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ABSTRACT
People are increasingly volunteering personal data. Services
based on this data rely on a high number of participants and
high data quality. Personal data is often seen as private and
individuals are more likely to provide such data if they can
choose its granularity, e.g., instead of an exact value, they
may provide a range. Focusing on spatial crowdsourced data,
this work aims to determine whether the common method
of coarsening location data of privacy-conscious individu-
als is an effective approach if fine-grained location data has
also been submitted by privacy-apathetic users. We propose
a novel inference attack to refine the location of privacy-
conscious individuals. Our experiments suggest that even
with a dataset that is mostly populated with privacy-conscious
users, our technique succeeds with high precision and recall.
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INTRODUCTION
The uptake in sensor-enabled smartphones and wearable de-
vices enables individuals to monitor not only their environ-
ment, but also themselves on a 24/7 basis. Such rich datasets
facilitate two types of applications: (i) personal analytics
that informs people about their daily fitness, health and life
choices, and (ii) public and social applications that benefit
from people-centric sensing [3]. Volunteering/sharing their
detailed data, individuals can monitor their health condition,
compare themselves to others, estimate their exposure to pol-
lution and learn about the traffic and road condition in a cer-
tain area. Two applications in that area are BikeNet [7] and
Biketastic [12] that enable riders to monitor their personal
progress and – using other riders’ data – to avoid areas with
high noise or pollution.

However, individuals have different perceptions of privacy,
which has a direct impact on their data volunteering be-
haviour. Studies in the literature have stressed the importance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org. UbiComp ’15, September 07-
11, 2015, Osaka, Japan.
Copyright c© ACM. ISBN 978-1-4503-3574-4/15/09$15.00.
DOI: http://dx.doi.org/10.1145/2750858.2805836.

of accommodating users’ privacy preferences both as a means
of encouraging them to share their data and as an effective
privacy-preserving scheme [5].

A service benefits from fine-grained data and relying on
only privacy-conscious users would adversely affect the qual-
ity of data analytics and services. On the other hand, even
privacy-conscious individuals may share their data in return
for receiving an improved service. As a result, some privacy-
apathetic users may contribute detailed data, while privacy-
conscious users may prefer to provide a range instead of a
precise value or a cloaked region instead of an actual posi-
tion. Our key question is to what extent volunteering coarse-
grained data can actually guarantee the desired level of pri-
vacy for privacy-conscious users in such scenario.

With an increase in the amount of personal data being col-
lected and analysed, and its privacy implications, many re-
cent studies propose methods for preserving individuals’ pri-
vacy such as k-anonymity, l-diversity and obfuscation tech-
niques [9, 13]. Variations of these techniques enable users to
opt for their desired level of privacy [10, 16]. Differential pri-
vacy [6] provides formal privacy guarantees by adding noise
to the original data. However, the underlying assumption for
current techniques is that the entries of the dataset, i.e., users’
crowdsourced data, have the same granularity level.

This paper focuses on location data. Given a set of users who
contribute their daily commute patterns with different reso-
lutions respective to their privacy preference, we investigate
if it is possible to use the more fine-grained trips of privacy-
apathetic users in conjunction with the coarse-grained trips of
the privacy-conscious users to refine the contributed data of
the latter. Despite many efforts in the literature to address the
privacy issues of sharing detailed location data, the privacy
implications of having a multi-granular dataset has not been
investigated. Furthermore, unlike various studies, we do not
focus on identifying a participant but on whether or not the
guaranteed level of privacy can be maintained.

One way of storing location data at different granularity levels
is the use of a grid structure [10] since i) it provides a flexible
as well as comprehensible means of facilitating users’ prefer-
ence specification ii) it is independent of the original trajec-
tory and does not reflect any specific property of the data. We
store the location data as a sequence of grid cell IDs.

We presume the adversary is any third party with access to
the dataset but who exploits no other source of background
knowledge, e.g., road network information. The adversary
may extract multiple versions from the multi-granular grid-
based dataset through generalization: A complete dataset that



contains all users’ location data at the lowest granularity,
i.e., coarsest resolution, and several incomplete datasets with
more fine-grained location data and in which the location data
of privacy-conscious users for that specific level is not known.

A typical approach to infer the unknown values in incom-
plete datasets is employing matrix factorization (MF). MF is
an unsupervised learning method that has been successfully
utilized in the recommender systems to provide suggestions,
e.g., movies, books, points of interest, etc., to users whose
rating for a certain item is not known [8].

