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Abstract. Classifying protein sequences has important applications in areas such
as disease diagnosis, treatment development and drug design. lapleisvpe
present a highly accurate classifier called the g-MAR&fpd Makov Chain

with Support Vector Machine) protein classifier. It models the structure @ba p
tein sequence by measuring the transition probabilities between pairs ad amin
acids. This results in a Markov chain style model for each protein sequ&hen,

to capture the similarity among non-exactly matching protein sequencesome
that this model can be generalized to incorporate gaps in the Markov. Nain
perform a thorough experimental study and compare g-MARS to alegthrer
state-of-the-art protein classifiers. Overall, we demonstrate that B®Mas su-
perior accuracy and operates efficiently on a diverse range ofipfatailies.

1 Introduction

With the development of genome sequencing techniquesadigis have accumulated
huge numbers of protein sequences and new ones are beingeatisd daily. Predicting
the class or the main function of a new protein sequence csist &xperts in under-
standing its nature. It is a difficult problem, however, anid inot easy to advance the
state of the art. Successful protein classifiers must betalitempare sequences effi-
ciently, detect important features and also show good gtigdicapability.

A number of algorithms have been developed for classifyirggins into families
or into clusters of functions or localizations. The basisuesption mostly used is the
first fact of biological sequence analysis: "In biomolecidaquences (DNA, RNA or
amino acid sequences), high sequence similarity usual¥iés significant functional
or structural similarity.”[7]. So, to create highly-acete classifiers, we need a way to
compare the similarity of a large number of diverse sequepoecisely and efficiently.

Our contribution. In this paper, we describe a new protein classifier calledjthe
MARS (gapped Makov Chain with_Sipport Vector Machine) classifier. The g-MARS
approach has two main stages. Firstly, each protein sequsriedividually modeled
using what we call a “gapped markov chain”, to capture itdstteally important fea-
tures. Next, a new dataset is derived from the collectionllcfagpped markov chains
and it is passed to a support vector machine for decisionmgalihe prime advantage
of g-MARS is its superior accuracy compared to several iexjgrotein classification
methods. This is a claim validated in our experimental studijch considers a diverse



range of protein families with different characteristi€ie technique also scales well
for large datasets. We first begin with a review of relatedkintthe area.

Related work: Amino acid composition-based algorithms measure thelaiityi
of proteins from the compositions of their amino acids. Facheprotein in the train-
ing dataset, the algorithm[6] calculates the frequencyaaheof its amino acids. For
a new protein to be classified, its amino acid frequency fistm is calculated and
compared with the compositions of the proteins in each déssaining data. The pro-
tein is then classified to the class containing the proteth thie smallest composition
difference. The shortcomings of this approach are the lbfsecordering relationship
among amino acids and the simplistic comparison in the caitipo difference. These
compositions may be biased for small training datasets.

Amino acid composition with gaps[8] is an improvement of thee amino acid
composition algorithm[6]. The first improvement is thatdinsiders pairs of the amino
acids rather than individual ones. The second improvensehgt it uses a support vec-
tor machine to make decisions, which is useful to alleviagegotential bias introduced
by the limited information from the training datasets. Thmitiation is that the mea-
surement is still based on the percentages of the pairs ofcaagids among the whole
protein sequence. When two proteins have different lengittspugh they share some
similar sections, certain amino acid pairs may have contipogilifferences.

The spectrum kernel[11] is a support vector machine algorithat calculates the
similarity of two sequences by their commérmers. In practice, the spectrum kernel
works quite well[11]. However, there are limitations: ifés more computationally ex-
pensive than the amino acid composition algorithm. Segathel choice of in practice
must be small, since the number/efmers increase exponentially with(sok = 3 is
generally used). Thirdly, sinde-mers must be contiguous, there can be less tolerance
when proteins contain errors or mutations. In the mismatrndd[10], the sharing of
the similark-mers, along with the identical ones, is used to measurerttikasty.

