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Extending Information-Theoretic Validity Indices
for Fuzzy Clustering

Yang Lei, James C. Bezdek, Life Fellow, IEEE, Jeffrey Chan,
Nguyen Xuan Vinh, Simone Romano, and James Bailey

Abstract—Previously, eight popular information-theoretic
based cluster validity indices have been generalized and tested
for probabilistic partitions built by the expectation-maximization
(EM) algorithm for the Gaussian mixture model. But the analysis
was limited to probabilistic clusters and there were limited
explanations for differences in the performance of the indices.
In this paper, we extend the tests to partitions found by fuzzy
c-Means (FCM) and provide further explanations and insights
about the performance of these indices. Of the eight generalized
indices, we advocate a normalized version of the soft mutual
information cluster validity index (NMIsM) as the best overall
choice, as it outperforms the other seven indices for both FCM
and EM according to our tests on synthetic and real data.
The superiority of NMIsM is most pronounced for datasets with
overlapped and/or varying sized clusters. Finally, we provide a
theoretical analysis which helps explain the superior performance
of NMIsM compared to the other three normalizations of soft
mutual information.

Index Terms—Soft Cluster Validity, External Validity Indices,
Fuzzy c-Means, Mutual Information.

I. INTRODUCTION

CLUSTERING attempts to divide data representing ob-
jects into several groups, so that objects in the same

group are similar whereas the objects in different groups are
dissimilar. Cluster validity indices (CVIs) are used to evaluate
the quality of clusterings (partitions) generated by clustering
algorithms. There have been a large number of CVIs proposed,
which are either internal or external [1]. They are distinguished
by whether or not external information is used during the
validation procedure. The CVIs studied in this article are
external validity measures.

Most external validity indices compare two crisp parti-
tions [1]. However, partitions can also be soft, i.e., fuzzy,
probabilistic or possibilistic [2]. One approach to evaluating
soft partitions is to “harden” them to crisp partitions by assign-
ing each object to the cluster with highest membership (fuzzy
partitions), posterior probability (probabilistic partitions), or
typicality (possibilistic partitions). Then they are evaluated
with crisp external validity indices. However, hardening may
cause loss of information[3], as an infinite number of different
soft partitions can be converted to the same crisp partition.
Hence, several methods have been proposed for generalizing
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some crisp CVIs to non-crisp cases [2], [3], [4], [5]. A method
reported in [2] can be used to generalize any CVI which is
a function of the standard contingency table (see Table I), to
soft indices. Subsequently the generalized soft indices can be
utilized for comparing two partitions of any type. All of these
papers compared fuzzy generalizations of some pair-counting
based external CVIs, and tested them on fuzzy partitions.
But none of these papers discussed soft generalizations of
information-theoretic based CVIs.

Information-theoretic measures form a fundamental class of
measures for comparing pairs of crisp partitions and have been
shown to outperform other classes of comparison measures in
certain common scenarios [6], [7], [8]. However, the CVIs
discussed in those papers are designed for comparing crisp
partitions and cannot compare soft ones. Therefore, the authors
of [9] used the method developed in [2] to generalize eight
information-theoretic CVIs (IT-CVIs) discussed in [8]. Their
study demonstrated the effectiveness of the generalized soft
indices on probabilistic clusters found by the expectation-
maximization (EM) algorithm applied to the Gaussian mixture
decomposition (GMD) problem. However, [9] only provided
brief explanations and insights about the performance of the
measures, hence it is difficult to know why any particular
index should be selected under different circumstances. In
addition, [9] is limited to soft partitions generated by the EM
algorithm, so we do not know how these indices perform on
different types of soft partitions. And the effectiveness of the
generalized measures were only demonstrated on relatively
small datasets (up to 1000 data objects), so we do not know
if they are still effective on large datasets.

