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Abstract. Classifying protein sequences has important applications in areas such
as disease diagnosis, treatment development and drug design. In this paper we
present a highly accurate classifier called the g-MARS (gapped Markov Chain
with Support Vector Machine) protein classifier. It models the structure of a pro-
tein sequence by measuring the transition probabilities between pairs of amino
acids. This results in a Markov chain style model for each protein sequence. Then,
to capture the similarity among non-exactly matching protein sequences, weshow
that this model can be generalized to incorporate gaps in the Markov chain. We
perform a thorough experimental study and compare g-MARS to several other
state-of-the-art protein classifiers. Overall, we demonstrate that g-MARS has su-
perior accuracy and operates efficiently on a diverse range of protein families.

1 Introduction

With the development of genome sequencing techniques, biologists have accumulated
huge numbers of protein sequences and new ones are being discovered daily. Predicting
the class or the main function of a new protein sequence can assist experts in under-
standing its nature. It is a difficult problem, however, and it is not easy to advance the
state of the art. Successful protein classifiers must be ableto compare sequences effi-
ciently, detect important features and also show good predictive capability.

A number of algorithms have been developed for classifying proteins into families
or into clusters of functions or localizations. The basic assumption mostly used is the
first fact of biological sequence analysis: ”In biomolecular sequences (DNA, RNA or
amino acid sequences), high sequence similarity usually implies significant functional
or structural similarity.”[7]. So, to create highly-accurate classifiers, we need a way to
compare the similarity of a large number of diverse sequences precisely and efficiently.

Our contribution. In this paper, we describe a new protein classifier called theg-
MARS (gapped Markov Chain with Support Vector Machine) classifier. The g-MARS
approach has two main stages. Firstly, each protein sequence is individually modeled
using what we call a “gapped markov chain”, to capture its statistically important fea-
tures. Next, a new dataset is derived from the collection of all gapped markov chains
and it is passed to a support vector machine for decision making. The prime advantage
of g-MARS is its superior accuracy compared to several existing protein classification
methods. This is a claim validated in our experimental study, which considers a diverse



range of protein families with different characteristics.The technique also scales well
for large datasets. We first begin with a review of related work in the area.

Related work: Amino acid composition-based algorithms measure the similarity
of proteins from the compositions of their amino acids. For each protein in the train-
ing dataset, the algorithm[6] calculates the frequency of each of its amino acids. For
a new protein to be classified, its amino acid frequency histogram is calculated and
compared with the compositions of the proteins in each classof training data. The pro-
tein is then classified to the class containing the protein with the smallest composition
difference. The shortcomings of this approach are the loss of the ordering relationship
among amino acids and the simplistic comparison in the composition difference. These
compositions may be biased for small training datasets.

Amino acid composition with gaps[8] is an improvement of thepure amino acid
composition algorithm[6]. The first improvement is that it considers pairs of the amino
acids rather than individual ones. The second improvement is that it uses a support vec-
tor machine to make decisions, which is useful to alleviate the potential bias introduced
by the limited information from the training datasets. The limitation is that the mea-
surement is still based on the percentages of the pairs of amino acids among the whole
protein sequence. When two proteins have different lengths,although they share some
similar sections, certain amino acid pairs may have composition differences.

The spectrum kernel[11] is a support vector machine algorithm that calculates the
similarity of two sequences by their commonk-mers. In practice, the spectrum kernel
works quite well[11]. However, there are limitations: it isfar more computationally ex-
pensive than the amino acid composition algorithm. Secondly the choice ofk in practice
must be small, since the number ofk-mers increase exponentially withk (sok = 3 is
generally used). Thirdly, sincek-mers must be contiguous, there can be less tolerance
when proteins contain errors or mutations. In the mismatch kernel[10], the sharing of
the similark-mers, along with the identical ones, is used to measure the similarity.

Previous work by Wang et al [14] presents an interesting, butvery general frame-
work (GMM) for using markov models to classify proteins using amino acid feature
combinations which may include gaps. Our g-MARS algorithm can roughly fit into this
framework, but with a number of key differences: i) GMM requires the configuration
of between six and ten different parameters and does not provide any general strategy
for choosing them, a difficult challenge for a user . Thus it isbetter described as a
large space of possible algorithms, rather than a single algorithm (and so it is not feasi-
ble to try to experimentally benchmark against), ii) Different combinations of features
are used. Only the prior and posterior pair with the highest order is used for classify-
ing a protein by GMM. In g-MARS, however, we consider variable gaps and use all
resulting prior-posterior pairs for the classification decision, iii) The GMM classifica-
tion/decision model is essentially a set of prior-posterior pairs which work as rules and
classification relies on aggregating scores of these rules.In contrast, g-MARS learns a
classification model based on training a support vector machine.