Previous work by Wang et al [14] presents an interestingvbng general frame-
work (GMM) for using markov models to classify proteins wgiamino acid feature
combinations which may include gaps. Our g-MARS algorittan moughly fit into this
framework, but with a number of key differences: i) GMM remsi the configuration
of between six and ten different parameters and does notd@any general strategy
for choosing them, a difficult challenge for a user . Thus ibéiter described as a
large space of possible algorithms, rather than a singteighgn (and so it is not feasi-
ble to try to experimentally benchmark against), ii) Difflat combinations of features
are used. Only the prior and posterior pair with the highedénis used for classify-
ing a protein by GMM. In g-MARS, however, we consider vareabhps and use all
resulting prior-posterior pairs for the classification idamn, iii) The GMM classifica-
tion/decision model is essentially a set of prior-postepairs which work as rules and
classification relies on aggregating scores of these ridentrast, g-MARS learns a
classification model based on training a support vector mach

The Fisher kernel[9] combines the support vector machimktla@ hidden markov
model. Our g-MARS approach is different from the Fisher kériirstly, we do not
use a hidden markov model generated from the whole trairataset. Instead, we use
the gapped markov chain generated from each individualitrgiprotein. Secondly,



the "distance” between two proteins in the SVM is not caltadadirectly by the kernel
function[9]. Itis instead calculated by a classic relatibkernel such as the RBF kernel.

Work[13, 15] has been done on building a series of classifidtish make use of
frequent substring patterns and the support vector machimealgorithms firstly mine
the frequent substrings from the training proteins thatfeguent and discriminative
for their own class (each pattern is mined with high confi@ggnthen they reform each
sequence (training and testing sequences) by verifyinglwpatterns are contained in
it. An SVM is used for decision making on the reformatted data

Preliminaries. A sequence = ajasas...a, is a lengthn sequence. Each character
ay in pis chosen from an alphabet seind referred to ag(k). Throughout this paper,
we consider protein primary structure (amino acid sequ&ndmit our technique is
easily adapted to classification of other types of sequeacesll.

In protein classification problems, a training dataB&iB contains proteins whose
classes are known to the classifier. The class label for eatbipp is denoted ap.c.

A testing datasefeDB contains proteins whose classes are unknown to the classifie
The task is to predict the class label of each unknown preijuence according to the
training dataset. The predicted class label for each suateiprp is denoted ap.pc.
Given a testing proteip, if the predicted class label is the same as its real clags, lab
that is,p.pc = p.c, we say it is correctly classified by the classifier, otheeniisis
misclassified.

If the dataset only contains proteins from two classes, & Enary-class classi-
fication problem. For the multi-class classification problevhere the testing dataset
contains proteins belonging to more than two classes, wesghproteins from one
class and merge the rest of the proteins into another claghid way the multi-class
classification problem can be reduced to a binary-classiilzetion problem. The task
is then to predict whether a testing protein belongs to tleseh class or not. The cho-
sen class is called the positive class (or the target classran be denoted &5 The
merged set of instances (named the negative class) cargatiiother proteins is de-
noted as-7. TrDByr = {p € TrDB | p.c = T'} is called the training positive set and
TrDB_r = {p € TrDB | p.c # T} is called the training negative set. Corresponding
definitions exist for sets of testing instandeDB; andTeDB. 1.

2 g-MARS Methodology

Training the g-MARS classifier has two main phases. FirgWJARS builds for each
p € TrDB, a gapped markov chain. Secondly, g-MARS passes the valotapressions
of the gapped markov chains to a support vector machine (SgiMjecision making.

Markov chains are a well known method for modeling sequentes system con-
sists of a set of states, where each is labelled by a charactér and a set of transitions
which are associated with some probabilities. From onetipogio the next one of the
sequence, the system undergoes a change of state (posselftl@op to the same
state), according to the transition probability betweengtates. An important special
case is the first order markov chain, where the transitiobatvdity depends only on
the current and the predecessor position, Pe[p(i) = ax | p(i — 1) = a;,p(i —2) =
A, .| = Prip(i) = ax | p(i — 1) = q;].



Furthermore, the markov chains we will consider are inddpahof the sequence
positions. In other words, the probabilities of a transitfoom itema,,, to a,, do not
depend on the position in the sequence where transitionraccu

A markov chain modeling a sequengeonsists of two kinds of components. One
is the set of the statefS;} representing each character fraimand the other is the
set of transition probabilitie$t;; } between states. The formal definition of transition
probability¢;; leading from stateS; to S; is: ¢;; = Prip(k) = a; | p(k — 1) = a;]

In order to build a markov chain of the sequep¢cee have to decide the probability
of each pair of the states. A maximum likelihood estimatioacpdure is applied to
calculate these probabilities;; = Zijm wherec;; is the number of times amino
acid j follows amino acidi in p and) _, c;;. is the number of times the amino agids
followed by any other amino acid.

