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ABSTRACT

Trajectory inference from raw location samples of a mobile
device is an important task for many location based services,
such as crowd sourced traflic monitoring, fleet management
and personalized trip planning. This task becomes challeng-
ing when location samples are obtained only from the con-
nected cell towers (GSM localization), instead of using other
localization sensors such as GPS or Wi-Fi. Cell tower based
localization consumes negligible energy compared to GPS or
Wi-Fi and has high availability. However, it can have large
inaccuracy, making the task of cellular trajectory mapping
extremely challenging. In previous studies, cellular trajec-
tory inference has been performed assuming the availability
of knowledge of the cellular network or the signal strengths
of the neighbouring cell towers. However, for a mobile ap-
plication running on a user’s device, this information may
be hard to obtain and it may also require additional storage
and computation costs. In this paper, we propose a novel
cellular trajectory inference method which requires only the
user’s connected cell tower location, time and speed informa-
tion. Exploiting the preciseness of the time dimension, we
accurately compute the distance a user has travelled within
a cell and use it to infer the straight line segments and turn-
ing points of a trajectory. We show that using the distance
information of three consecutive cells, exact inference of the
line segment is possible. Our method achieves high accuracy
for trajectory inference in urban areas with high cell density
and straight line road segments. It does not require any his-
torical trajectory information or pre-training and incurs low
storage and computation costs.
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1. INTRODUCTION

With the ubiquitous usage of mobile phones, exploiting
them as location sensing devices has emerged as an attrac-
tive concept [17]. Mobile phone based location sensing is
abundantly used in many applications, such as providing
location based services, network traffic studies, traffic flow
analysis, fleet management, people and object tracking ap-
plications. One important task in these applications is to
infer user trajectories from the location samples obtained
from mobile devices.

For mobile phones, GPS has been the most popular tech-
nology for trajectory data capture in outdoor environments®.
However, GPS based location acquisition has limited ap-
plicability in certain contexts due to high power consump-
tion and poor coverage. Receiving continuous GPS signals
causes the rapid depletion of the phone battery, restricting
long timespan tracking [10,17,18]. GPS signals may not be
available in covered areas such as indoor environments and
areas under thick foliage [12,17].
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Figure 1: Imprecision in cellular trajectories due to coarse
and infrequent location observations
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Compared to GPS, cellular network radio signals are ad-
vantageous due to low energy consumption and higher avail-
ability [10]. Therefore, cellular network positioning is a good
alternative [12,17,18]. However, the challenge for cellular
network positioning is the low precision associated with cel-
lular trajectories [6,19]. In cellular network positioning, the
sequence of cell tower locations a user’s phone is connected
is used as an approximation of the actual trajectory and is
referred to as the cellular trajectory. At a given time, the
user’s actual location maybe anywhere within the coverage
area of the connected cell tower, which may be ~1 km?.
This is a very coarse location estimation. Furthermore, the
distance between two cell tower locations is ~1 km on av-
erage, therefore a user’s location change is observed only

"https:/ /www.glympse.com, http://www.google.com/mobile
/mytracks
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Figure 2: Voronoi cell computation in trajectory inference

infrequently. The user’s trajectory behaviour is thus uncer-
tain and the trajectory obtained by connecting the sample
points is imprecise. Figure 1 shows the high imprecision of
a cellular trajectory compared to a GPS trajectory.

Most existing cellular trajectory inference methods use
knowledge of the cellular network infrastructure, which is
available only to the mobile network operators [3,6,12,19,
20, 21, 22,23]. For example, in a Voronoi based trajectory
inference [6, 19,21, 23], the cellular network is modelled as
a Voronoi diagram and the user’s trajectory as a Voronoi
cell sequence. The computation of the cell boundaries re-
quires full knowledge about the spatial distribution of cell
towers in the network [2,7,19]. Yet, for a locally running
mobile application, only the connected cell tower location se-
quence (partial knowledge) and cell handover times can be
obtained [4,11,16]. Furthermore, the Voronoi based methods
produce an imprecise trajectory (cell area ~1 km?) and incur
high computation and memory costs [7,8] and are thus less
appropriate for applications running on mobile platforms.
Signal strength based methods [1,4,5,13,15,18,22] also re-
quire knowledge such as the spatial distribution of neigh-
bouring cell towers and their signal strengths. Furthermore,
they are susceptible to various problems such as the inac-
curacy of signal strength measurements, device dependency,
high storage and computation costs, and long term training
requirements [4,15,18].

In this paper, we propose a device centric cellular tra-
jectory inference method using partial knowledge about the
cellular network. It requires only the user’s connected cell
tower locations, cell handover times and speed information
which are either locally accessible to (or can be computed
in) a mobile device. For example, a user’s speed information
can be estimated using the phone accelerometer and gyro-
scope?. As shown in Figure 2b, our method computes the
partial Voronoi cell sequence for a trajectory from the con-
nected cell tower locations. As a mobile phone user’s cell
transition usually occurs to an adjacent cell, his/her tra-
jectory is a sequence of adjacent Voronoi cells. Therefore,
for each cell, its two adjacent cells in the sequence are its
Voronoi neighbours, whose cell tower locations are available
for the user (as the user has connected to these cell towers).
A Voronoi edge can be computed for each neighbour, result-
ing in two edges for a given cell (E.g.: V;Vit1 and Vi41Vigo
for C;41, in Figure 2b). Compared to the Voronoi cell se-
quence, computed with full knowledge about the cell tower

http://www.chipworks.com/about-
chipworks/overview/blog/inside-the-iphone-5s,
http://www.addictivetips.com/ios/go-pedometer-view-
walk-speed-calories-burned-without-gps-iphone

distribution (Figure 2a), this partial Voronoi cell sequence
has produced a highly imprecise trajectory.