In this paper, we extend the analysis and validation studies
of the eight IT-CVIs to fuzzy partitions generated by another
popular algorithm, fuzzy c-means (FCM) [10]. In addition,
we provide a theoretical analysis that partially explains the
performance of the measures. And we test and demonstrate
the effectiveness of the generalized indices on relatively large
datasets 1. Our contributions can be summarized as follows:
(i) We demonstrate that the generalized information-theoretic
indices can be effective on fuzzy partitions generated by FCM
via experimental evaluation; (ii) We test and demonstrate the
effectiveness of the generalized measures on relatively large
datasets; (iii) We analyze the experimental results and rec-
ommend a normalized version of the soft mutual information
cluster validity index (NMIsM) as the IT-CVI which generally
performs better than the other seven soft information-theoretic
measures for FCM partitions generated from datasets with

1The code and more detailed information about this work are available at
https://sites.google.com/site/yldatascience/home/tfs2016.

https://sites.google.com/site/yldatascience/home/tfs2016
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TABLE I: Contingency table and formulas used to compare crisp
partitions U and V.

Partition V
vj = row j of V

Class v1 v2 . . . vr Sums

Partition U
ui = row i of U

u1

u2

...
uc

N =


n11 n12 . . . n1r

n21 n22 . . . n2r

...
...

...
nc1 nc2 . . . ncr

 = UV T

n1•
n2•

...
nc•

Sums n•1 n•2 . . . n•r n•• = n

overlapping and/or different sized clusters; (iv) We prove a
theorem which helps explain why the soft NMIsM performs
better than three normalized versions of soft mutual informa-
tion, namely, NMIsj, NMIss and NMIsr.

II. BACKGROUND

A. Technique for Soft Generalization

A partition of X on n objects is a c × n matrix U =
[U1 . . .Uk . . .Un] = [uik], where Uk denotes the k-th
column of U and uik indicates the degree of membership of
object k in cluster i. There are three types of c-partitions:
Mpcn = {U ∈ Rcn|∀i, k, uik ∈ [0, 1],∀i

∑n
k=1 uik > 0},

Mfcn = {U ∈ Mpcn|∀k
∑c

i=1 uik = 1}, and Mhcn = {U ∈
Mfcn|∀i, k, uik ∈ {0, 1}}, where Mpcn are possibilistic c-
partitions, Mfcn are fuzzy or probabilistic c-partitions, and
Mhcn are crisp (hard) c-partitions. For convenience, we call
the set (Mpcn −Mhcn) the soft c-partitions of O.

There are a number of popular indices [2] that are based on
the entries of the standard contingency table. Let U ∈ Mhcn

and V ∈ Mhrn: the c × r contingency table of U and V
is shown in Table I. Anderson et al. [2] observed that the
contingency table could be constructed as the product N =
UV T . For crisp partitions, this formation reduces to the regular
contingency table. Any comparison index that depends only on
the entries of the contingency matrix can be generalized using
the following equation:

N∗ = φUV T =
[
n/

c∑
i=1

ni•

]
UV T (1)

where φ is a scaling factor that is needed in the possibilistic
case, ni• =

∑r
j=1 nij (see Table I). For crisp, fuzzy or

probabilistic partitions, φ = 1, the case of interest here.

B. Soft Generalization of Information-Theoretic Indices

Information-theoretic based measures are built upon fun-
damental concepts from information theory [11], and are a
commonly used approach for crisp clustering comparison [6],
[7]. Given a crisp partition U that partitions n objects into c
subsets {u1, . . . , uc}, the (Shannon) entropy of U is H(U) =
−
∑c

i=1 p(ui) log p(ui), where p(ui) = |ui|/n, indicates the
probability of an object belonging to cluster ui, and |ui| = ni
is the number of objects in cluster i. Note that H(U) is
different from PE(U) = −(

∑n
k=1

∑c
i=1 uik loga(uik))/n,

where a ∈ (1,∞), the partition entropy of U [10]. Given two
crisp partitions U and V , their joint entropy (JE) and mutual
information (MI) can be defined according to the contingency
table built upon U and V (Table I) respectively as [8]:
JE(U, V ) = −

∑c
i=1

∑r
j=1(nij/n) log(nij/n), MI(U, V ) =

TABLE II: Information-theoretic cluster validity indices.