Example 1 Consider the sequenge = ABACCAB. The markov chain fop has
three states and we havg, = 0, tap = 2,tac = 5, tpa = 1, tpp = 0, tpc =0,
toa = %, tcg = 0andtce = %

The purpose of building the markov chain for each proteiég similar global or
local structures of two proteins can be captured by theikmachains. E.g., the prob-
ability for amino acidX followed by amino acid” can be discriminative for proteins
from two different classes. This is true if the proteins frtm same class share a lot
of common sections and those common sections are diffeedwelen different classes.
One issue is that it is rare for many proteins from the samgsdlashare long common
sections. The common parts may be similar, but not exacyséime. An example to
further illustrate is:

Example 2 Consider two sequences = ABC andpy, = ADC. The first order
markov chains of them are quite different. kgr, the non-zero probability transitions
aret,p = 1 andtge = 1. For po, the non-zero probability transitions atep = 1
andipc = 1. There is no common non-zero transition probability betwéae markov
chains ofp; andp>. Howeverp; andp, share two out of three characters, which may
indicate some similarity.

2.1 Introduction to Gapped Markov Chains

To overcome the limitation of traditional markov chains efhonly model successive
state transitions, we modify the traditional markov chainwo ways. The first is to
model the ending of the sequence and the second is to addrtbept®f gaps.
Modelling the ending of the sequencein Example 1, the transition probability 4 is

1, meaning that in sequengeif B is followed by any amino acid, it must hé. This
does not consider the last charagt€t), which has no character following. A more
complete model should illustrate thatpnthe probability forB to be followed byA is
0.5 and the probability fo3 to be followed by nothing i8.5. This can be reflected by
changing the transition probability definition tg = <2, wherec;; is the number of
times amino acig follows amino acid: in p andc; is the number of times the amino
acidi appears irp.



Although we consider the ending of the sequence, our markainowvon't con-
tain the null (end of sequence) state and state transitions dther states to the null
state (null transitions). There are two reasons: Firstlyemvthe transitions from one
state to another non-null state are determined, its nulisttiens are also implicitly
determined. Including the the null transition is redund&wcondly, by removing the
null transitions, we reduce the model size, which benefitstfe classification process
used later. In practice, the exclusion of these transitéress not impair classification
accuracy.

Since we remove the null state and the null transitions, ehe &f all the out-going
transition probabilities in our markov chain model won'cessarily bel. This is dif-
ferent from the markov chain introduced in the last sectiwom another point of view,
the "rest” of the probability of a state goes to the null statéch is "hidden”.

The concept of gapsin a g-gapped markov chain, we determine the probabilities
of amino acid transitions, where there may be gaps betwexarntino acid pairs being
considered. In particular, we allow contiguous (with no )gdpmping of one amino
acid (with the gap as), jumping of two amino acids (with the gap a)sand soonupto

the g-th gap. The state transition probabilities are redefme@as “, 0<k<y,
wheretk |s the probability of a transition from amino acido amino acidj with gap
ask in p; ¢j; is the number of times amino acidhas gapk to amino to amino acid in
p.c; IS the number of times amino acidppears im.

Suppose we allowed a characfecalled "The-Character-Don’t-Care”. Our gapped
markov chain can be used to directly model sequences corgain An example is
given in Example 3.

Example 3 Given a sequence = AB(BC, the probability for it to be produced by a
gapped markov chain can be calculatedas(p) = t% 5 * th 5 * t% . The probability
of p can be directly reflected by the gapped markov chain. Notettigaprobability of
p could also be calculated by the traditional markov chainiiectly: Pr(p) = tap *

(Zl (LLBi * tiB)) * th.

The purpose of being able to model sequences contafrigyp capture the approx-
imate similarity between protein sequences.

Example 4 Consider two sequencgs = ABC andp, = ADC. Comparing con-
tiguous amino acid pairs gives no similarity between theinsition probabilities (c.f.
Example 2). If we ignore their second characters, the seceeibecome; = ANC
andp, = AQC, which are the same. This commonality is reflected when weaem
p1 andp- allowing gaps in the markov chain: for gap equalitowe have the non-zero
transition probabilities of; ast% ; = 1, t%, = 1 andt},, = 1. The non-zero transi-
tion probabilities ofp, aret, , = 1, %, = 1 andt},, = 1. We can sep; andp, now
share one common transition probability.