Using cell handover time and user speed information, we
compute the distance the user travelled within each cell and
use it to infer the straight line segments of the trajectory.
We show that if the user travels along a straight line path
for three consecutive cells, using distance information of the
three cells, exact inference of the straight line is possible.
Therefore, our method achieves high accuracy for trajecto-
ries which are combinations of line segments of longer length.
Such trajectory patterns are common in urban areas, where
the road networks consist of straight line segments and the
cell density is high. The accuracy achieved for such patterns
is significant even though not as high as GPS sometimes.

Furthermore, our method incurs low storage (no location
history is stored) and computation costs (time complexity
is linear to the number of connected cell towers), therefore
is suitable for mobile platforms. As no location history and
pre-training is required, it is even applicable for unfamiliar
environments. The main contributions of our method are:

1. It requires only partial knowledge of the cellular network.

2. It can infer long line segments and turning points of a
trajectory with high precision.

3. It has low storage and computation costs and is therefore
well suited to mobile platforms.

4. It can be deployed for unfamiliar environments and no
pre-training is required.

2. RELATED WORK

Voronoi methods are widely used in system centric cellu-
lar trajectory inference approaches. They require full knowl-
edge of the cellular network, and are common where only a
rough trajectory estimation is satisfactory [6,19,21]. They
are inapplicable for device centric inference approaches and
where precise trajectory estimations are required. More-
over, complete Voronoi diagram construction in these ap-
proaches [2, 7] incurs unnecessary computation and mem-
ory costs. Single Voronoi cell computation methods [14, 23]
have reduced this memory requirement by computing only
the cells traversed by the user. However, achieving time
efficiency in computation still remains a challenging task.

Table 1: Applicability of cellular trajectory inference meth-
ods in a device centric setting

Inference Neighbour Pre- Device Memory &
Method Cell Tower  training Depen- Storage
Information dency Costs
Voronoi v X X High
Triangulation v X v Low
MonteCarlo v v v High
Fingerprinting X v v High
TPDA X X X Low

Cell tower triangulation is another commonly used hand-
set positioning method which uses Received Signal Strength
Indicator (RSSI) at a given position as a distance mea-
sure. However, RSSI causes high inaccuracy and ambigu-
ity in location estimations [3,9]; consequently, most cel-
lular triangulation approaches have reported ~150 m er-
ror [3,5,15,20]. They also require knowledge about the
spatial distributions of neighbouring cell tower locations and
their signal strength information, which are not guaranteed



to be available. Monte Carlo methods [1, 13, 22] increase
the accuracy of cellular trajectory inference by predicting a
user’s location where required. However, they are computa-
tionally intensive and require data collection at high sample
rates to gain high accuracy, therefore not suitable for mobile
platforms. Fingerprinting [4, 15, 18] requires no knowledge
about cellular network infrastructure and has achieved high
accuracy, yet it requires long term training, therefore can-
not be used to track users in unfamiliar environments. It
is also problematic for mobile platforms due to high storage
costs and is highly susceptible to device dependency prob-
lem [4]. Thus none of these inference methods is well suited
for a device centric setting. To address this, we propose a
device centric cellular trajectory inference algorithm, Trajec-
tory Pattern Detection Algorithm (TPDA), whose strengths
against existing methods are summarised in Table 1.

3. PROPOSED METHOD

We propose a Voronoi based cellular trajectory inference
method. It uses only device centric knowledge, which is
easily accessible by a mobile phone device such as the con-
nected cell tower location sequence, corresponding handover
times, and the user’s speed. In this method, we suggest
exploiting the preciseness of the time dimension of a cellu-
lar trajectory. Accurate time measurements allow precise
computation of cell handover times, when collected at high
sample rates. This, along with the user’s speed information
is used to compute the distance a user has travelled within
each cell. Using the distance information of three or more
consecutive cells, we accurately infer the straight line tra-
jectory segments which cover these cells and approximate
other trajectory segments accordingly.

3.1 Preliminary Concepts

In this section, we describe some preliminary concepts
used in our algorithms. Our technique is based on the
assumption that a user connects to the geographically
nearest cell tower. With full knowledge of cell tower
distributions, we can model the cellular network as a
Voronoi diagram and the trajectory cells traversed by the
user as an adjacent Voronoi polygon sequence as shown
in Figure 2a. However, with partial knowledge of con-
nected cell tower locations(Cs, Cit1,Ciya,...), we com-
pute the Voronoi edges as the perpendicular bisectors be-
tween each adjacent cell pair. For example, in Figure 2b,
ViVit1, Vig1Vigo, VigaVigs, ... are the computed Voronoi
edges. This produces a partial Voronoi cell sequence and
the user’s actual trajectory is a 2-D poly line or curve inter-
secting this cell sequence.

Cell Cut Length (CCL): The intersection points of a
user’s trajectory with the Voronoi polygon boundaries (or
edges) represent the entry and exit points to and from the
cell. The poly line length between these intersection points
is referred to as the Cell Cut Length of the trajectory within
that cell. Figure 3 shows CCLs for three different trajec-
tories. The trajectory’s CCL within a cell is equal to the
distance d, the user has travelled within that cell. This can
be computed as d=(Texit - Tentry)™ v, where v is the average
user speed and Teqit - Tentry is the time, the user has spent
within the cell. Tepniry and ey are the cell handover times,
i.e., the times when the user has crossed a cell boundary to
enter into and exit from the cell, respectively. The handover
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Figure 3: Cell cut lengths of different shaped trajectories
within same cell boundaries

times can be precisely computed and we assume the user’s
speed information is available.