Name Expression Range Find

MI MI(U,V) [0,min{H(U), H(V )}] Max

NMIj MI(U, V )/JE(U, V ) [0,1] Max

NMIM MI(U, V )/max{H(U), H(V )} [0,1] Max

NMIs 2MI(U, V )/(H(U) +H(V )) [0,1] Max

NMIr MI(U, V )/
√

H(U)H(V ) [0,1] Max

NMIm MI(U, V )/min{H(U), H(V )} [0,1] Max

Variation of Informa-
tion (VI)

JE(U, V )−MI(U, V ) [0, logn] Min

Normalized VI (NVI*

)
1− (MI(U, V )/JE(U, V )) [0,1] Min

* NVI is the normalized distance measure equivalent to NMIj.∑c
i=1

∑r
j=1(nij/n) log

nij/n
ni•n•j/n2 . Intuitively, the MI between

two partitions measures how much information they share. The
more information they share, the more similar they are, which
results in a larger MI. More detailed explanations of these
concepts can be found in [7], [8]. Eight popular crisp, external
information-theoretic cluster validity indices (IT-CVIs) based
on information-theoretic concepts are listed in Table II. The
normalized version of VI (NVI) is equivalent to NMIj. Thus,
Table II contains seven independent IT-CVIs. We restrict our
attention to the performance of NMIj.

The authors of [9] used equation (1) to generalize the indices
in Table II for use with EM partitions. In particular, the entropy
of a soft clustering U , is H(U) = −

∑c
i=1(ni•/n) log(ni•/n),

where ni• is the row sum of the i-th row from the generalized
contingency table N∗. Similarly, we define the joint entropy
and mutual information of two soft partitions, JE(U, V ) and
MI(U, V ), by taking nij and n•j =

∑c
i=1 nij from N∗. Now

soft versions of the eight IT-CVIs listed in Table II can be
computed from the generalized contingency table N∗ and are
denoted as MIs, NMIsj, NMIsM, NMIss, NMIsr, NMIsm, VIs
and NVIs.

III. EVALUATION METHODOLOGY

A. Implementation and Settings

We modified the fcm function from the MATLAB Fuzzy
Logic Toolbox to accommodate our initialization and termina-
tion criteria. Initialization: We randomly draw c distinct points
from the data X as the initial cluster centers. The fuzzifier for
FCM is m = 2 and the model norm is Euclidean. Termination:
FCM is terminated when the difference between two succes-
sive estimates of the cluster centers, ‖Wt+1 −Wt‖∞ < ε,
where Wt = {w1, . . . ,wc}, and ε = 10−3; the maximum
number of iterations is 100.

B. Datasets

1) Synthetic Data: In this paper, we use 25 synthetic
datasets, which contain five ground truth clusters, sampled
from mixtures of two-dimensional Gaussian distributions. The
covariance matrices for all clusters are identity matrices. We
have tested on datasets possessed various attributes, e.g.,
shapes of clusters, the amount of overlap between clusters
, cluster sizes (i.e., the number of samples in each cluster)
and sample sizes. Three of these properties showed the largest
impact on the CVIs, namely, the amount of overlap between
clusters, cluster sizes and sample sizes. Hence, in the rest of
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the paper we focus on these three attributes. We generated four
groups of datasets called groups G1, G2, G3 and G4. Among
these four groups, the number of samples of each dataset in
groups G1, G2 and G3 is n = 1000 and the sample size of
datasets in group G4 are varied. More details:

Varying cluster overlap with equal sized clusters (G1).
There are five equal sized clusters in the first group of
datasets. We vary the overlap between two of the clusters
by moving the mean of Cluster5 (µ5) towards Cluster3 (µ3)
while keeping the other threes clusters’ means fixed. The
means of Cluster1, Cluster2, Cluster3 and Cluster4 are µ1 =
[2, 0], µ2 = [2, 13], µ3 = [13, 10], µ4 = [8, 17], respectively.
The mean of the fifth cluster (Cluster5) is µ5 = [13, 3 + i],
where i = 1, . . . , 5. That is, we increase the amount of overlap
between Cluster3 and Cluster5 by moving Cluster5 up towards
Cluster3 in the y direction. Thus, we generate five datasets,
‘Ovp#’, where # ∈ {1, . . . , 5}.