Given that we can generategagapped markov chain for a sequence, how do we
compare two markov chains to obtain the similarity betwerem sequences? A direct
way would be, for each pair of states, compare their tramsjprobabilities and count
the number which are identical to get a score of the simjlarftthe two sequences.
E.g., considering; = ABC andp, = ADC from the previous example, the number



of transitions having the same non-zero probability undérgapped markov chain
model is0, so the similarity ofp; andps under gag would be0. The similarity score
for al-gapped markov chain model would bebecause they share exactly one common
transition, namely?, ...

In practice, we should not expect two similar proteins tashmany such common
transition probabilities. Instead, we would expect tréosi probabilities of proteins
from the same class to have smaller variance and transitioimapilities of proteins
from different classes to have larger variance. SVMs arelgaaletecting such differ-
ences and so we use them for deriving a decision hyperplatedn separate gapped
markov chain features of proteins from different classes.

Support vector machines using classic kernel functionsiredhe input format to
be vectors. We must therefore be able to represent gappdavwnetnains as vectors.
This is straightforward: simply form a vector where each eliision corresponds to a
transition and the value for that dimension is the probgbdf the transition. Transi-
tions are annotated with gaps, 8p, is considered to be a different dimensiontlg, .
The ordering of the transitions does not matter as long &s dbnsistent for all the
sequences ifirDB as well asTeDB

Differences between gapped markov chains and traditional mrkov chains. As
we can see, there are two main differences between our gapgréav chain and tradi-
tional markov chains. First of all, the summation of all @aing transition probabilities
of a state is not necessarily to bén our gapped markov chain, but it is a property of
traditional markov chains. Secondly, the traditional nearkhains describe successive
states of a system. Our gapped markov chain can do that leeaaygyapped markov
chain contains th@-th transition matrix, which is the traditional markov chaBut
it can also model sequences containing\s we discussed earlier, these two changes
enhance their suitability for protein classification.

Differences between sequence modeling by gapped markov ¢hgand by amino
acid compositions.Recall the amino acid pair composition technique[8] we ulised
earlier. There are several differences between that tqabrind our gapped markov
chain technique. In the former case, the discriminativerimftion is measured by the
frequencies of the amino acid pairs. If the amino acid paidraated as patterns, these
algorithms model each protein by their len@lpattern frequencies. The model can be
interpreted as: given an ordered pair of amino acids, haslils it that this pair occurs
in the protein? In our case, the discriminative informatiermeasured by the proba-
bilities of the amino acid transitions. The gapped markoaichmodels each protein
by these pairwise amino acid transition probabilities. Walel can be interpreted as:
given a specific amino acieh, how likely is it that another amino acidfollows it? An
important advantage is that the probability model is muel likely to be affected by
the protein lengths.

2.2 The g-MARS Algorithm

g-MARS takes a set of training dataDB and a gap parametgras the input. For each
protein inTrDB, g-MARS builds ag-gap markov chain. The associated vector for this
chain hag(g + 1) * 20 % 20 dimensions (unlike thé&*® dimensions for the Spectrum
kernel[11]). This is because there @@« 20 possible amino acid pairs and we need



to consider transitions with gap up tofor for each pair. In practice, we can easily
setg to be as large a0 and not incur dimensionality overload in classificationeTh
markov chains for proteins fromrDB; and TrDB_ are passed as input to an SVM
and it builds a classification model using these inputs. Aesnkls available for the
traditional SVM can be used, such as linear and RBF kerneii#diBg ag-gap markov
chain for a set of: proteins require®)(n * g * [) time, wherel is the average length
of the n proteins. The training time for g-MARS is the markov chairildting time
plus the SVM training time. Given a testing protein, the saagap markov chain is
computed and passed to the SVM and it makes the classificgmsion is made by the
SVM. The testing time for a lengthprotein in g-MARS is the markov chain building
time(O(g * 1)) plus the SVM prediction time.

Although the discussion above is for the binary-class diaation problem, g-
MARS can be easily generalized to handle the multi-classsdiaation problem. We
turn them-class classification problem inta reduced binary-class classification prob-
lems. Each time we pick one class out from theclasses ag’ and merge all the rest
of the proteins as-T'. In this way, way we buildn SVMs, one for each target class.
Given a testing protein, if there is an SVM classifying it te iarget class, we classify
it to that class. If more than one SVM classifies it to theigédrclass, we classify it to
the class with the highest score.