Definition 1. The CCL of the trajectory within a cell
is the length of the trajectory between the entry and exit
points of the trajectory, to and from the cell.

Number of Cell Cuts (NCC): Given a line segment,
the Number of Cell Cuts is the number of adjacent cells
whose two edges are intersected by the line segment. Fig-
ure 2b shows a line segment with three cell cuts. For a
given cell density, the NCC of a trajectory line segment is
an approximation for its geographical length.

Definition 2. Given a line segment () with the start and
end points, S and FE, and [ intersecting all the cells in an
adjacent cell sequence C; : Cj, such that S € C; or S € e;,i41
and £ € Cj or E € ej_1;, the NCC of | = |C; : Cj| — 2,
where e,y is the boundary between C, and Cy, and |.| is
the cardinality of a cell sequence.

k-Cell Cut: A k-cell cut is a line segment, with a k
number of cell cuts. This shows the straight movement of
the user, without any direction change. Figure 2b shows a
3-cell cut.

Definition 3. A k-cell cut is a line segment whose

NCC=k, where k € Z*, Z* = Z* U {0}.

Latitude

Longitude

Figure 4: Traversal equivalence class for C;:C;11; straight
lines intersecting the same edge pairs with the same CCLs

Traversal Equivalence for a Single Cell: A straight
line segment of a trajectory represents a straight line (L)
on the 2-D plane, with a unique slope (m) and intercept
(c). The set of possible straight lines on the 2-D plane is L
={(m,c), m € (—o0,00) ; ¢ € (—o0,00) }, representing all
possible straight line paths a user can take. Given a Voronoi
polygon, a straight line can intersect at most two polygon
boundaries. There also exist more than one line which inter-
sect the same polygon edge pair with the same CCL, but at
different intersection points. Using this concept, we define
the equivalence relation on set L, with respect to a given



Voronoi cell, as the line segments intersecting the same cell
edge pair with the same CCL. We name this as Traversal
Equivalence Relation (TER) for a given cell C (~¢).

Based on the TER, set L can be partitioned into a set of
equivalence classes, each class representing a different cell
edge pair and CCL combination. All the lines which have
the same CCL within the same cell boundary pairs belong
to the same equivalence class. We name such an equivalence
class as a Traversal Equivalence Class (TEC) for a given cell

C ([l]¢). For example, as shown in Figure 4, [, ' e Ue;-

Definition 4. Assume a line segment [ that overlaps three
adjacent cells C;_1,C;,Ciy1 of a Voronoi diagram. Let L
denote the set of all lines on the 2-D plane. If V;_1V; and
ViVit1 are edges of C; such that 35, E; € INS; € V1 Vi A
E; € V;Vit1, then we define the TEC of [ with respect to C;
as: [l]o;, = {I' € L|l ~¢; I'}

l~c, I & 38, Ep €U NSy € VicaVi NEp € ViVig1 A
|SiE| =[Sy Ep

Traversal Equivalence for a Cell Sequence: For the
scenarios, a straight line intersects an adjacent cell sequence,
C; : Cj, a TER ~cy:c; can be defined with respect to C; :
Cj, on set L. The relation is intersecting the same edge pair
of each cell of the adjacent cell sequence, creating the same
CCLs within each cell.

In this case, an equivalence class ([l]c;:c;) corresponds to
a different cell edge pair sequence and a CCL sequence. All
the lines which have the same CCL sequence within the same
cell edge pair sequence belong to the same equivalence class.
For example, in Figure 4, lines [, I e Nei:ciga -

In this scenario, different TERs can also be defined for
each cell in the sequence (~¢,:~c; ), producing a set of TECs
[llc; : [lc;- Each cell has its own set of TECs, on set L. As
described by the following equation, the TEC of the entire
sequence is the intersection of the TECs of single cells.

J
[l]ciicj = ﬂmck (1)

k=i

3.2 Trajectory Inference

In this section, we describe our methodology for cellular
trajectory inference. We first describe techniques to accu-
rately infer the line segments of a trajectory. We then pro-
vide a methodology for handling the turning point segments.

3.2.1 Exact Inference of a Line Segment

As described in Section 3.1, the elements of a TEC rep-
resent the user’s all possible straight line paths for a given
cell edge and CCL sequence. Trajectory inference involves
inferring all the elements in the corresponding equivalence
class. Therefore, the precision of trajectory inference de-
pends on the cardinality of the equivalence class. The lower
the cardinality of the class the higher is the precision.

According to Equation 1, [l]c;.c; € [l]c;; therefore,
[[llc;:c;| < |[llc;|, where [.] is the cardinality of a set. As the
number of cells in the trajectory cell sequence increases, the
cardinality of the TEC decreases, reducing the number of
possible paths. Therefore, we argue that the line segments
which intersect more number of cells can be more precisely
inferred than the line segments which intersect less number
of cells. Our intuition is to find the minimum NCC, required
to limit the cardinality of the TEC to one, so that we can

uniquely identify the user’s actual straight line path. There-
fore, we computed the cardinality of the TEC for different
k-cell cuts, incrementally increasing k, starting from one. As
the cardinality of TEC for one-cell cuts amounts to infinity,
we next consider the TEC for 2-cell cuts.