The Fisher kernel[9] combines the support vector machine and the hidden markov
model. Our g-MARS approach is different from the Fisher kernel. Firstly, we do not
use a hidden markov model generated from the whole training dataset. Instead, we use
the gapped markov chain generated from each individual training protein. Secondly,



the ”distance” between two proteins in the SVM is not calculated directly by the kernel
function[9]. It is instead calculated by a classic relational kernel such as the RBF kernel.

Work[13, 15] has been done on building a series of classifierswhich make use of
frequent substring patterns and the support vector machine. The algorithms firstly mine
the frequent substrings from the training proteins that arefrequent and discriminative
for their own class (each pattern is mined with high confidence). Then they reform each
sequence (training and testing sequences) by verifying which patterns are contained in
it. An SVM is used for decision making on the reformatted dataset.

Preliminaries. A sequencep = a1a2a3...an is a lengthn sequence. Each character
ak in p is chosen from an alphabet setA and referred to asp(k). Throughout this paper,
we consider protein primary structure (amino acid sequences), but our technique is
easily adapted to classification of other types of sequencesas well.

In protein classification problems, a training datasetTrDB contains proteins whose
classes are known to the classifier. The class label for each proteinp is denoted asp.c.
A testing datasetTeDBcontains proteins whose classes are unknown to the classifier.
The task is to predict the class label of each unknown proteinsequence according to the
training dataset. The predicted class label for each such protein p is denoted asp.pc.
Given a testing proteinp, if the predicted class label is the same as its real class label,
that is,p.pc = p.c, we say it is correctly classified by the classifier, otherwise it is
misclassified.

If the dataset only contains proteins from two classes, it isa binary-class classi-
fication problem. For the multi-class classification problem, where the testing dataset
contains proteins belonging to more than two classes, we choose proteins from one
class and merge the rest of the proteins into another class. In this way the multi-class
classification problem can be reduced to a binary-class classification problem. The task
is then to predict whether a testing protein belongs to the chosen class or not. The cho-
sen class is called the positive class (or the target class) and can be denoted asT . The
merged set of instances (named the negative class) containing all other proteins is de-
noted as¬T . TrDBT = {p ∈ TrDB | p.c = T} is called the training positive set and
TrDB¬T = {p ∈ TrDB | p.c 6= T} is called the training negative set. Corresponding
definitions exist for sets of testing instancesTeDBT andTeDB¬T .

2 g-MARS Methodology

Training the g-MARS classifier has two main phases. Firstly,g-MARS builds for each
p ∈ TrDB, a gapped markov chain. Secondly, g-MARS passes the vectorial expressions
of the gapped markov chains to a support vector machine (SVM)for decision making.

Markov chains are a well known method for modeling sequences. The system con-
sists of a set of states, where each is labelled by a charactera ∈ A and a set of transitions
which are associated with some probabilities. From one position to the next one of the
sequence, the system undergoes a change of state (possibly aself-loop to the same
state), according to the transition probability between the states. An important special
case is the first order markov chain, where the transition probability depends only on
the current and the predecessor position, i.e.,Pr[p(i) = ak | p(i− 1) = aj , p(i− 2) =
am, ...] = Pr[p(i) = ak | p(i − 1) = aj ].



Furthermore, the markov chains we will consider are independent of the sequence
positions. In other words, the probabilities of a transition from itemam to an do not
depend on the position in the sequence where transition occurs.

A markov chain modeling a sequencep consists of two kinds of components. One
is the set of the states{Si} representing each character fromA and the other is the
set of transition probabilities{tij} between states. The formal definition of transition
probabilitytij leading from stateSi to Sj is: tij = Pr[p(k) = aj | p(k − 1) = ai]

In order to build a markov chain of the sequencep, we have to decide the probability
of each pair of the states. A maximum likelihood estimation procedure is applied to
calculate these probabilities:tij =

cij
P

k
cik

, wherecij is the number of times amino

acidj follows amino acidi in p and
∑

k cik is the number of times the amino acidi is
followed by any other amino acid.