3 Experimental Results

Datasets.In order to test the general performance of g-MARS, we chseseral dif-
ferent benchmark datasets, which cover a diverse rangeapacteristics. The first set
of data is chosen from PSORTD[4]. It contains proteins fraffeignt localizations of
the bacteria. We pick out the proteins from the outer men#adrthe Gram negative
as the positive class and merge the proteins from the innethrame, cytoplasmic and
extra-cellular of the Gram negative as the negative claam$.d? this data was used to
evaluate the classifiers built on frequent substring patféB, 15]. The positive class
contains352 proteins and the negative class contal@d 3 proteins. The second set
of data is proteins from different subcellular localizatdrom the Proteome Analyst
Project[12]. We choose the proteins from the extracellldealization (27 proteins)
as the positive class and the proteins from the intracellakalization as the negative
class 8166 proteins). The third set of data is the outer membrane pretegrsus the
globular proteins which was used to evaluate the classifidt &n amino acid com-
positions[6]. It contain877 proteins from bacterial outer membrane &7d Globular
proteins.

The fourth set of data uses the G Protein-Coupled RecepRCE3[2], the biggest
known protein family. The GPCR database contains five |6V@RPCR classes (levél-
subfamilies). The largest subfamily is the Class A Rhodofike subfamily. It can be
further divided intal 6 level 1 subfamilies and more levelsubfamilies. Classifiers have
been developed to classify GPCR proteins from non-GPCR, dhe<GPCR proteins
from levell subfamilies, as well as the GPCR proteins from |&slbfamilies[2]. We
perform two experiments on this data. For the first experimea try to classify pro-
teins from the leveB subfamilies. Besides the five GPCR levetubfamilies, we add a



Table 1.G Protein-Coupled Receptor dataset list.

Subfamily #protein % of Dataset
Class A Rhodopsin like 1884 69.4%
Amine
Acetylcholine 66 15%
Adrenoceptors 120 27.3%
Dopamine 94 21.4%
Serotonin 159 36.2%
Class B Secretin like 309 11.4%
Class C Metabotropic glutamate/
pheromone 206 7.6%
Class D Fungal pheromone 65 2.4%
Class E cAMP receptors 10 0.4%
Class F Frizzled/Smoothened
family 130 4.8%
Class Z Archaeal/bacterial/
fungal opsins(Non-GPCR) 110 4.1%
Total 2714 100%

Table 2. Binary-class classification dataset list.

Dataset Description # Protein| % of Dataset
D |-D D [-D |D |-D
Outer Membrangnner Membrane, Extrace$52 |1013|25.8% |74.2%
Proteins (OMP) |lular, Cytoplasm

Extracellular  prodntracellular proteins 127 |3166|3.9% [96.1%
teins
Outer Membrangslobular proteins 377 1674 135.9% [64.1%

Proteins (OMP)

non-GPCR family in order to test the ability for g-MARS to segte the GPCR proteins
from non-GPCR ones. All six families can be obtained frbttp://www.gpcr.ordb].
For the second experiment, we try to classify proteins froelével2 subfamilies. We
select4 level2 subfamilies belonging to the Amine subfamily under lefraubfamily
Class A Rhodopsin like, namely, acetylcholine, adrenamsptopamine and serotonin.
These two experiments are multi-class classification probl The specification of all
the five experiments is listed in Tables 1 and 2.

Algorithms. We compare the accuracy of g-MARS against several algositiim
the spectrum kernel[11](Spectrum for short), which hasi#&imed to be better than
Fisher kernel[11], ii) an amino acid composition classj6{AAC for short), iii) an
amino acid pair composition with gap constraints clas$&|éAAPC for short), iv)
simple markov chain classifier[3](MC for short), v) Frequ&ubstring Pattern based
SVM[15](FS for short), vi) Generalised markov model (GMMIL The reasons for