— Real Trajectory

SRE . -

Figure 5: Candidate line segment inference for Cii1:Ciyo
and exact straight line inference for C;41:Cit3

2-Cell Cut Inference: Assuming that in a cell in the cell
sequence, the user’s entry cell boundary is not parallel to the
exit cell boundary, we show that the cardinality of TEC for
2-cell cuts is two. For details, please refer to Theorem 1
and see its proof from this link®. Therefore, there exist only
two different 2-cell cuts which intersect the same cell edge
sequence of two adjacent cells with same CCLs. Further-
more, we propose a method to exactly infer them. Figure 5
shows the 2-cell cuts, A;C1, A3Cs5, which have same CCLS
within C;11 and Cj2, inferred using this method. For de-
tails about line segment and angle computations, please refer
to the inference method from this link®. Any of these 2-cell
cuts could be the user’s actual trajectory, hence we refer to
them as Candidate Line Segments (CLSs) and refer to the
TEC as Candidate Line Segments Set (CLSS).

THEOREM 1. Assume V;Vit1, Vig1Vige, Vig2Vigs are
edges of two adjacent cells Ciy1,Cit2 in a Voronoi diagram.
Let L denote the set of all straight lines on the 2-D plane
and |.| denote the cardinality of a set. Given | € L, which
intersects ViViy1, Vig1Vige, VivaVixs, with CCLS lit1,lit2
within Cit1, Ciy2; Hl]ci+15ci+2‘ = |[l]ci+1 N [Z]Ci+2| =2

3-Cell Cut Inference: As unique identification of a
straight line trajectory is still not possible, we next consider
the TEC for 3-cell cuts. As shown in Figure 5, we parti-
tion the three-cell sequence (Ci41:Cit3) into two two-cell se-
quences (Ci+1:Ciy2, and C;12:Cit3). For each sequence, we
separately compute its CLSs (A1C1:A3C5 and B1D1:BsDs),
producing two CLSSs ([l]c;,:c;,, and [l]c; ,:c;,5). If the
user has travelled along the same line for three cells, there
are two CLSs, A1C1 and B1 D1, each from a different CLSS,
which represent the same line, A; D;. We infer this common
line as the user’s trajectory within the three cells. The ab-
sence of such a common line segment means a straight line
path has not occurred across the three cells. Any k-cell cut
(k > 3) also can be uniquely identified in the same way, as
they are the aggregations of adjacent 3-cell cuts.

Handling Approximate CCL Information: Some-
times only approximate CCL information is available, due
to imprecise speed measurements. Therefore, when identi-
fying the adjacent CLSs which represent the same line, we

3http://people.eng.unimelb.edu.au/baileyj /sigspatial_supp.pdf



compare the distance between the two intersection points
of each CLS with the middle cell boundaries (C3C5, BsBs
distances for A3C3 and BsDs in Figure 5). If both distances
are below a given distance threshold, dd, the two CLSs are
considered representing the same line. dd is a user adjusted
parameter, based on the required precision level. For exam-
ple, dd can be selected ~10 m to differentiate between two
road segments.

3.2.2  Inference of Turning Point Segments

In the previous section, we described our methodology for
accurately inferring a straight line trajectory. However, a
user may change directions producing the turning points as
shown in Figure 6. These can be represented as the inter-
sections of two line segments. We refer to such trajectory
segments as k : k'-cell cuts. Below we describe the scenarios
of trajectory patterns with different k : k'-cell cuts.

Definition 5. A k : k'-cell cut is the intersection of two
straight line segments (L1, L2) whose number of cell cuts are
k and k' respectively, given that k, k' € Z*, Z* = Z U {0}.

Figure 6: Different k : k'-cell cuts inferred by TPDA

e k : k' > 3: Consider the trajectory 71 in Figure 6, a
3:3-cell cut, represented as the intersection of L; and Ls.
The line segments L; and L2 can be exactly inferred using
the methodology described in Section 3.2.1. However, the
trajectory behaviour within the turning point cell C;44 is
still unknown. Algorithm 1 shows the trajectory inference
method within this turning point cell. We compute the
turning point as the intersection point X of L1 and Ls.
Thus, the trajectory within C;44 is inferred as AX B. If X
lies within the cell boundaries of C;t4, next we compute
the CCL of the inferred trajectory within Ciya (linferred)
as AX+ BX. If linferred = lreat, Where lycq; is the CCL
computed using speed and handover time information; we
conclude that AX B is the trajectory within Cjy4. Using
this method, we can exactly infer the turning point and
the trajectory within the turning point cell, in k : k’-cell
cuts where k : k' > 3.

e k,k’ = 2: Consider the 2:2-cell cut in Figure 6 repre-
sented by the trajectory T>. Exact inference of L or Lo
is not possible as two CLSs are available for each of them,
resulting in four possible line segment combinations. In
such scenarios, we apply Algorithm 1 for all the combina-
tions and select the combination whose linferred = lreal-
The trajectory within the turning point cell is inferred ac-
cordingly. This shows that the exact inference of a 2-cell
cut is also possible, in a 2:2-cell cut scenario.

e k,k’ < 2: This scenario is described by the trajectory
T3 in Figure 6. The trajectory segments are a result of
frequent directional changes and are referred as Frequent

Algorithm 1: Infer the turning point of a k : k’-cell

cut

input : Line 1 (L), Line 2 (Lz), Cell sequence of L;
({Ci: Cita}), Cell sequence of Lo
({C¢+4ZCZ'+8}), CCL within Cj4+4 (l'real)

output: Intersect point of Li and Lo (turnPoint)

1 [Vit3Vita, VigaVigs] < Perpendicular bisectors
between C;43-Citq and Ci14-Ciys;

2 X < Intersect point of L; and La;
3 A + Intersect point of L1 and Vi;3Vita;
4 B < Intersect point of Ly and V;+4Viys;
5 linfer'red — b+l ‘AX‘ + ‘BX|7
6 if X € Ci+4 A linferred = lreal then
7 turnPoint < X;
8 else
9 | turnPoint < null ;
10 end
11 end
12 return turnPoint;

Turn Paths (FTPs). 'To infer an FTP, first we connect
the end points of two adjacent straight line trajectory seg-
ments, which are already exactly inferred, with a straight
line. If this line intersects all the cells, the user’s mobile
device connects to within the FTP, we infer this line as the
user’s trajectory. Otherwise, we connect the cell centres
of each cell within the FTP with straight lines.