Varying cluster sizes without overlapping clusters (G2).
The second group of datasets are generated by varying the
cluster sizes. For each dataset, the five clusters are well
separated, i.e., non-overlapping, with fixed means of µ1 =
[2, 0], µ2 = [2, 13], µ3 = [13, 10], µ4 = [8, 17], and µ5 =
[13, 3]. The size of Cluster5 is n5 = 100∗i, where i = 1, . . . , 6,
and 1/4th of the remaining n−n5 objects are drawn for each
of the other four clusters. Finally, we generated six datasets,
‘Dens#’, where # ∈ {1, . . . , 6}.

Varying cluster sizes with overlapping clusters (G3). For
the first two groups, we test the influence of a single factor
(overlapping or cluster size) on the success of the generalized
measures. However, real-world datasets are often more compli-
cated and contain both overlapping and different sized clusters.
To mimic this type of structure, we generated a third type of
datasets. For each dataset in G3, the means of the five clusters
are µ1 = [2, 0], µ2 = [2, 13], µ3 = [13, 10], µ4 = [8, 17], and
µ5 = [13, 8]. The means of Cluster3 and Cluster5 are close
to each other and these clusters tend to be overlapping. We
vary the sizes of Cluster5, based on n5 = 100 ∗ i, where
i = 1, . . . , 6 and 1/4th of the remaining n − n5 objects are
drawn for each of the other clusters. Thus, we generate six
datasets, ‘OvpDens#’, where # ∈ {1, . . . , 6}.

Varying data sizes with equal sized, non-overlapping
clusters (G4). We vary the number of samples in the data to
test the influence of data size on the soft CVIs. To facilitate the
comparison, we fix the other two factors, i.e., cluster overlap
and cluster sizes while generating the datasets. Specifically,
for each dataset, the five clusters are well separated, with
fixed means of µ1 = [2, 0], µ2 = [2, 13], µ3 = [20, 13], µ4 =
[11, 20], and µ5 = [15, 5]. The five clusters are equal sized,
i.e., n1 = n2 = n3 = n4 = n4 = n5 = n/5. The sizes of the
datasets are n = {100, 500, 1000, 5000, 104, 5× 104, 105, 5×
105, 106}. Thus, we generate nine datasets, ‘NSize#’, where #
∈ {1, . . . , 9}. Please note that dataset ‘Ovp5’ in G1 is actually
same as ‘OvpDens2’ in G3. Thus, we have 25 datasets overall
instead of 26.

2) Real-World Data: Datasets from the UCI machine learn-
ing repository [12] are often benchmarks for evaluating ex-
ternal validity measures [4], [5]. These datasets have ground
truth partitions provided by physically labeled subsets. We use

TABLE III: Real-world datasets: n = number of points, p = number
of dimensions and CGT = number of ground truth classes.

Dataset n p cGT
Sonar 208 60 2
Pima-diabetes 768 8 2
Heart-statlog 270 13 2
Haberman 306 3 2
Wine 178 13 3
Vehicle 846 18 4
Iris 150 4 3
Zoo 101 17 7
Vertebral-Column 310 6 3
MNIST 70000 784 10

10 real-world datasets: nine are from the UCI repository and
one large dataset MNIST, which is a collection of handwritten
digits [13]. Parameters of the datasets are shown in Table III,
where n, p and cGT correspond to the number of objects,
features and classes, respectively.

C. Experimental Design

We test the effectiveness of the generalized soft indices
by testing their ability to estimate the number of labeled
clusters for synthetic datasets or classes for real-world datasets.
In order to provide a baseline, we include two other soft
CVIs that are not information-theoretic in nature, namely soft
versions [2] of the Rand Index (RI) and the adjusted Rand
Index (ARI), Hubert and Arabie version [14]). We denote these
as the RIs and ARIs, respectively.