Our experiments show MF is largely unsuccessful at inferring
the unknown values of privacy-conscious users because MF
does not fully exploit the available information of privacy-
apathetic users that can be derived from their fine-grained
data by generalization. We propose an MF-based approach
that uses the data available for both granularities for privacy-
apathetic users: it learns a transition matrix that maps users’
coarse-grained locations to their fine-grained locations. This
transition matrix is then applied to the coarse-grained data of
privacy-conscious users to predict their fine-grained location.
This makes our method a supervised approach contrary to the
unsupervised classical MF.

Our inference attack manages to refine the footprint of
privacy-conscious users with a high precision and recall.
We are not trying to discourage the practice of data vol-
unteering but to highlight the shortcomings of current user-
specified privacy settings and the risks of contributing data
when privacy-apathetic users are involved.

PROBLEM STATEMENT
Let D = {T1,T2, ...,Tn} be a set of trajectories, Ti, belonging
to m users (m ≤ n). Each user has a privacy profile as (ui, l),
where lmin ≤ l ≤ lmax and l corresponds to user’s predeter-
mined granularity level - higher levels of granularity relate
to less private users. Hence, Gl represents a 22l-cell grid that
results from l consecutive decompositions of space into four
quadrants. A multi-granular dataset, D = {S1,S2, ...,Sn} is a
set of sequences that maps any trip, Ti to a specific grid; Si is
the sequence of grid cells, the size of which is determined by
l, that maps to the data points in Ti.

Figure 1 shows an example of three users traversing the same
region. Assume users are given the option to choose an l be-
tween 1 to 3, with 1 relating to the coarsest resolution and 3
for the finest resolution required. Figure 1b, 1c, and 1a show
the grid structure, i.e., a Gl , that matches their desired pri-
vacy settings, and Figure 1d provides a snapshot of their cor-
responding grid cell sequence in the multi-granular dataset.

Definition 1: An l-mapped version of the multi-granular
dataset, Dl = {S1l ,S2l , ...,Snl}, is an adaptation of D
where all the sequences correspond to the same level of
granularity2. For all the users whose specified granularity
level is greater than (or equal) to l, the grid cells are mapped
to their coarser level (or remain untouched). For those who
prefer a granularity level smaller than l (private people), the
fine-grained mapping is as follows: the grid cells that have not
been traveled (0 in their coarse-grained data) are assigned to
zero and the remaining entries are marked as unknown. Given

3

(a) A private user.

1

(b) A semi-private user.
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(c) A public user.
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(d) A multi-granular dataset of 3 users with different privacy preferences.

Figure 1: Applying a grid structure to accomodate partici-
pants’ privacy specification.
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Figure 2: A coarse-grained complete matrix vs a finer-
grained matrix with missing values for a private user (user3).
Columns correspond to the cell IDs of the grid.

any Dl , we aim to estimate the unknown values in Dl , i.e., the
location of private users, e.g., u1 and u3 in Figure 1.

Each Dl can be represented as an n× 4l matrix, Rl . Figure 2
depicts two matrices, R1 and R2 that correspond to the sam-
ple dataset provided in Figure 1d. ri j is set to 1 if the user
i has passed the jth cell (based on z-curve indexing in this
example) and if not, it is set to 0. Using such a representa-
tion, the aim of our inference attack is to predict the unknown
values (question marks in Figure 2b) in Dl for each l > lmin.
Conceptually, this process involves mapping the known loca-
tion information of privacy-conscious users to its children in
a hierarchical grid. For instance, for user 3 in Figure 1a the
grid ID sequence is known for l = 1, and we wish to refine
the trip by one level, i.e., l∗ = 2 (we use the same notation
throughout this paper to differentiate between coarse and fine
granularity). Thus, for each cell in S3, e.g., (0,1), we try to
find the respective subcell(s) in G2, {(0,2),(0,3),(1,2),(1,3)}
that is (are) most likely to have been traveled by user 3.

PROPOSED METHOD

Direct Factorization (DF)
One possible approach to infer unknown values in fine-
grained matrices is to apply MF and decompose a matrix into
two matrices. This approach has been successfully adopted in
the field of recommender systems to provide users with sug-
gestions that best suits them and hence, we use it as a baseline
to evaluate the performance of our approach. MF uses the data
of other users to discover the latent features that govern the
interaction between users and items. For a matrix Rn×m that
includes some unknown values, assume that k is the number



of latent features. The aim of MF is to find two matrices Pn×k
and Qk×m that approximate R in the following way:

P×Q = R′ ≈ R where r′i j =
k

∑
k=1

pikqk j

The goal is to minimise the total error between the real known
values and their respective predicted values, i.e., ‖R− P×
Q‖2. Further details on applications of matrix factorization
in recommender systems can be found at [8]. We apply MF
to the fine-grained matrix, i.e., Rl∗ , in order to estimate the
value of each cell for privacy-conscious users. In other words,
we approximate P and Q using the available information of
public users. The product of the obtained P and Q provides
the estimate values for private users.