Example 1 Consider the sequencep = ABACCAB. The markov chain forp has
three states and we havetAA = 0, tAB = 2

3 , tAC = 1
3 , tBA = 1, tBB = 0, tBC = 0,

tCA = 1
2 , tCB = 0 andtCC = 1

2 .

The purpose of building the markov chain for each protein is that similar global or
local structures of two proteins can be captured by their markov chains. E.g., the prob-
ability for amino acidX followed by amino acidY can be discriminative for proteins
from two different classes. This is true if the proteins fromthe same class share a lot
of common sections and those common sections are different between different classes.
One issue is that it is rare for many proteins from the same class to share long common
sections. The common parts may be similar, but not exactly the same. An example to
further illustrate is:

Example 2 Consider two sequencesp1 = ABC and p2 = ADC. The first order
markov chains of them are quite different. Forp1, the non-zero probability transitions
are tAB = 1 and tBC = 1. For p2, the non-zero probability transitions aretAD = 1
andtDC = 1. There is no common non-zero transition probability between the markov
chains ofp1 andp2. Howeverp1 andp2 share two out of three characters, which may
indicate some similarity.

2.1 Introduction to Gapped Markov Chains

To overcome the limitation of traditional markov chains which only model successive
state transitions, we modify the traditional markov chain in two ways. The first is to
model the ending of the sequence and the second is to add the concept of gaps.
Modelling the ending of the sequence.In Example 1, the transition probabilitytBA is
1, meaning that in sequencep, if B is followed by any amino acid, it must beA. This
does not consider the last characterp(7), which has no character following. A more
complete model should illustrate that inp, the probability forB to be followed byA is
0.5 and the probability forB to be followed by nothing is0.5. This can be reflected by
changing the transition probability definition totij =

cij

ci
, wherecij is the number of

times amino acidj follows amino acidi in p andci is the number of times the amino
acidi appears inp.



Although we consider the ending of the sequence, our markov chain won’t con-
tain the null (end of sequence) state and state transitions from other states to the null
state (null transitions). There are two reasons: Firstly, when the transitions from one
state to another non-null state are determined, its null transitions are also implicitly
determined. Including the the null transition is redundant. Secondly, by removing the
null transitions, we reduce the model size, which benefits for the classification process
used later. In practice, the exclusion of these transitionsdoes not impair classification
accuracy.

Since we remove the null state and the null transitions, the sum of all the out-going
transition probabilities in our markov chain model won’t necessarily be1. This is dif-
ferent from the markov chain introduced in the last section.From another point of view,
the ”rest” of the probability of a state goes to the null statewhich is ”hidden”.

The concept of gaps.In a g-gapped markov chain, we determine the probabilities
of amino acid transitions, where there may be gaps between the amino acid pairs being
considered. In particular, we allow contiguous (with no gap), jumping of one amino
acid (with the gap as1), jumping of two amino acids (with the gap as2) and so on up to

theg-th gap. The state transition probabilities are redefined astkij =
ck

ij

ci
, 0 ≤ k ≤ g,

wheretkij is the probability of a transition from amino acidi to amino acidj with gap
ask in p; ck

ij is the number of times amino acidi has gapk to amino to amino acidj in
p. ci is the number of times amino acidi appears inp.

Suppose we allowed a character∅ called ”The-Character-Don’t-Care”. Our gapped
markov chain can be used to directly model sequences containing ∅. An example is
given in Example 3.

Example 3 Given a sequencep = AB∅BC, the probability for it to be produced by a
gapped markov chain can be calculated asPr(p) = t0AB ∗ t1BB ∗ t0BC . The probability
of p can be directly reflected by the gapped markov chain. Note that the probability of
p could also be calculated by the traditional markov chain indirectly: Pr(p) = tAB ∗
(
∑

i (tBi ∗ tiB)) ∗ tBC .

The purpose of being able to model sequences containing∅ is to capture the approx-
imate similarity between protein sequences.

Example 4 Consider two sequencesp1 = ABC and p2 = ADC. Comparing con-
tiguous amino acid pairs gives no similarity between their transition probabilities (c.f.
Example 2). If we ignore their second characters, the sequences becomep′1 = A∅C
andp′2 = A∅C, which are the same. This commonality is reflected when we compare
p1 andp2 allowing gaps in the markov chain: for gap equal to1, we have the non-zero
transition probabilities ofp1 ast0AB = 1, t0BC = 1 andt1AC = 1. The non-zero transi-
tion probabilities ofp2 are t0AD = 1, t0DC = 1 andt1AC = 1. We can seep1 andp2 now
share one common transition probability.