The general idea is to run FCM on each dataset to generate
a set of partitions with different numbers of clusters. Then,
each of the nine generalized soft indices is computed on every
partition, where the comparison matrix V in equation (1) is
the ground truth partition of the data. The number of clusters
associated with the computed partition U obtaining the best
result is cpre, for that particular dataset. Let ctrue be the
number of known clusters in the synthetic datasets, and let cGT

denote the number of labeled classes in the real-world datasets.
If cpre = ctrue for the synthetic data, or cpre = cGT for the
real-world data, then we declare the prediction of this index on
this dataset a success. We ran FCM on each dataset with the
number of clusters c ranging from 2 to 3× ctrue and 3× cGT

for the synthetic datasets and real-world datasets respectively.
In order to reduce the influence of random initialization for
FCM, we generate 100 partitions for each c, and evaluate the
nine soft indices on each of the 100 partitions, so that we can
make a histogram depicting the percentage of successes for
each index over the 100 trials.

IV. EXPERIMENTAL RESULTS

A. FCM Tests with the Synthetic Gaussian Datasets

The overall success rate for an index is the total number of
successes across the 25 datasets divided by the total number of
partitions, i.e., 25×100. The indices are sorted in descending
order by their success rates, displayed from left to right in
Figure 1a. In general, Figure 1a shows that NMIsM performs
best among the nine soft CVIs on these synthetic datasets,
having a success rate of approximately 80%. RIs, ARIs, NMIsj,
NMIss, NMIsr and VIs achieve a success rate of 62− 72%. In
contrast, MIs and NMIsm perform poorly, having a success
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(a) Overall success rates of the soft CVIs for FCM
partitions on 25 synthetic datasets (2500 trials). Error
bars indicate the standard deviation.

(b) Success rates of soft CVIs on the synthetic
datasets (G1) as a function of overlap.

(c) Success rates of soft CVIs on the synthetic datasets
(G2) as a function of cluster size.

(d) Success rates of soft CVIs on the synthetic
datasets (G3) as a function of cluster size with over-
lapping clusters.

(e) Success rates of soft CVIs on the synthetic datasets
(G4) as a function of sample size.

Fig. 1: Success rates of soft CVIs for FCM partitions on 25 synthetic datasets.

rate of about 5%. A possible reason for this is that MI tends
to monotonically increase with the number of clusters [8].
Hence, MIs is likely to favour partitions with more clusters.
For NMIsm, if the sizes of the discovered clusters are more
equally distributed, the entropy of the generated soft partition,
H(U), increases with the number of clusters c. This effect
may occur with FCM as FCM tends to favour clusters that are
evenly sized. Note that the entropy of the ground truth labels
H(V ) = q is constant. At some c, H(U) > H(V ), and subse-
quently, NMIsm(U, V ) = MIs(U, V )/H(V ) = MIs/q, so
NMIsm becomes equivalent to the scaled version of MIs and
has the same deficiency.

1) Results on datasets with overlapping clusters (G1):
The results on G1 appear in Figure 1b. The first seven CVIs
perform similarly when evaluating FCM partitions for the first
four datasets, but behave differently on the dataset Ovp5,
which has the most overlapping clusters in G1. A missing
vertical bar means that there were no successes for the given
index on a particular dataset. For Ovp5, only NMIsM, RIs and
ARIs perform relatively well with success rates of about 60%
while the rest of the soft measures perform poorly (nearly
0%). This suggests that the efficacy of NMIsj, NMIss, NMIsr
and VIs to evaluate FCM partitions is more severely affected
by overlap, while NMIsM, RIs and ARIs are more robust to
this factor. At the other extreme, Figure 1b shows that MIs
and NMIsm are inadequate for the G1 datasets.

2) Results on datasets with different sized clusters (G2):
The bar chart in Figure 1c shows the results on G2. The
first seven measures provide identical evaluations for all six
datasets in G2. As with the first tests, MIs and NMIsm show
poor performance. This indicates that the first seven CVIs are
not influenced much by datasets containing different sized,

non-overlapping clusters. Compared to the results on the
first group of datasets, it seems that FCM, in common with
most other clustering algorithms, has more difficulty finding
partitions that match the ground truth when there is overlap
than it does on the well-separated clusters.