choosing these algorithms are: 1.9g-MARS, AAPC and FS ar&\@N-based hybrid
algorithms. The difference between them is the way theyn¥iate” sequences into
vectors. 2.Spectrum is a famous protein classifier whichesalse of the SVM and
self-defined kernel function. 3.The AAC, GMM and MC methods aot based on
support vector machines. They simply sum up the scores ctt o each way up to
make decisions. They are simple, well-known methods. Wéemented all algorithms
in Java using JDK versiom.4. All the experiments were conducted on a UNIX sys-
tem with a3.0GHz CPU andl.5GB memory. We used the LIBSVM[1] Java package.
MC required no parameter settings. For the Spectrum keweeljsedk = 3. For g-
MARS, AAC and AAPC, for each dataset we used the gap that devbdst average
performance (according to f-measure, see below), usiradbefoss validation with a
verification dataset (a subset of the training data whosesdibels are known to the
classifiers, but which is not used in training). For the F®atgm we mined the fre-
quent substring patterns from the target class having mimnength as3, minimum
support as either.1% or 3 (whichever is greater) and minimum confidence@#[15].
For g-MARS, FS and AAPC, we used the RBF kernel. The gammaestgharameters
for this kernel were chosen using the tool in the LIBSVM pay4d]. For g-MARS,
one can use gamma 89078125nd cost a82.0or 2048.0to expect generally good
performance. For GMM, we tested the three configurationsigea by the authors.
The first of these (standard single item 6th order Markov M)oggi®duced the best
results in all datasets and we list its performance in thiegab

Evaluation. In order to give a comprehensive analysis of how good thesifiess
are, we usd metrics accuracyd), precision p), recall ¢) and f-measuref| as:

_ 1{tcTeDBt pe=t.c}|. _ 1{xcTeDBr|t.pe=T}|
“= 'TeDB ’ P = {iCTeDBt.pe=7}| ’
- |{tcTeDBr|t.pe=T}] . f= 2 pkr

- [{tcTeDBr}| (p+r)”

For multi-class classification, a different overall acayraneasurement is used: =

> I{the%%sap =1}l The accuracy for each target clé&sis calculated ast;

Hthel-[r)eBSI‘Btr""”:t'C} | The accuracy measurement tells how many proteins arefidalssi

correctly overall. For the rare-class classification casecision and recall are more
meaningful. When comparing algorithms, thmeasure is a standard way of combining
precision and recall to get a single measure. We used stHiHiold cross validation
for testing.

Performance on binary-class dataThe accuracies of the five algorithms on the
binary-class classification problems are listed in TabteBIARS performs strongly for
the first set of data, the outer membrane proteins vs. the meenbrane, extracellular
and the cytoplasm proteins. In this set the amino acid paipasition algorithm works
quite well. g-MARS gives generally good performances otieldatasets, because the
discriminative information of markov chains in g-MARS doex rely on any particular
property of proteins being in specific domains. The MC cfessgiven in the last row
uses the log odd ratio score to classify the proteins[3].gdréormance tells that simply
adding up the score ratios from different classes does wetggiod answers. This partly
shows the superiority of using the SVM to make the decisions.



Table 3.Results of the three binary-class experiments.

OMP vs. Inn+Ext+Cyt Extra vs. Intra OMP vs. Globular
Alg. A%* |P% [R% [F% |[A% |P% |R% |F% |A% |P% [R% |F%
g-MARS||95.1694.9785.8 (90.15|98.6693.6870.0880.18|96.7695.9894.9695.47
Spectrun94.3692.8384.6688.56|98.1592.31/56.6970.24|95.6295.5992.0493.78
FS 90.0479.3582.9581.11|98 |95.5250.3965.98|91.5382.8896.2989.08
AAC 78.3851.4978.6962.25|88.5918.6458.27128.24|80.0267.8884.0875.12
AAPC ||95.6 |94.2488.3591.2 ||98.4593.1864.57/76.28/92.8685.7896.0290.61
MC 82.4961.0688.6472.31|94.0236.7476.3849.62|86.7776.4491.2583.19
GMM  [|34.1042.74100 |59.89|97.4065.2039.4036.25/90.0088.5577.3482.27
x A: accuracy, P: precision, R: recall, F: f-measure.

Table 4. The accuracy (%) of the GPCR leviebubfamilies prediction.

