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Abstract

Estimating the strength of dependency between two
variables is fundamental for exploratory analysis and
many other applications in data mining. For example:
non-linear dependencies between two continuous vari-
ables can be explored with the Maximal Information
Coefficient (MIC); and categorical variables that are
dependent to the target class are selected using Gini
gain in random forests. Nonetheless, because depen-
dency measures are estimated on finite samples, the in-
terpretability of their quantification and the accuracy
when ranking dependencies become challenging. De-
pendency estimates are not equal to 0 when variables
are independent, cannot be compared if computed on
different sample size, and they are inflated by chance
on variables with more categories. In this paper, we
propose a framework to adjust dependency measure es-
timates on finite samples. Our adjustments, which are
simple and applicable to any dependency measure, are
helpful in improving interpretability when quantifying
dependency and in improving accuracy on the task of
ranking dependencies. In particular, we demonstrate
that our approach enhances the interpretability of MIC
when used as a proxy for the amount of noise between
variables, and to gain accuracy when ranking variables
during the splitting procedure in random forests.

1 Introduction

Dependency measures D(X,Y ) are employed in data
mining to assess the strength of the dependency be-
tween two continuous or categorical variables X and
Y . If the variables are continuous, we can use Pearson’s
correlation to detect linear dependencies, or use more
sophisticated measures, such as the Maximal Informa-
tion Coefficient (MIC) [1] to detect non-linear depen-
dencies. If the variables are categorical we can use the
well known mutual information (a.k.a. information gain)
or the Gini gain [2]. Dependency measures are ubiqui-
tously used: to infer biological networks [1], for variable
selection for classification and regression tasks [3], for
clustering comparisons and validation [4], as splitting
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criteria in random forest [5], and to evaluate classifica-
tion accuracy [6], to list a few.

Nonetheless, there exist a number of problems when
the dependency D(X,Y ) is estimated with D̂(Sn|X,Y )
on a data sample Sn of n data points: a) even if the
population value D(X,Y ) = 0 when X and Y are
statistically independent, estimates have a high chance
to be bigger than 0 when n is finite; b) when comparing
pairs of variables which share the same fixed population
value D(X,Y ), estimates are still dependent on the
sample size n and the number of categories of X and
Y . These issues diminish the utility of dependency
measures on quantification tasks. For example, MIC
was proposed in [1] as a proxy of the amount of noise on
the functional dependence between X and Y : it should
“provide a score that roughly equals the coefficient of
determination R2 of the data relative to the regression
function”, which is 0 under complete noise and 1 in
noiseless scenarios. Nonetheless, MIC is not equal
to 0 under complete noise, and MIC values are not
comparable if computed on samples of different size n
because of the use of different datasets or in the case of
variables with missing values:

Example 1. Given two uniform and independent vari-
ables X and Y in [0, 1], the population value of MIC is
0 but the estimates MIC(S20|X,Y ) on 20 data points
are higher than MIC(S80|X,Y ) on 80 data points.
On average, they achieve the values of 0.36 and 0.25
respectively. The user expects this value to be 0. The fol-
lowing box plots show estimates for 10, 000 simulations.
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The example above shows that the estimated MIC
does not have zero baseline for finite samples. The
zero baseline property is well known in the clustering
community [4], nonetheless this property does not hold
for many dependency measures used in data mining.

Problems also arise when ranking dependencies on
a finite data sample. For example, if Gini gain is
used to rank the dependency between variables to the
target class in random forests [5], variables with more



categories have more chances to be ranked higher:

Example 2. Given a variable X1 with two categories
and a variable X2 with one more category which are
both independent of the target binary class Y , both the
population value of Gini gain between X1 and Y , and
the population value between X2 and Y are equal to
0. However, when Gini gain is estimated on 100 data
points the probability of Gini(S100|X2, Y ) being greater
than Gini(S100|X1, Y ) is equal to 0.7. The user expects
0.5 given that X1 and X2 are equally unpredictive to Y .

It is common practice to use the p-value of Gini gain
to correct this bias [7]. Nonetheless, we will shortly
see that p-values are effective only when the population
value of a dependency measure is 0.

In this paper, we identify that the issues discussed
in Example 1 and 2 are due to inflated estimates
arising from finite samples. Statistical properties of
the distribution of the dependency measure estimator
D̂(Sn|X,Y ) under independence ofX and Y can be used
to adjust these estimates. The challenge is to formalize
a general framework to adjust dependency measure
estimates which also addresses the shortcomings of the
use of p-values. We make the following contributions:

• We identify common biases of dependency measure
estimates due to finite samples;

• We propose a framework to adjust estimates
D̂(Sn|X,Y ) which is simple, yet applicable to many
dependency measures because it only requires to
use the distribution of the estimator when X and
Y are independent;

• We experimentally demonstrate that our adjust-
ments improve interpretability when quantifying
dependency (e.g., when using MIC as a proxy of
the amount of noise) and accuracy when ranking
dependencies (e.g., when using Gini gain in random
forests).