3) Results on datasets with different sized and overlapping
clusters (G3): The success rates of the CVIs for FCM par-
titions generated from G3 are shown in Figure 1d. There
are some significant differences between the graphs in Fig-
ures 1b, 1c and the chart in Figure 1d, which corresponds
to this set of tests. Specifically, NMIsM is the only index in
the experiments with G3 that successfully recovers a positive
fraction of the 100 trials for each of the six datasets. The other
eight indices have relatively poor performance. In particular,
note the dropoff in performance by the soft ARIs, which
did well for G1 and G2, but is quite ineffective here. These
results suggest that only NMIsM has (relatively) consistent
good success rates for more complicated datasets, like those
in this group of experiments.

4) Results on datasets with different data sizes (G4):
Different from the previous bar graphs, we use a line graph
to show the trend of success rates of all nine indices with
increasing data sizes in Figure 1e. The x axis indicates the
number of samples in the datasets. The y axis represents the
success rates. There are only two graphs in Figure 1e: the
upper graph has seven coincident plots which correspond to
the indices NMIsM, RIs, ARIs, NMIsj, NMIss, NMIsr and VIs.
The lower graph shows two coincident plots which represent
MIs and NMIsm. Please recall that all these datasets contain
five well separated, equal sized clusters, so FCM is expected
to find partitions similar to the ground truth on these datasets.
We can draw several conclusions from this graph: (i) The
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first seven soft CVIs work well on all these datasets, while
the last two, i.e., MIs and NMIsm, work poorly . Apparently
the first seven measures identify the right number of clusters
when there are reasonable FCM partitions, while MIs and
NMIsm do not; (ii) The size of the dataset does not impact the
performance of these measures very much, i.e., the success
rates of the first seven measures are consistently high and the
success rates of MIs and NMIsm are always low.

Summary of experimental results on the synthetic datasets:
NMIsM performs better than the other eight soft CVIs. This
suggests that NMIsM might be preferred for detecting the right
number of clusters when validating FCM partitions. We point
out that NMIsM performs better than the other three variants
of NMI, i.e., NMIsj, NMIss and NMIsr in certain scenarios,
even though they are all based on soft mutual information
but have different normalizations. Because of its very poor
performance, we do not include NMIsm in the comparison
discussion. We will discuss this further in Section V.

B. FCM Tests with Real-World Datasets
The success rates of these indices on each real-world

dataset are summarized in Table IV. The highlighted entries
in the table show that NMIsM performs better than the other
measures. The last row of Table IV shows the column sums.
The higher the number, the greater the overall success on these
10 datasets: a perfect score would be 10. NMIsM, with a score
of 5.9, is clearly superior to the other eight indices. The RIs
comes in second, with a sum of 5. The last two columns,
MIs and NMIsm are tied for last place at 2.06. Note that the
indices are shown in the same order as in Figure 1a. Most of
the indices keep the same ranking (column sums: higher scores
to lowers scores from left to right) as they had on the synthetic
datasets (Figure 1a), but NMIsr is out of rank order and is not
as effective as NMIsj and NMIss in this set of experiments.

V. THEORETICAL ANALYSIS

Our experiments suggest that NMIsM has superior perfor-
mance to NMIsj, NMIss and NMIsr (Figures 1b and 1d). In this
section, we provide a theoretical explanation which enables us
to explain why NMIsM outperforms the other three variants of
NMI in certain situations. Please find the related proofs in
the Appendix. First, we define two measures of change in the
computation of NMI:

Definition 1. Let V ∈ Mhrn be a crisp reference partition
(ground truth), r ≥ 3. Let U ′ ∈ Mf(r−k)n and U∗ ∈ Mfrn

be two soft partitions on n objects with r − k and r clusters
respectively. The relative change in MIs with respect to U ′

on moving from U ′ to U∗ (note that the number of clusters
increases by k, from (r − k) to r) is

α =
(
MI(U∗, V )−MI(U ′, V )

)
/MI(U ′, V ) (2)