Given that we can generate ag-gapped markov chain for a sequence, how do we
compare two markov chains to obtain the similarity between two sequences? A direct
way would be, for each pair of states, compare their transition probabilities and count
the number which are identical to get a score of the similarity of the two sequences.
E.g., consideringp1 = ABC andp2 = ADC from the previous example, the number



of transitions having the same non-zero probability under a0-gapped markov chain
model is0, so the similarity ofp1 andp2 under gap0 would be0. The similarity score
for a1-gapped markov chain model would be1, because they share exactly one common
transition, namelyt1AC .

In practice, we should not expect two similar proteins to share many such common
transition probabilities. Instead, we would expect transition probabilities of proteins
from the same class to have smaller variance and transition probabilities of proteins
from different classes to have larger variance. SVMs are good at detecting such differ-
ences and so we use them for deriving a decision hyperplane that can separate gapped
markov chain features of proteins from different classes.

Support vector machines using classic kernel functions require the input format to
be vectors. We must therefore be able to represent gapped markov chains as vectors.
This is straightforward: simply form a vector where each dimension corresponds to a
transition and the value for that dimension is the probability of the transition. Transi-
tions are annotated with gaps, sot0AA is considered to be a different dimension tot1AA.
The ordering of the transitions does not matter as long as it is consistent for all the
sequences inTrDB as well asTeDB.

Differences between gapped markov chains and traditional markov chains.As
we can see, there are two main differences between our gappedmarkov chain and tradi-
tional markov chains. First of all, the summation of all out-going transition probabilities
of a state is not necessarily to be1 in our gapped markov chain, but it is a property of
traditional markov chains. Secondly, the traditional markov chains describe successive
states of a system. Our gapped markov chain can do that because any gapped markov
chain contains the0-th transition matrix, which is the traditional markov chain. But
it can also model sequences containing∅. As we discussed earlier, these two changes
enhance their suitability for protein classification.

Differences between sequence modeling by gapped markov chains and by amino
acid compositions.Recall the amino acid pair composition technique[8] we discussed
earlier. There are several differences between that technique and our gapped markov
chain technique. In the former case, the discriminative information is measured by the
frequencies of the amino acid pairs. If the amino acid pairs are treated as patterns, these
algorithms model each protein by their length-2 pattern frequencies. The model can be
interpreted as: given an ordered pair of amino acids, how likely is it that this pair occurs
in the protein? In our case, the discriminative informationis measured by the proba-
bilities of the amino acid transitions. The gapped markov chain models each protein
by these pairwise amino acid transition probabilities. Themodel can be interpreted as:
given a specific amino acidm, how likely is it that another amino acidn follows it? An
important advantage is that the probability model is much less likely to be affected by
the protein lengths.

2.2 The g-MARS Algorithm

g-MARS takes a set of training dataTrDB and a gap parameterg as the input. For each
protein inTrDB, g-MARS builds ag-gap markov chain. The associated vector for this
chain has(g + 1) ∗ 20 ∗ 20 dimensions (unlike thek20 dimensions for the Spectrum
kernel[11]). This is because there are20 ∗ 20 possible amino acid pairs and we need



to consider transitions with gap up tog for for each pair. In practice, we can easily
setg to be as large as10 and not incur dimensionality overload in classification. The
markov chains for proteins fromTrDBT andTrDB¬T are passed as input to an SVM
and it builds a classification model using these inputs. Any kernels available for the
traditional SVM can be used, such as linear and RBF kernels. Building ag-gap markov
chain for a set ofn proteins requiresO(n ∗ g ∗ l) time, wherel is the average length
of the n proteins. The training time for g-MARS is the markov chain building time
plus the SVM training time. Given a testing protein, the sameg-gap markov chain is
computed and passed to the SVM and it makes the classificationdecision is made by the
SVM. The testing time for a lengthl protein in g-MARS is the markov chain building
time(O(g ∗ l)) plus the SVM prediction time.

Although the discussion above is for the binary-class classification problem, g-
MARS can be easily generalized to handle the multi-class classification problem. We
turn them-class classification problem intom reduced binary-class classification prob-
lems. Each time we pick one class out from them classes asT and merge all the rest
of the proteins as¬T . In this way, way we buildm SVMs, one for each target class.
Given a testing protein, if there is an SVM classifying it to its target class, we classify
it to that class. If more than one SVM classifies it to their target class, we classify it to
the class with the highest score.