2 Background

Dependency measures D(X,Y ) are defined on the joint
distribution (X,Y ). In data mining applications, they
are estimated with D̂(Sn|X,Y ) on a finite sample Sn =
{(xk, yk)} of n data points. If variables are continuous,
we can compute the amount of linear dependency with
the squared Pearson’s correlation coefficient:

(2.1) r2(Sn|X,Y ) ,

(∑n
k=1(xk − x̄)(yk − ȳ)

)2

∑n
k=1(xk − x̄)2

∑n
k=1(yk − ȳ)2

with x̄ = 1
n

∑n
k=1 xk and ȳ = 1

n

∑n
k=1 yk. If we

are interested in non-linear relationships, we can em-
ploy the Maximal Information Coefficient (MIC) [1].

MIC(Sn|X,Y ) is estimated as the maximum normal-
ized mutual information across all the possible grids
superimposed on the sample Sn to estimate the joint
distribution of X and Y . When the variables are cate-
gorical, the mutual information or Gini(Sn|X,Y ) can be
directly estimated using the joint empirical probability
distribution between X and Y on the sample Sn. See
Appendix A in the supplement for formal definitions.

There are three important applications of depen-
dency measures between two variables [8]:

Detection: Test for the presence of dependency. For
example, assess if there exists any dependence
between bacterial species that colonize the gut of
mammals [1];

Quantification: Summarization of the amount of de-
pendency in an interpretable fashion. For example,
when MIC is used as a proxy of the amount of noise
in a relationship [1];

Ranking : Sort the relationships of different variables
based on the strength of their dependency. For
example, when Gini gain is used to rank predictive
variables to the target class in random forests [5].

We saw in Examples 1 and 2 that when it comes to
estimating dependency on data samples via D̂(Sn|X,Y )
the interpretability of quantification and accuracy of
ranking become challenging. We claim that both tasks
can take advantage of the distribution of D̂ under the
following null hypothesis:

Definition 2.1. D̂0(Sn|X,Y ) is the distribution of
D̂(Sn|X,Y ) on a sample Sn under the null hypothesis
that X is statistically independent of Y .

This null hypothesis is commonly exploited only in
detection tasks where the distribution D̂0(Sn|X,Y ) is
computed under the null and a p-value is computed to
filter out false discoveries [1]. Nonetheless, this null
can be used also to aid quantification and ranking.
The challenges are to identify the distribution under
the null for a particular dependency measure, and to
employ it in a framework to perform adjustments to
the estimates. Here we discuss the use of this null
hypothesis in previous research.

2.1 Use of the Null for Quantification. To our
knowledge the first instance of a systematic approach
using the null distribution D̂0 to achieve interpretability
in quantification was proposed in the 1960 with the κ co-
efficient of inter-annotator agreement [6]. The amount
of agreement A(Sn|X,Y ) (dependency) between two
annotators X and Y on a sample of n items can be
adjusted for chance by subtracting its expected value
E[A0(Sn|X,Y )] under the null hypothesis of indepen-
dence between annotators. The κ coefficient is obtained



by normalization via division of its maximum value
maxA = 1 to obtain an adjusted dependency measure
in the range [0, 1]:

(2.2) κ(Sn|X,Y ) =
A(Sn|X,Y )− E[A0(Sn|X,Y )]

1− E[A0(Sn|X,Y )]

Other notable examples are the Adjusted Rand Index
(ARI) and the Adjusted Mutual Information (AMI) [4].
We argue that this approach should be applied to many
other dependency measures estimators D̂ because it im-
proves interpretability by guaranteeing a zero baseline
to D̂. Moreover, we will shortly see that it helps in
comparing estimates on different samples Sn.

2.2 Use of the Null for Ranking. In the decision
tree community, it is very well known that when select-
ing the most dependent variable X to the target class
Y , variables available on a small number of samples n
or with many categories tend to be chosen more often.
Indeed, it has been shown that an unbiased selection
can be obtained if the p-value [7] of a dependency esti-
mate or its standardized version [9] is used rather than
its raw value. Nonetheless, these techniques are unbi-
ased only under the null hypothesis and not unbiased
in general. Indeed, in the next sections we will see that
their use actually yields bias towards variables induced
on bigger n or with fewer categories. This behavior has
been overlooked in the decision tree community.

3 Adjusting Estimates for Quantification

To guarantee good interpretability in quantification
tasks, dependency measure estimates should be equal to
0 on average when X and Y are independent, and their
values should be comparable on average across different
data samples of different size. More formally we want:

Property 3.1. (Zero Baseline) If X and Y are in-
dependent then E[D̂(Sn|X,Y )] = 0 for all n.

Property 3.2. (Quantification Unbiasedness)
If D(X1, Y1) = D(X2, Y2) then E[D̂(Sn|X1, Y1)] =
E[D̂(Sm|X2, Y2)] for all n and m.