Let NMI∗ denote any of the three normalizations
{NMIsj , NMIss, NMIsr} of MIs, and let B∗(U, V )
denote the denominators (normalization factors as shown in
Table II) of {NMIsj , NMIss, NMIsr}. The relative change
in the denominator of any of these CVIs with respect to U ′

on moving from U ′ to U∗ is
β =

(
B∗(U

∗, V )−B∗(U ′, V )
)
/(B∗(U

′, V )) (3)

Theorem 1. Let V ∈ Mhrn be a crisp reference par-
tition (ground truth), r ≥ 3. Let U ′ ∈ Mf(r−k)n
and U∗ ∈ Mfrn be two soft partitions on n ob-
jects with r − k and r clusters respectively, where (r −
k) ≥ 2 and k ≥ 1. Let NMI∗ denote any of the
three normalizations {NMIsj , NMIss, NMIsr} of MIs. If
MI(U∗, V ) > MI(U ′, V ) and H(V ) ≥ H(U∗), H(U ′),
then (A) NMIsM (U∗, V ) > NMIsM (U ′, V ), and (B)
NMI∗(U

∗, V ) =
(
(1 + α)/(1 + β)

)
NMI∗(U

′, V ).

Equation (A) shows that when H(V ) ≥ H(U∗), H(U ′),
and the number of clusters in the soft partition in-
creases from r − k in U ′ to r in U∗, that when
MI also increases, i.e., MI(U?, V ) > MI(U ′, V ), then
NMIsM (U∗, V ) > NMIsM (U ′, V ). In contrast, the other
three forms of normalized MIs depend on relative changes
of both their numerators and denominators. i.e., if α >
β, then NMI∗(U

∗, V ) > NMI∗(U
′, V ); if α = β,

then NMI∗(U
∗, V ) = NMI∗(U

′, V ); if α < β, then
NMI∗(U

∗, V ) < NMI∗(U
′, V ). Thus, when MI(U∗, V ) >

MI(U ′, V ), NMIsM will favour U∗ (r clusters, matching the
number of clusters in the reference partition V ) over U ′, which
has r − k clusters. But for the other three measures NMI∗,
α and β are sensitive to changes from U ′ to U∗, and hence
can fluctuate easily, making these three measures unstable and
hence, their performance more uncertain. Next, we discuss a
specific case for Theorem 1, when the ground truth is balanced.

Definition 2. Let U ∈Mfcn be any crisp, fuzzy or probabilis-
tic partition of n objects with c clusters. Then U is balanced
if and only if

∑n
k=1 uik = n/c, 1 ≤ i ≤ c.

In other words, each of the c clusters in U is allocated
the same amount of membership. When U is crisp, this is
equivalent to saying that each of the c crisp clusters has the
same number of objects in it. The importance of this concept
is contained in the following well know result.

Proposition 1. Let U ∈ Mfcn be any crisp, fuzzy or
probabilistic partition with c > 1. The entropy H(U) =
−
∑c

i=1 p(ui) log p(ui), where p(ui) = (
∑n

k=1 uik)/n, is
maximum if and only if U is balanced. The maximum entropy
of U is maxU∈Mfcn

{H(U)} = log c.

Now we are in a position to show why NMIsM is the best
normalization of the mutual information when the reference
partition is balanced (datasets G1 in our experiments).

Corollary 1. Let V ∈ Mhrn be a crisp, balanced reference
partition. If MI(U∗, V ) > MI(U ′, V ), then statements (A)
and (B) in Theorem 1 hold.

In summary, the better performance of NMIsM when com-
pared to the other three NMI measures, is due to their de-
nominators (normalization factors) having different sensitivity
to changes in the number of clusters in candidate partitions.
NMIsM is more robust to the changes, while the other three
indices suffer from sensitivity to α and β in equations 2 and 3.

VI. CONCLUSIONS

This paper has presented an organized study of eight IT-
CVIs for FCM partitions on 25 synthetic and 10 real-world
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TABLE IV: Success rate (% of successes in 100 trials) of nine indices for FCM on 10 real-world datasets. The highlighted numbers indicate
success rates above 85%. The highlighted datasets have at least one rate above 85%.