3 Experimental Results

Datasets.In order to test the general performance of g-MARS, we chooseseveral dif-
ferent benchmark datasets, which cover a diverse range of characteristics. The first set
of data is chosen from PSORTb[4]. It contains proteins from different localizations of
the bacteria. We pick out the proteins from the outer membrane of the Gram negative
as the positive class and merge the proteins from the inner membrane, cytoplasmic and
extra-cellular of the Gram negative as the negative class. Part of this data was used to
evaluate the classifiers built on frequent substring patterns[13, 15]. The positive class
contains352 proteins and the negative class contains1013 proteins. The second set
of data is proteins from different subcellular localizations from the Proteome Analyst
Project[12]. We choose the proteins from the extracellularlocalization (127 proteins)
as the positive class and the proteins from the intracellular localization as the negative
class (3166proteins). The third set of data is the outer membrane proteins versus the
globular proteins which was used to evaluate the classifier built on amino acid com-
positions[6]. It contains377proteins from bacterial outer membrane and674Globular
proteins.

The fourth set of data uses the G Protein-Coupled Receptor (GPCR)[2], the biggest
known protein family. The GPCR database contains five level-0 GPCR classes (level-0
subfamilies). The largest subfamily is the Class A Rhodopsin like subfamily. It can be
further divided into16 level1 subfamilies and more level2 subfamilies. Classifiers have
been developed to classify GPCR proteins from non-GPCR ones, the GPCR proteins
from level1 subfamilies, as well as the GPCR proteins from level2 subfamilies[2]. We
perform two experiments on this data. For the first experiment, we try to classify pro-
teins from the level-0 subfamilies. Besides the five GPCR level-0 subfamilies, we add a



Table 1.G Protein-Coupled Receptor dataset list.

Subfamily #protein % of Dataset

Class A Rhodopsin like 1884 69.4%
Amine

Acetylcholine 66 15%
Adrenoceptors 120 27.3%
Dopamine 94 21.4%
Serotonin 159 36.2%

Class B Secretin like 309 11.4%
Class C Metabotropic glutamate/

pheromone 206 7.6%
Class D Fungal pheromone 65 2.4%
Class E cAMP receptors 10 0.4%
Class F Frizzled/Smoothened

family 130 4.8%
Class Z Archaeal/bacterial/

fungal opsins(Non-GPCR) 110 4.1%
Total 2714 100%

Table 2.Binary-class classification dataset list.

Dataset Description # Protein % of Dataset
D ¬D D ¬D D ¬D

Outer Membrane
Proteins (OMP)∗

Inner Membrane, Extracel-
lular, Cytoplasm

352 1013 25.8% 74.2%

Extracellular pro-
teins

Intracellular proteins 127 3166 3.9% 96.1%

Outer Membrane
Proteins (OMP)∗

Globular proteins 377 674 35.9% 64.1%

non-GPCR family in order to test the ability for g-MARS to separate the GPCR proteins
from non-GPCR ones. All six families can be obtained fromhttp://www.gpcr.org[5].
For the second experiment, we try to classify proteins from the level2 subfamilies. We
select4 level-2 subfamilies belonging to the Amine subfamily under level-0 subfamily
Class A Rhodopsin like, namely, acetylcholine, adrenoceptors, dopamine and serotonin.
These two experiments are multi-class classification problems. The specification of all
the five experiments is listed in Tables 1 and 2.

Algorithms. We compare the accuracy of g-MARS against several algorithms: i)
the spectrum kernel[11](Spectrum for short), which has been claimed to be better than
Fisher kernel[11], ii) an amino acid composition classifier[6](AAC for short), iii) an
amino acid pair composition with gap constraints classifier[8](AAPC for short), iv)
simple markov chain classifier[3](MC for short), v) Frequent Substring Pattern based
SVM[15](FS for short), vi) Generalised markov model (GMM[14]). The reasons for