3.3 Trajectory Pattern Detection Algorithm

In the previous sections, we discussed the inference meth-
ods for different trajectory patterns. In this section, we pro-
pose our Trajectory Pattern Detection Algorithm (TPDA)
for efficient application of these methods to infer a com-
plete trajectory, which is a combination of these patterns.
TPDA consists of following six steps. Given a cell sequence,
traversed by a user, at each step, TPDA finds a different
trajectory pattern, iteratively applying the corresponding
inference method to adjacent cells in the cell sequence. The
worst case time complexity of each step is linear to the total
number of cells in the trajectory (n), therefore the overall
time complexity of the algorithm is linear to n.

1. Infer CLSs: As shown in Figure 7a, Step 1 infers CLSs
for each adjacent cell pair, applying the 2-cell cut infer-
ence method, discussed in Section 3.2.1, in the sliding
window method.

2. Infer 3-cell cuts: As shown in Figure 7b, Step 2 infers
3-cell cuts occurred in each adjacent three cell sequence,
applying the 3-cell cut inference method, discussed in Sec-
tion 3.2.1, in the sliding window method. Adjacent CLSs,
representing a common line, are aggregated as 3-cell cuts,
filtering out the inappropriate CLSs.

3. Infer k-cell cuts, k > 3: As shown in Figure 7c, Step 3
infers k-cell cuts (k > 3), aggregating the adjacent 3-cell
cut pairs which share two common cells and represent
the same line. Each consecutive 3-cell cut pair, inferred
in Step 2, are considered in the sliding window method.

4. Infer 2:2-cell cuts: After Step 3, the inferred trajec-
tory may contain gap cells, in which no line segments are
detected. Within each gap cell sequence, Step 4 searches
and infers 2:2- cell cuts, iteratively applying the 2:2-cell
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Figure 7: Sliding window method for k-cell cut (k > 3) detection in a cell sequence

cut inference method, discussed in Section 3.2.2.

5. Infer k : k’-cell cuts: Applying Algorithm 1 for each
consecutive line segment intersection, Step 5 searches for
k : k'-cell cuts (k,k" > 2) occurred and infers the trajec-
tory within the turning point cells.

6. Infer FTPs: For each gap cell sequence, remaining af-
ter Step 5, Step 6 applies the k : k'-cell cut (k, k' < 2)
inference method, discussed in Section 3.2.2.

3.4 Removing False Line Segments

In the CCL based line inference, discussed in Section 3.2.1,
a 3-cell cut detection is possible even for a turning point
trajectory segment, if the turning point segment also has
the same CCL sequence as the 3-cell cut. Figure 8 shows
such a scenario. The turning point path, ADFE, is the user’s
actual trajectory. Yet ADF is the inferred path, which is a
3-cell cut with the same CCL sequence as ADE. We refer
to such a falsely inferred 3-cell cut, as a False Line Segment
(FLS). As FLSs degrade the inference accuracy, we propose
a method to detect and remove the FLSs in k : k'-cell cut
(k, k' > 3) trajectory segments.

Ci+3

1
Lo

/-w Inferred Straight Line Trajectory
! (FLS)

Real Trajectory with a Tuming Point
CCL ape = CCL apF =

Figure 8: A false line segment inferred by TPDA with the
same CCL sequence as a turning point trajectory

1AB. BC. CD+/y

S x2S
Remove a Corner l 9 *
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Figure 9: An unrealistic line segment combination resulted
from an FLS, and the resulting line segment combination
after the removal of FLS

Because of the sliding window 3-cell cut detection method
in TPDA, FLSs inferred result in Unrealistic Line Segment
Combinations (ULSCs). As shown in the top diagram of
Figure 9, a ULSC is the existence of two consecutive k-cell
cuts (k > 3) such that the number of gap cells between
them is less than one. Assume Li, Lo are two consecutive
k-cell cuts (k > 3), inferred by TPDA, for cell sequence,

Ci+1:Cit10. 11 and Iz are the corner 3-cell cuts of L; and
L2. According to the diagram, no 3-cell cuts are detected
in Ciy4:Cive and Ciy5:Ciq7, which shows that the trajec-
tory within Cj4¢ is not a straight line. However, [y covers
Ci+6:Cits, which shows the user’s trajectory is a straight
line within C;16. As these two are contradictory inferences,
we consider this as a ULSC, caused by an FLS, and propose
Algorithm 2 to remove the FLS.