FCM NMIsM RIs ARIs NMIsj NMIss NMIsr VIs MIs NMIsm Row Sums
Sonar 0.95 1 1 0.93 0.93 0.93 1 0.87 0.87 8.48

Pima-diabetes 0.96 1 0.98 0.89 0.89 0.85 1 0 0 6.57

Heart-statlog 0.99 1 1 0.99 0.99 0.99 1 0.99 0.99 8.94

Haberman 0 1 0 0 0 0 1 0 0 2

Wine 1 0 1 1 1 1 0 0.20 0.20 5.4
Vehicle 0 0 0 0 0 0 0 0 0 0

Iris 1 1 1 1 1 0 0 0 0 5
Zoo 0 0 0 0 0 0 0 0 0 0

Vertebral Column 1 0 0 0 0 0 0 0 0 1
MNIST 0 0 0 0 0 0 0 0 0 0

Column Sums 5.9 5 4.98 4.81 4.81 3.77 4 2.06 2.06

datasets. We demonstrated that soft generalizations of the eight
IT-CVIs are quite capable of identifying the “correct” number
of clusters or classes from candidate partitions generated by
FCM on these synthetic and real-world datasets. The results
of this study, combined with previous computational results
in [9], provide a reasonably strong empirical argument about
the effectiveness of generalized IT-CVIs for both fuzzy and
probabilistic cluster validity. In particular, NMIsM is superior
to the other seven generalized IT-CVIs for both FCM and EM
partitions on datasets with overlapped and/or various sized
clusters. Finally, Theorem 1 provides a theoretical reason to
expect better performance of NMIsM over the other three
variants of NMI, i.e., NMIsj, NMIss and NMIsr in certain
situations.

To the best of our knowledge, this is the first cluster validity
study which demonstrates that the distribution of the ground
truth subsets can bias the value of an external CVI. Our
theorem covers a very specific case for one external CVI, but
suggests a much richer question for further research: to what
extent does the distribution of the ground truth partition affect
any external cluster validity index? We have taken one step in
this direction with some new results about ground truth bias in
the Rand index using quadratic entropy which will be reported
in a forthcoming paper.

APPENDIX

PROOF FOR THEOREM 1
Proof. (A) if H(V ) ≥ H(U∗), H(U ′), then
max{H(U ′), H(V )} = max{H(U∗), H(V )} = H(V ). By
hypothesis, MI(U∗, V ) > MI(U ′, V ), so NMIsM (U∗, V ) =
MI(U∗, V )/max{H(U∗), H(V )} = MI(U∗, V )/H(V ) >
MI(U ′, V )/H(V ) = NMIsM (U ′, V ). This completes
the proof of (A). (B) Rearranging equation (2) yields
MI(U∗, V ) = (1 + α)MI(U ′, V ). Similarly, rearranging
equation (3) yields B∗(U∗, V ) = (1 + β)B∗(U

′, V ). Then for any
of the three normalized forms of MIs we have NMI∗(U

∗, V ) =
MI(U∗, V )/B∗(U

∗, V ) = ((1 + α)MI(U ′, V ))/((1 +
β)B∗(U

′, V )) =
(
(1 + α)/(1 + β)

)
NMI∗(U

′, V ). This
completes the proof of (B).

PROOF FOR PROPOSITION 1
Proof. Regard the row sums of U as c “events”. Here are three well
know facts from information theory [11]: (i) 0 ≤ H(U) ≤ log c;
(ii) H(U) = 0 when exactly one of the p(ui)’s is 1 and all the
rest are zero; (iii) H(U) = log c if and only all of the events have
the same probability p(ui) = 1/c, i = {1, . . . , c}. (⇒) Assume that

H(U) = log c. From the fact (iii), the only time this can happen is
when U is balanced. (⇐) Assume that U is balanced. When U is
balanced, its row sums are all equal by Definition 2, that is, the c
“events” are all equally likely. Again by fact (iii), this guarantees that
H(U) is maximum, with value H(U) = log c.

PROOF FOR COROLLARY 1
Proof. If V is balanced, according to Proposition 1, so H(V ) =
log r ≥ H(U∗). Also, H(V ) = log r > log(r − k) ≥ H(U ′), so
H(V ) ≥ H(U∗), H(U ′).
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