choosing these algorithms are: 1.g-MARS, AAPC and FS are allSVM-based hybrid
algorithms. The difference between them is the way they ”translate” sequences into
vectors. 2.Spectrum is a famous protein classifier which makes use of the SVM and
self-defined kernel function. 3.The AAC, GMM and MC methods are not based on
support vector machines. They simply sum up the scores computed in each way up to
make decisions. They are simple, well-known methods. We implemented all algorithms
in Java using JDK version1.4. All the experiments were conducted on a UNIX sys-
tem with a3.0GHz CPU and1.5GB memory. We used the LIBSVM[1] Java package.
MC required no parameter settings. For the Spectrum kernel,we usedk = 3. For g-
MARS, AAC and AAPC, for each dataset we used the gap that gave the best average
performance (according to f-measure, see below), using 5-fold cross validation with a
verification dataset (a subset of the training data whose class labels are known to the
classifiers, but which is not used in training). For the FS algorithm we mined the fre-
quent substring patterns from the target class having minimum length as3, minimum
support as either0.1% or 3 (whichever is greater) and minimum confidence of90%[15].
For g-MARS, FS and AAPC, we used the RBF kernel. The gamma and cost parameters
for this kernel were chosen using the tool in the LIBSVM package[1]. For g-MARS,
one can use gamma as0.0078125and cost as32.0or 2048.0to expect generally good
performance. For GMM, we tested the three configurations provided by the authors.
The first of these (standard single item 6th order Markov model) produced the best
results in all datasets and we list its performance in the tables.

Evaluation. In order to give a comprehensive analysis of how good the classifiers
are, we use4 metrics accuracy (a), precision (p), recall (r) and f-measure (f ) as:

a = |{t⊆TeDB|t.pc=t.c}|

|TeDB| ; p = |{t⊆TeDBT |t.pc=T}|

|{t⊆TeDB|t.pc=T}|
;

r = |{t⊆TeDBT |t.pc=T}|

|{t⊆TeDBT }|
; f = 2∗p∗r

(p+r) .

For multi-class classification, a different overall accuracy measurement is used:a =
∑

Ti

|{t⊆TeDBTi
|t.pc=t.c}|

|TeDB| . The accuracy for each target classTi is calculated as:ai =

|{t⊆TeDBTi
|t.pc=t.c}|

|TeDBTi
|

. The accuracy measurement tells how many proteins are classified

correctly overall. For the rare-class classification case,precision and recall are more
meaningful. When comparing algorithms, the fmeasure is a standard way of combining
precision and recall to get a single measure. We used stratified5-fold cross validation
for testing.

Performance on binary-class data.The accuracies of the five algorithms on the3
binary-class classification problems are listed in Table 3.g-MARS performs strongly for
the first set of data, the outer membrane proteins vs. the inner membrane, extracellular
and the cytoplasm proteins. In this set the amino acid pair composition algorithm works
quite well. g-MARS gives generally good performances on allthe datasets, because the
discriminative information of markov chains in g-MARS doesnot rely on any particular
property of proteins being in specific domains. The MC classifier given in the last row
uses the log odd ratio score to classify the proteins[3]. Theperformance tells that simply
adding up the score ratios from different classes does not give good answers. This partly
shows the superiority of using the SVM to make the decisions.



Table 3.Results of the three binary-class experiments.

OMP vs. Inn+Ext+Cyt Extra vs. Intra OMP vs. Globular
Alg. A%∗ P% R% F% A% P% R% F% A% P% R% F%
g-MARS 95.1694.9785.8 90.15 98.6693.6870.0880.18 96.7695.9894.9695.47
Spectrum94.3692.8384.6688.56 98.1592.3156.6970.24 95.6295.5992.0493.78
FS 90.0479.3582.9581.11 98 95.5250.3965.98 91.5382.8896.2989.08
AAC 78.3851.4978.6962.25 88.5918.6458.2728.24 80.0267.8884.0875.12
AAPC 95.6 94.2488.3591.2 98.4593.1864.5776.28 92.8685.7896.0290.61
MC 82.4961.0688.6472.31 94.0236.7476.3849.62 86.7776.4491.2583.19
GMM 34.1042.74100 59.89 97.4065.2039.4036.25 90.0088.5577.3482.27
∗ A: accuracy, P: precision, R: recall, F: f-measure.

Table 4.The accuracy (%) of the GPCR level2 subfamilies prediction.

