl:variable> and <xsl:param>. The
<xsl:for-each> element was not considered and no DTD
used. Neither reachability nor termination properties were
considered.

7 Conclusion
In this paper, we have proposed a method for static XSLT
program analysis based on using a DTD. We demonstrated
how to build graphs with calling relationships that are
established based on the checking of XPath expressions.
We described four important analysis properties which can
be deduced from our association graphs: unreachable
templates, missing templates, invalid template calling
relationships and XSLT program termination. We believe
that discovery of these properties represents valuable
information for the program designer.

As part of future work, we would like to investigate
extending our analysis to handle further XSLT syntax,
such as the use of functions and other XPath axes. The
precision of the analysis could potentially be improved by
considering extra aspects such as template priority. We
also intend to examine the use of the Refined-TAG for
program optimisation at run-time.

Reference
S. Abiteboul and V. Vianu. (1997): Regular path queries

with constraints. In the 16th ACM
SIGACT-SIGMOD-SIGSTART Symposium on
Principles of Database Systems,Tucson, AZ.

J. Bailey, A. Poulovassilis, P. T. Wood (2002): An
Event-Condition-Action Language for XML
Proc.Conf.WWW2002, Honolulu, Hawaii, USA.

P. Buneman, S. Davidson, G. Hillebrand and D. Suciu.
(1996): A query language and optimization techniques
for unstructured data. Proc. ACM SIGMOD, pages
505-516.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen, and E.
Maler (2000): W3C Recommendation. Extensible
Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml#dt-doctype.

J. Clark. (1999): W3C recommendation. XSL
Transformations (XSLT) version 1.0
http://www.w3.org/TR/xslt.

A. Deutsch and V. Tannen. (2003): Containment and
integrity constraints for XPath. Proc. KRDB 2001,
CEUR Workshop Proceedings 45.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D.
Suciu. (1999): A query language for XML. Proc.of 8th
Int’l. World Wide Web Conf.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xslt

R. Goldman and J. Widom. (1997): DataGuides: Enabling
query formulation and optimization in semi-structured
database. Proc. Int’l Conf on VLDB, Athens, Greece.

S. Jain and R. Mahajan and D. Suciu (2002): Translating
XSLT Programs to Efficient SQL Queries. Proceedings
of WWW 2002.

M. Kay. (2000): Saxon XSLT Processor.
http://saxon.sourceforge.net/.

M. Kay. (2001): Anatomy of an XSLT Processor.
http://www-106.ibm.com/developerworks/library/x-xslt
2/

C. Li, P. Bohannon, H. F. Korth, P.P.S. Narayan. (2003):
Composing XSL transformations with XML publishing
view. SIGMOD 2003, San Diego, CA.

Q. Li, B. Moon. (2001): Indexing and querying XML data
for regular path expressions. Proc. Int’l Conf on VLDB,
Roma, Italy.

S. Maneth and F. Neven (2000): Structured document
transformations based on XSL.

L. Villard, N. Layaida. (2002): An incremental XSLT
transformation processor for XML document
manipulation. Proc. World Wide Web 2002, Hawaii, USA.

W3C. XSL transformations(XSLT) version 2.0.
http://www.w3.org/TR/xslt20/.

World Wide Web Consortium. XML Path
Language(XPath) Recommendation.
http://www.w3.org/TR/xpath.

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://www.w3.org/TR/xpath

	Introduction
	Background
	DTDs
	DTD-Graph
	Templates in XSLT
	XSLT Template Calling Relationships
	<xsl:apply-templates>
	<xsl:for-each>

	<xsl:if> and <xsl:choose>
	XPath

	XSLT Raw Template and Association Graph (Raw-TAG)
	Refined-TAG
	Figure 13: The Refined-TAG of the XSLT stylesheet in figure 4

	The overview of processing
	Analysis Information
	Unreachable Templates
	Missing templates
	Invalid Template Calling Relationships
	Program Termination

	Related work
	Conclusion
	Reference