Algorithm 2: Remove FLSs in different ULSCs

input : Line segments creating the ULSC (L1, L2)
output: Trajectory line segments (T'LS)

NCCLI, NCCLQ: NCC of L1, Lz;
l1, l2: Corner 3-cell cut of L1, Lo;

case NCCr,,NCCr, > 3
Ly« (L1 — ll) or Lo + (L2 - l2);
TLS < Ly and Lo;

end

case NCCpr, >3, NCCL, =3

| Remove Lo; TLS < Lq;

end

10 case NCC,,NCCr, =3

11 | Remove L1 or La; TLS < L2 or La;

12 end

13 return T'LS,

CONS ULAW N

We show that when the real trajectory is a combination of
k-cell cuts (k > 3), only the corner 3-cell cut of an inferred
E-cell cut (k > 3) can be an FLS. Please refer to the link* for
more details. Therefore, as shown in the bottom diagram of
Figure 9, we remove either /1 or l2, reducing the NCC of
Li/Ly (NCCL,/ NCCL,) by one, resulting in one gap cell
between Lq and Lo (Step 3-6 in Algorithm 2). Furthermore,
we show that in a k : k'-cell cut (k,k’ > 3), a 3-cell cut has
more probability of being an FLS (2/3 vs.1/3) than a k-cell
cut (k > 3) containing an FLS. Please refer to the link *
for more details. Therefore, in the above combination, if
NCCp, >3 and NCCL, = 3, we always consider Lo, as the
FLS and completely remove it (Step 7-9 in Algorithm 2).
If NCCL, = NCCL, = 3, we randomly remove a one (Step
10-12 in Algorithm 2).

4. EXPERIMENTAL STUDIES

We evaluate the accuracy of our algorithm under various
experimental conditions for both synthetic and real data.

4.1 Data Sets

4.1.1 Synthetic Data Generation

We select a geographical area of 50 km x 50 km in Mel-
bourne area. The cell tower locations are assumed to be

“http://people.eng.unimelb.edu.au/baileyj/sigspatial_supp.pdf



uniformly distributed within this area. A Voronoi diagram
is created considering these points as Voronoi cell centres,
simulating the cellular network. To vary the cell density in
the range of 0.4 — 4 towers/km?, we vary the number of cell
towers from 1000 — 10000. The maximum and minimum cell
densities represent typical urban and suburban cell densities
as obtained from Australian Geographical RadioFrequency
Map®. The start point of a trajectory is randomly selected,
assuming uniform distribution within the selected geograph-
ical area. The trajectory is then generated as a line segment
combination, demonstrating a given parameter value com-
bination (see Section 4.3.1). ~40K random trajectories are
generated, 1000 for a given parameter value in Table 2. The
latitude-longitude sequences of the trajectories are consid-
ered as the ground truth trajectories. The cell centres of
the Voronoi cell sequence, intersected by the trajectory, are
considered as the cellular trajectory of the user. The length
of ground truth trajectory segments lying within the bound-
aries of a Voronoi cell, is computed as the CCL of that cell.

4.1.2 Real Data Generation

People’s everyday trajectory patterns are selected from
two geographical areas: 1) an urban area around Melbourne
Central Business District and 2) a suburban area in Mel-
bourne (see Section 4.4.1). A user, with a smart phone,
made several trips, tracing a given trajectory pattern. For
the convenience of measurements, a known constant speed
was maintained. The phone’s connected cell tower IDs and
corresponding time stamps are collected by a software ap-
plication, installed in the user’s smartphone. Fourteen such
cellular trajectories are obtained for seven different patterns,
as shown in Table 3. The latitude-longitude sequence of
the road segments, traversed by the user, are obtained from
Google Maps ®. This is considered as the ground truth tra-
jectory. The cell handover times are computed using time
stamp information. The CCLs are computed using the av-
erage user speed and handover time information.

4.2 Evaluation Metric and Criteria

In this section, we describe the evaluation metric, the
baseline method and the trajectory features against which
our algorithm is evaluated.

4 Inferred Trajectory

Real Trajectory

Figure 10: Average error computation

4.2.1 Evaluation Metric

We evaluate the accuracy of our algorithm in terms of
Average Error (AE). This measures the spatial similarity
between the inferred and the real trajectory within a cell
and is computed as the average deviation between the two.
The Error Area per Cell (EAC) is the area formed by the
two poly lines (real trajectory and inferred trajectory) on the
2-D plane and the cell boundaries as shown by the shaded

Shttp://maps.spench.net /rf
Shttps:/ /maps.google.com

area in Figure 10. Thus, the AE is computed as:
AE = Z EAC/Real Trajectory Length (2)

4.2.2 Baseline Method

The existing cellular trajectory inference techniques either
use a significant amount of knowledge about the cellular
network infrastructure or have limitations to use in a de-
vice centric manner due to historical trajectory information
and pre-training requirements [1, 15, 22]. Hence, we can-
not directly compare our method against those techniques.
Therefore, we suggest a baseline trajectory inference method
which only uses the connected cell tower information as our
approach does. As shown in Figure 11, a baseline trajectory
is obtained by connecting the cell centers of the consecutive
cells of the cellular trajectory with straight line segments.

Baseline Trajectory

. . Cell Centers

Figure 11: Baseline method for trajectory inference

4.2.3 Trajectory Features Evaluated

In this section, we discuss the trajectory features which
affect our algorithm’s accuracy and define the parameters to
measure them. We use both meters/kilometers and NCC to
measure (or estimate) the lengths of the trajectory line seg-
ments. We use Turn Frequency for trajectories with a uni-
form turn frequency, i.e., having same distance between each
turning point. The Mazimum Turn Frequency, Short Seg-
ment Percentage and Short Segment Distribution are used
for trajectories with non-uniform turn frequencies.

1. Total Trajectory Length (TTL): This is computed
as the total distance, a user has travelled and is mea-
sured in meters (considering geographical length) or in
Total Cells Traversed (TCT), i.e., the total number of
cells completely covered by the trajectory (Considering
NCC).