Granularity-based Factorization (GBF)
Direct factorization on the fine-grained data fails to use the
complete coarse-grained data to improve its prediction. How-
ever, any coarse-grained matrix can be mapped to a fine-
grained matrix using a transition matrix (l∗ > l):

Rl×Φ = Rl∗

As a result, instead of factorizing Rl∗ into any two matrices
with an arbitrary k, we can decompose it to Rl and Φ. Note
that when trying to minimise the estimation error, i.e., ‖Rl∗−
Rl×Φ‖2, Rl remains unchanged and only Φ is modified.

Moreover, Rl∗ can be divided to two parts; a complete part
concerning individuals whose preferred level of granularity
is equal or higher than l∗, Ra

l∗ and an incomplete part that in-
volves users who have chosen lower levels of granularity, i.e.,
Rc

l∗ . We now can learn a transition matrix, Φ, that best approx-
imates Ra

l∗ using their coarse-grained matrix. This is done by
a random initialization of Φ and then iteratively minimizing
the distance ‖Ra

l∗ −Ra
l ×Φ‖. Using Φ, we can apply it to the

coarse matrix of privacy-conscious users to infer the unknown
values in a finer-grained matrix of higher spatial resolution:

Rc
l ×Φ≈ R f

l∗

We use gradient descent to find the local minimum when total
error is less than a predetermined threshold.

The main steps of our granularity-based factorization are de-
picted in Figure 3. We first train our model with the complete
matrices of privacy-apathetic users, i.e., Ra

l and Ra
l∗ , and learn

Φ. We then apply the learnt Φ to the complete coarse matrix
of private users to predict their unknown information (grey
cells in the fine-grained matrix).

EXPERIMENTS
We used the Porto taxi trajectory dataset [1] that contains the
GPS trajectories of 442 taxis for a complete year in Porto.
We randomly sampled 10000 trips with an average length of
≈ 4km that reside within a (≈ 10km×10km) area in the busi-
ness district of Porto. Since the trips of same taxi drivers may
have large overlaps that may lead to biased results, we ini-
tially categorize the drivers as privacy-conscious and privacy-
apathetic users and then select their trips to feed to our model.
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Figure 3: Major steps of GBF. Gray cells show the inferred
values for the 1s in the coarse-grained matrix.

Resolution (l) 1 2 3 4 5
Area(km2) 25 6.25 1.56 0.39 0.09

Occupancy rate 51% 18% 7.5% 3.4% 1.5%

Table 1: Summary of the trajectory dataset after being
mapped to different granularity levels.

The GPS points of each trajectory are mapped to a sequence
of grid cell IDs for each level of granularity. We vary l from 1
to 4 which reflects 5km×5km grid cells to 600m×600m for
private users to demonstrate coarse spatial information since
larger levels, i.e. smaller grid cells, are not private anymore.
We aim to refine the private footprints up to 300m×300m grid
cells that correspond to l∗ = 5. Table 1 provides a summary
of the dataset information and Figure 4 shows the density of
grid cells for three different granularity levels.

As default setting for our experiments we assume that 90%
are private users, i.e., the model is trained with 10% of the
data. We set the learning rate, α to 0.0004 and the regulariza-
tion parameter, β to 0.015. For DF, k is equal to the number
of coarse grid cells (4l). A five-fold cross validation was used
for the provided results.

To evaluate the success of our inference attack, we used preci-
sion and recall. While recall reflects how much of the original
trip has been retrieved, precision shows how much of the in-
ferred trip is predicted correctly. More generally, we define
the number of correctly predicted occupied cells as True Pos-
itives (TP) and the number of correctly predicted empty cells
as True Negatives (TN), the number of empty grid cells that
have been falsely predicted to be occupied as False Positives
(FP) and the number of grid cells that were actually occu-
pied but predicted to be empty as False Negatives (FN). We

(a) l = 2 (b) l = 3 (c) l = 5

Figure 4: The density of grid cells for different granularity
levels within a ≈ 10km×10km area in Porto.