Level-2 Subfam-
ily

g-MARS Spectrum FS AAC AAPC MC GMM

Acetylcholine 100 95.45 95.45 87.88 93.93 95.45 85.52
Adrenoceptors 100 100 100 62.5 100 95.83 83.67
Dopamine 98.93 95.74 94.68 76.6 85.11 85.11 80.21
Serotonin 98.11 100 97.48 77.99 94.97 94.34 75.48

Performance on GPCR subfamilies.The classification results for the GPCR level-
2 and level-0 subfamilies are given in Tables 4 and 5, respectively. The diversities of
subfamilies are greater for level-0 proteins than for level-2 proteins. That is the reason
why generally we gain better results for level-2 proteins. There are certain subfamilies
in level-0 that are easily separated from other subfamilies such as Class E cAMP re-
ceptors. Most of the classifiers do not make mistakes for proteins from this family. By
looking at this family we know that the structures of the proteins within this family are
quite different from proteins of other families. Some proteins contain long contiguous
asparagine and histidine. The performances for most classifiers are quite good for iden-
tifying which protein belongs to Class A Rhodopsin like subfamily (Hight percentages
in the first row of Table 5). This is due to the abundant proteins of this family. So as an
observation about Table 5, we can say that for the classifierstested here, having more
testing data means a more accurate the model can be built. Themore distinctive the data
is, the easier it is for the model to make correct decision. This is generally true for most
feature-based classifiers. From both the tables we can also see that g-MARS performs
generally better than all the other classifiers.

T-test. We conducted t-tests with a 95% confidence on the results. g-MARS wins
16 times, draws9 times and loses0 times. The Spectrum ranks the second best with11
wins,14 draws and1 loses. The third best algorithm is the AAPC and the performance
is 8 times winning,14 times drawing and3 times losing. From a statistical point of
view, g-MARS wins the most which means it performs generallythe best. Comparing
directly against the Spectrum, g-MARS wins on1 dataset and on the rest draws. It’s
running time is generally at least 10% faster than the Spectrum, even for high gaps.



Table 5.The accuracy (%) of the GPCR level0 subfamilies prediction.

Level-0 Subfamily g-MARS Spectrum FS AAC AAPC MC GMM

Class A Rhodopsin like 99.84 99.52 98.57 78.66 99.73 91.77 77.93
Class B Secretin like 99.38 98.06 95.47 60.2 95.46 96.12 94.00
Class C Metabotropic gluta-
mate/pheromone

98.06 95.15 91.26 76.21 97.09 93.69 82.70

Class D Fungal pheromone89.23 86.15 81.54 89.23 83.0795.38 76.20
Class E cAMP receptors 100 100 100 90 90 100 83.00
Class F Frizzled/Smoothen-
ed family

98.46 97.69 96.15 93.85 92.31 90.77 85.53

Class Z Archaeal/bacterial
/fungal opsins (non-GPCR)

96.36 94.55 86.36 92.73 92.73 95.45 90.12
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Fig. 1. g-MARS performance for varying gap on OMP vs. Inner, Extra, Cytoplasm dataset

How to choose the proper gap.The gap can be chosen by performing cross valida-
tion on the training dataset. Set aside a portion of trainingdata as test data, try different
gaps and choose the one which yields best accuracy. We can also make some general
remarks about gap behaviour. Figure 1 shows the change in accuracy for g-MARS with
various gaps. For gap0, which is the case in the traditional markov chain, the perfor-
mance is poor. With the increase of the gap, overall performance becomes stable. The
f-measure achieves its peak value when the gap is set to11. So instead of using cross
validation, one could also begin by using the gap as 7 and thenincrease and decrease
the gap from this value, finishing when the result remains stable (changes are smaller
than a certainθ).

Running time . For classifiers working on large volumes of data, time efficiency is
an important factor. We discussed the time complexity of g-MARS in Section 2.2. We
also measured the running time for g-MARS on the OMP vs. Inner, Extra and Cyto-



plasm dataset with various gaps. The time includes the time5-fold cross validation. and
increases roughly linearly with the increment of the gap. For gap as0, the executable
time is less than25 seconds and for the largest gap it only takes slightly more than350
seconds, which is quite acceptable.
Conclusion and future work. In this paper we have extended the traditional markov
chain to the gapped markov chain. We proposed the g-MARS classifier, which uses
gapped markov chains and support vector machines to classify proteins. Compared to
other work, it has the following merits: It is computationally efficient and can handle
large volumes of proteins. It does not need prior knowledge to achieve good perfor-
mance and can be generalized to any sequence classification problem. The growth of
the gap length increases the dimension of the vectors linearly rather than exponentially
like the Spectrum kernel, so it is realistic to use large gaps. Experimental results show
it has generally superior accuracy for a range of protein datasets with diverse character-
istics. Overall, g-MARS is a very practical algorithm to handle protein classification.
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