2. Turn Frequency (TF): It is the number of turns taken
for a unit distance and computed as 1/ Distance between
Two Turning Points. The measurement unit of TF is
number of turns per meter or number of turns per cell.

3. Maximum Turn Frequency (MTF): This is the max-
imum TF value in the trajectory and is computed as 1/
Shortest Distance between Two Turning Points.

4. Short Segment Percentage (SSP): This is the per-
centage of the trajectory length which exists as Short Seg-
ments. A Short Segment is a k-cell cut (k < 3) which
cannot be exactly inferred by the algorithm. SSP is com-
puted as Total Trajectory Length within Short Segments
*100)/ TTL.

5. Short Segment Distribution (SSD): If short seg-
ments and longer segments are separated from each other
in the trajectory, we say that the trajectory’s SSD is
“Clustered”. Otherwise it is “Distributed”.

6. Cell Density (CD): This is the number of cell towers
of the cellular network distributed within a unit area.

7. Average Speed (AS): This is the average user speed
and is computed as TTL/Total Time for the Journey.



Table 2: Parameter values used in synthetic trajectory generation (~40K trajectories)

Experiment CD (Towers TTL TF(Turns SSP MTF(Turns SSD(Clustered/
7 per km?) (TCT) per Cell) (%) per Cell) Distributed)
1 04 1-20 0 N/A N/A N/A
2 04 20 1/5 -1 N/A N/A N/A
1/2 Distributed
3 0-4 20 N/A 0 - 100 1 Distributed
Clustered
4 0.4 20 N/A 0-100 1/2 L
5 04— 4 ~15 (km) 1 (Turns per km) N/A N/A N/A

4.3 Experiments for Synthetic Data

The algorithm’s accuracy is evaluated against the trajec-
tory features discussed above, using the synthetic data set.

4.3.1 Experimental Setup

Trajectories are created assigning different values for each
of the above parameters (in Section 4.2.3) as mentioned in
Table 2. For a given parameter value, 1000 random tra-
jectories are created and we report the average AE value.
Baseline method is also implemented on the same dataset.
The main purpose of experiments 1 — 4 is to analyse the
effect of NCC of line segments on the algorithm’s accuracy.
The line segment lengths are thus estimated in NCC. In Ex-
periment 5, the segment lengths are measured in kilometers.

4.3.2  Experimental Results for Synthetic Data

Figure 12 describes the results obtained for experiments
using the synthetic dataset. Each graph represents the error
reported by both the proposed (TPDA) and the baseline
methods for each experiment summarised in Table 2.

As shown in Figure 12a, in Experiment 1, the error sig-
nificantly decreases (~1 m) for 3-cell cuts compared to the
baseline error (~240 m) and remains constant for longer cell
cuts. Figure 12b (Experiment 2) shows that the AEpp—1 >
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AErp_1/2 > AErp<i/3, i.e., the error decreases with the
decrease of TF and remains constant after 1/3 turns per
cell. For any TF < 1/3, the error is significantly low (~1
m) compared to the baseline error (~240 m) and error for
TF=1. Figure 12c¢ (Experiment 3) shows that the error in-
creases with the increase of SSP. At high SSPs, trajectories
with 2-cell cut short segments report a lower error (~120 m),
compared to the error reported by trajectories with 1-cell cut
short segments (~240 m). Results in Experiment 2 show that
trajectories whose MTF < 1/3 reports significantly lower
error (~1 m), compared to trajectories whose MTF > 1/3
(~240 m, ~120 m). In Experiment 3, the trajectories whose
minimum line segment length is two cell cuts (MTF=1/2)
produce lower error than the trajectories whose minimum
line segment length is one cell cut (MTF=1). These obser-
vations show that the error increases with the increase of
MTF. Figure 12d (Experiment 4) shows that for each SSP,
the clustered trajectories report a higher error than the dis-
tributed trajectory set, yet this is only a slight difference.
At low SSP levels (0 — 15%), both trajectories show a lower
error(~1 — 10 m) compared to the baseline error (~240 m).

Figure 12e (Experiment 5) shows that for a given spatial
trajectory (latitude-longitude sequence), the error decreases
with the increase in CD. The maximum and minimum CDs
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Figure 12: Average error variations for different trajectory and cellular network parameter values



Table 3: Everyday trajectory patterns selected for the real data set and their parameter values

Pattern Description Travel Mode Area ATF TTL

1 Tram trip between university and railway station Tram Urban Low (0.5 km™ 1) ~2 km
2 Walk between university and railway station Walk Urban  Low (0.5 km™") ~2 km
3 Tram trip between apartment and railway station Tram Urban Low (0.5 km™1) ~2 km
4 Walk between university and apartment Walk Urban  Low (6.67 km™ ") ~0.6 km
5 Shopping trip Walk Urban High (3.25 km™ ") ~4 km
6 Train trip in an urban area Train Urban  High (Curved Roads) ~4 km
7 Train trip in a suburb Train Suburban High (Curved Roads) ~20 km

represent typical urban and suburban cell densities. Base-
line error decreases (~250 — ~75 m) with increasing cell den-
sity (0.4 — 4 towers/km?), however, at a much lower rate
compared to TPDA (~250 — ~1 m).

4.4 Experiments for Real Data

We evaluate the accuracy of TPDA on real world trajec-
tories to analyse its applicability in real world scenarios.