Precision Recall
Private Users 90% 70% 50% 90% 70% 50%

DF 0.35 0.36 0.37 0.36 0.37 0.38
FBS 0.67 0.66 0.67 0.67 0.67 0.67
GBF 0.75 0.75 0.74 0.75 0.75 0.74

Table 2: Varying number of private users for l = 2, l∗ = 3.

l = 3, l∗ = 4 l = 4, l∗ = 5
P R F1 MAP P R F1 MAP

FBS 0.64 0.65 0.77 0.71 0.60 0.62 0.72 0.66
GBF 0.75 0.75 0.84 0.82 0.64 0.65 0.71 0.67

Table 3: Varying resolution (l∗− l = 1) for 90% private users.

compute precision and recall as follows:

Recall = T P/(T P+FN), Precision = T P/(T P+FP).

We also use the F-measure (F1) and mean average precision
(MAP) metrics popular in information retrieval.

We implemented a technique that randomly selects one to
four random subcell(s) for each known coarse-grained cell
but its performance was not competitive and not reported. We
also developed a frequency-based sampling technique (FBS)
that uses the available fine-grained data of public people to
retrieve the frequency of through each subcell and estimates
the private user locations as the probability of passing them.

Table 2 and Figure 5 compares the performance of DF, FBS
and GBF for varying numbers of private users and varying
granularity levels, respectively. DF as an unsupervised ap-
proach is not successful in predicting the locations of pri-
vate users, especially when the majority of users are private.
GBF’s performance remains largely the same, even with an
increase in the number of private people,. When l is suffi-
ciently small, FBS has a comparable performance to GBF
(Figure 5a). However, for a denser resolution, e.g., l = 2,3,
GBF outperforms FBS because larger ls results in an increase
in the number of latent features, i.e., k being considered.
However, if k is too large (l = 4), GBF’s performance declines
to levels comparable with FBS. Table 4 shows that GBF suc-
ceeds to refine major parts of private trips when l∗− l = 2,
i.e., spatial information is 16 times more refined.

RELATED WORK
Sweeney et al. [13] laid the foundation of privacy-preserving
data publication by proposing k-anonymity in 2002. l-
diversity built on this idea and made any sensitive attribute in-
distinguishable from l−1 other attributes in [9]. Users, how-
ever, may differ in the way they perceive privacy and sensi-
tive contexts [4, 14]. As a result, [16] proposed an adaptive
method to guarantee for each user their required level of pri-
vacy while minimizing the distortion of the original data.

l = 1, l∗ = 3 l = 2, l∗ = 4
P R F1 MAP P R F1 MAP

FBS 0.56 0.57 0.73 0.60 0.44 0.46 0.58 0.48
GBF 0.59 0.59 0.73 0.62 0.54 0.55 0.66 0.59

Table 4: Varying resolution (l∗− l = 2) for 90% private users.
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Figure 5: Precision-recall curves for varying spatial resolu-
tions when 90% users are private.

Many adaptive obfuscation techniques were proposed that in-
tend for protecting the sensitive data rather than users’ iden-
tity while accommodating users’ privacy preferences [11, 15,
17]. New Casper [10] proposes a grid structure to obfuscate
location information according to users’ privacy profiles. We
applied a similar structure as our privacy preserving founda-
tion. Also in [2], the reported area is enlarged as long as it
meets the privacy specification of users. This enlargement is
evaluated against the linkability of location information and
what can be inferred from user’s movement history.

The above-mentioned studies focus on the data provided by a
privacy-conscious user, e.g., what has been previously volun-
teered, what has been shared with other applications, how fre-
quently data is reported, etc., to preserve privacy. The privacy
implications of available fine-grained data in the database
have not been studied. We apply a modified MF since it has
been successfully utilized to estimate missing values, e.g.,
for recommender systems [8]. [18] provides an example of
successfully deploying MF techniques to decompose a user-
location-activity tensor ausing an external source of data to
profile users. Our approach, however, modifies MF to make
use of available coarse-grained information.

CONCLUSION
Our method, called GBF, can refine the coarse-grained data
of privacy-conscious users using the more fine-grained data
of privacy-apathetic users. Our inference attack manages to
refine private data with high resolution and recall, even when
the majority of users are privacy-conscious without any back-
ground knowledge of the road network. This highlights the
vulnerability of current approaches that attempt to provide
user-specified privacy, urging the privacy community to find
a new solution for this vulnerability.

In this work, we only focus on the location of the users, re-
gardless of time. In future, we will explore temporal informa-
tion to improve the efficacy of our inference attack. In addi-
tion, we will investigate how to generalise our attack to incor-
porate general hierarchical data and handle any probabilistic
or noisy hierarchical mappings.
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