Level2 Subfamig-MARS Spectrum FS AAC AAPC MC GMM
ily

Acetylcholine  |100 95.45 9545 87.88 93.93 9545 85.52
Adrenoceptors |100 100 100 625 100 95.83 83.67

Dopamine 98.93 95.74 94.68 76.6 8511 8511 80.21
Serotonin 98.11 100 97.48 77.99 94.97 94.34 75.48

Performance on GPCR subfamiliesThe classification results for the GPCR level-
2 and leveld subfamilies are given in Tables 4 and 5, respectively. Therdities of
subfamilies are greater for levelproteins than for leve?-proteins. That is the reason
why generally we gain better results for le&proteins. There are certain subfamilies
in level0 that are easily separated from other subfamilies such ass ®aAMP re-
ceptors. Most of the classifiers do not make mistakes foeprstfrom this family. By
looking at this family we know that the structures of the pim$ within this family are
quite different from proteins of other families. Some pnesecontain long contiguous
asparagine and histidine. The performances for most filxssare quite good for iden-
tifying which protein belongs to Class A Rhodopsin like sarbfly (Hight percentages
in the first row of Table 5). This is due to the abundant praeifithis family. So as an
observation about Table 5, we can say that for the classtfisted here, having more
testing data means a more accurate the model can be builn@iteedistinctive the data
is, the easier it is for the model to make correct decisioiis lBgenerally true for most
feature-based classifiers. From both the tables we can edsthat g-MARS performs
generally better than all the other classifiers.

T-test. We conducted t-tests with a 95% confidence on the resultsAgMwins
16times, draw® times and lose8 times. The Spectrum ranks the second best ®ith
wins, 14 draws andL loses. The third best algorithm is the AAPC and the perfoicean
is 8 times winning,14 times drawing and times losing. From a statistical point of
view, g-MARS wins the most which means it performs genertilybest. Comparing
directly against the Spectrum, g-MARS wins brdataset and on the rest draws. It's
running time is generally at least 10% faster than the Spexgteven for high gaps.



Table 5. The accuracy (%) of the GPCR levebubfamilies prediction.

Level-0 Subfamily |9-MARS Spectrum FS ~ AAC AAPC MC  GMM

Class A Rhodopsin like {99.84  99.52 98.57 78.66 99.73 91.77 77.93
Class B Secretin like 99.38 98.06 9547 60.2 95.46 96.12 94.00
Class C Metabotropic glut®8.06  95.15 91.26 76.21 97.09 93.69 82.70

mate/pheromone
Class D Fungal pheromon®9.23  86.15 81.54 89.23 83.0B5.38 76.20
Class E cAMP receptors |100 100 100 90 90 100 83.00

Class F Frizzled/Smoothg88.46  97.69 96.15 93.85 92.31 90.77 85.53
ed family
Class Z Archaeal/bacteri86.36  94.55 86.36 92.73 92.73 95.45 90.12

/fungal opsins (hon-GPCR)

Accuracy with various gaps
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Fig. 1. g-MARS performance for varying gap on OMP vs. Inner, Extra, @lgsm dataset

How to choose the proper gapThe gap can be chosen by performing cross valida-
tion on the training dataset. Set aside a portion of traidiig as test data, try different
gaps and choose the one which yields best accuracy. We aamalee some general
remarks about gap behaviour. Figure 1 shows the changeumnaaycfor g-MARS with
various gaps. For ga, which is the case in the traditional markov chain, the perfo
mance is poor. With the increase of the gap, overall perfaon@decomes stable. The
f-measure achieves its peak value when the gap is dét. 60 instead of using cross
validation, one could also begin by using the gap as 7 anditteeaase and decrease
the gap from this value, finishing when the result remainklstéchanges are smaller
than a certai).

Running time . For classifiers working on large volumes of data, time efficieis
an important factor. We discussed the time complexity of §R% in Section 2.2. We
also measured the running time for g-MARS on the OMP vs. |nBgtra and Cyto-



plasm dataset with various gaps. The time includes thedufiodd cross validation. and
increases roughly linearly with the increment of the gap. ¢ap ad), the executable
time is less thar25 seconds and for the largest gap it only takes slightly maaa 360
seconds, which is quite acceptable.

Conclusion and future work. In this paper we have extended the traditional markov
chain to the gapped markov chain. We proposed the g-MARSifilxrs which uses
gapped markov chains and support vector machines to ¢lgesifeins. Compared to
other work, it has the following merits: It is computatiolya¢fficient and can handle
large volumes of proteins. It does not need prior knowleagachieve good perfor-
mance and can be generalized to any sequence classificatioierqp. The growth of
the gap length increases the dimension of the vectors linesther than exponentially
like the Spectrum kernel, so it is realistic to use large g&pperimental results show
it has generally superior accuracy for a range of proteias#ds with diverse character-
istics. Overall, g-MARS is a very practical algorithm to kiéaprotein classification.
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