4.4.1 Experimental Setup

We perform experiments using fourteen trajectories, re-
flecting the patterns described in Table 3. These trajectory
patterns are selected to represent the everyday behaviour of
people and also include the different trajectory features as
discussed in Section 4.2.3. Patterns 1-6 are produced in the
urban area and Pattern 7 in the suburban area, as described
in Section 4.1.2. This is to ensure that they represent dif-
ferent CDs, ~20 cell towers/ km? and ~0.4 cell towers/ km?
for urban and suburban areas, respectively. The long and
short trajectories, (Pattern 2 and Pattern 4) are produced
to represent different T'TLs. The trajectories with high and
low turn frequencies are produced in Pattern 2 and Pattern
5, respectively, representing different TFs. These trajecto-
ries contain multiple turn frequencies. As MTF, SSP, and
SSD are for NCC based evaluation, and are of less impor-
tance from a user’s perspective, we eliminate them in real
data experiments. Instead, we introduce the measure, Aver-
age Turn Frequency (ATF), the average number of turns per
unit distance, computed as # Total Turning Points/TTL.
To evaluate the effect of user speed, we consider travel pat-
terns using the transportation modes — walking, tram and
train with the AS values of ~1 ms™!, ~3ms~! and ~10 ms™*.

4.4.2 Experimental Results for Real Data

Figure 13 describes the experimental results obtained for
real trajectory patterns. Pattern 1 and 3 are long trajecto-
ries (~2 km) with low turn frequencies. For them, TPDA
reports significantly lower errors (~7 m) compared to the
baseline errors (~30 m and ~63 m). Figure 14 shows the
graphical output of ground truth and inferred trajectories
for Pattern 1, plotted on the cellular network of the area.
Pattern 2, following the same route as Pattern 1 at a lower
speed, has lower error (~1 m) than Pattern 1 (~7 m). For
Pattern 4, which is a short trajectory, TPDA reports a high
error same as the baseline error (~130 m). Pattern 5, which
has high turn frequency, reports a higher error (~17 m) than
low turn frequency trajectory patterns such as Pattern 1 (~7
m) and Pattern 2 (~1 m). In Pattern 6, the user travels at a
high speed and the error reported is as high as the baseline
error (~80 m). Pattern 7 is a trajectory from a suburban
area with low cell tower density and curved trajectory seg-

ments. It reports a high error (~145 m) same as the base-
line method. Both errors are significantly high compared to
other trajectory patterns from the urban area.

Visible Cell Density Effect: The results show that
higher user speeds result in a higher error, even though the
same route is followed (Pattern 1 vs. Pattern 2). This is due
to travelling a large distance within a very small time, the
user does not have chance to connect to all the cell towers
whose Voronoi cells are intersected by the trajectory. There-
fore, the cell density visible to the user is different from the
real cell density. For example, in Pattern 1 when travel-
ling by tram, the visible cell density is ~4 cell towers/km?
(~500 m distance between two cell towers) even though the
real cell density is ~20 cell towers/km? (~150 m distance
between two cell towers). However, in Figure 13, Pattern 1
has ~7 m average error. This demonstrates that unseen cell
towers do not fundamentally affect TPDA’s accuracy.
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Figure 13: Average errors obtained for different trajectory
patterns in the real data set

Imprecise Speed Measurements: We evaluate the al-
gorithm accuracy for imprecise speed measurements, as fol-
lows. Traversed Pattern 2/Pattern 3 with a varying speed
in the range 0 — 1.5 ms ™" /0 —4 ms™"', and computed the av-
erage speed for the journey. CCLs are computed assuming
the user has maintained this average speed throughout the
journey. The trajectory is inferred by setting dd to 20 m.
Pattern 2 reports an error, ~32 m slightly higher than the
baseline error, ~28 m. Pattern 3 reports a lower error, ~48
m than the baseline error, ~60 m. The results show that
TPDA is robust enough to handle imprecise speed informa-
tion.

4.4.3 Key Evaluation Insights

Our experiments with synthetic and real data demonstrate
that TPDA achieves high accuracy, which is same as GPS,
for straight line trajectories with low turn frequencies. As
shown in Figure 14, the exact trajectory segments are in-
ferred when they are at least 3-cell cuts, producing a nearly
zero error. TPDA achieves very high accuracy with the in-
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Figure 14: Ground truth and inferred trajectories for Pat-
tern 1, plotted on the cellular network

crease of cell density. Therefore, it can be successfully ap-
plied in urban areas with straight line road segments and
high cell densities, benefitting more in case of 4G networks.
However, for high turn frequencies, low cell densities and
curved trajectories, it shows a lower accuracy than GPS.
The accuracy is not affected by trajectory length beyond
three cell cuts. Furthermore, we show that unseen cell tow-
ers do not substantially affect the accuracy and TPDA is
robust enough to handle imprecise speed information.

S. CONCLUSIONS

In this paper, we propose a device centric cellular tra-
jectory inference method using only the user’s connected
cell tower locations, handover times and speed information.
The proposed method does not require any historical tra-
jectory information or pre-training and incurs low storage
and computation costs. It exactly infers the line segments
of a user’s trajectory and approximates other segments ac-
cordingly. Our experimental results with both synthetic and
real data confirm that our algorithm produces significantly
higher accuracy compared to the baseline method when the
user does not change direction frequently in urban areas with
a high cell density. For the occasions the trajectory is a line
segment combination with turning points, each line segment
covering a minimum of three cells, the trajectory is exactly
inferred, achieving a nearly zero error. However, in suburbs
with low cell densities and curved roads, it reports an error,
same as the baseline error, ~145 m. We also show that our
method is robust enough to handle imprecise speed infor-
mation due to user speed variations and unseen cell towers
do not affect its accuracy. In future, we will focus on inte-
grating road network information to improve the algorithm’s
accuracy and using the algorithm interchangeably with GPS
such that GPS has to be only used when required.
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