We saw in Example 1 that MIC does not satisfy either
property. Therefore, we propose an adjustment that can
be applied to MIC and in general to any dependency
estimator D̂:

Definition 3.1. (Adjustment for Quantification)

AD̂(Sn|X,Y ) ,
D̂(Sn|X,Y )− E[D̂0(Sn|X,Y )]

max D̂(Sn|X,Y )− E[D̂0(Sn|X,Y )]

is the adjustment of D̂(Sn|X,Y ), where
max D̂(Sn|X,Y ) and E[D̂0(Sn|X,Y )] are respec-

tively the maximum of D̂, and its expected value under
the null.

AD̂(Sn|X,Y ) has always zero baseline (Property 3.1)
being 0 on average when X and Y are independent, and
attains 1 as maximum value. This adjustment can be
applied to r2 and MIC to increase their interpretability
when they are used as proxies of the amount of noise
in a linear relationship and a functional relationship
respectively. We just have to identify their distribution
on the sample Sn under the null:

• r2
0(Sn|X,Y ): follows a Beta distribution with pa-

rameters 1
2 and n−2

2 [10];
• MIC0(Sn|X,Y ): this distribution can be computed

using s = 1, . . . , S Monte Carlo permutations

MIC
(s)
0 of MIC [1]. See Appendix A.1.

Therefore the adjusted Pearson’s correlation squared r2

and the adjusted MIC are:

(3.3) Ar2(Sn|X,Y ) =
r2(Sn|X,Y )− 1

n−1

1− 1
n−1

(3.4) AMIC(Sn|X,Y ) =
MIC(Sn|X,Y )− EMIC0

1− EMIC0

where E[r2
0(Sn|X,Y )] = 1

n−1 and EMIC0 =
1
S

∑S
s=1 MIC

(s)
0 . EMIC0 converges to

E[MIC0(Sn|X,Y )] at the limit of infinite permu-
tations. However, good estimation accuracy can be
obtained even with few permutations because of the
law of large numbers [11].

In the next section we will see how our adjustments
satisfy Property 3.1 and Property 3.2.

3.1 Experiments with Pearson Correlation and
MIC. We aim to experimentally verify the zero base-
line Property 3.1 and that our adjustment in Defini-
tion 3.1 enables better interpretability. We generate a
linear relationship between a uniformly distributed X
in [0, 1] and Y on n = 30 points adding different per-
centages of white noise. We compare r2 and Ar2. Each
white noise level is obtained by substituting a given per-
centage of points from the relationship and assigning to
the Y coordinate a random value in [0, 1]. Figure 1
shows the average r2 and Ar2 for 2,000 simulated rela-
tionships with a given percentage of white noise: r2 is
not zero on average when the amount of noise is 100%
(last plot on the right). On the other hand, Ar2 is very
close to zero when there is complete noise and it fully
exploits its range of values from one to zero, mapping
the domain from 0% to 100% noise. This yields more
interpretability and enables Ar2 to be used as a proxy
to quantify the amount of noise in linear relationships.
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Figure 1: Average value of r2 and Ar2 for different percentages of white noise. Linear relationship between X
and Y induced on n = 30 points in [0, 1] × [0, 1]. Ar2 becomes zero on average on 100% noise enabling a more
interpretable range of variation.
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Figure 2: Average value of MIC and AMIC for different percentages of white noise. Quadratic relationship
between X and Y induced on n = 60 points in [0, 1] × [0, 1]. AMIC becomes zero on average on 100% noise
enabling a more interpretable range of variation.

Similarly, we generated a quadratic relationship
between X and Y in [0, 1] × [0, 1] on n = 60 points
with different levels of noise to compare MIC and
AMIC. Figure 2 shows that the value of MIC computed
with default parameters [1], is about 0.26 on average
for complete noise. AMIC computed with S = 30
permutations, is instead very close to zero and it
exploits better its range of values from one to zero.
AMIC is more interpretable than MIC and might be
used more intuitively as a proxy for the amount of noise
in a functional relationship.

The average value of a dependency estimator should
not be biased with regards to the sample Sn as stated
in Property 3.2. In Figure 3, we show that r2 and MIC
suffer from this problem: their estimates are higher on
average when n is smaller. Figure 3 shows the average
value of raw and adjusted measures on 2,000 simulations
for different levels of noise and sample size n: r2 and Ar2

are compared on linear relationships; MIC and AMIC
are compared on linear, quadratic, cubic, and 4th root
relationships. Neither the zero baseline Property 3.1 nor
the quantification unbiasedness Property 3.2 is verified
for the raw measures r2 and MIC, shown respectively
in Figure 3(a) and 3(c). Instead, Ar2 and AMIC in
Figure 3(b) and 3(d), satisfy both properties: they have
zero baseline and their average value is not biased with
regards to the sample size n. We claim that these
properties improve interpretability when quantifying
dependency and enhance equitability for MIC [1].

4 Adjusting Estimates for Ranking

When the task is ranking dependencies according to
their strength, dependencies induced on smaller sample
size n or on variables with more categories have more
chances to be ranked higher as shown in Example 2 for
Gini gain. This issue is due to inflated estimates due
to finite samples. Indeed, r2 and MIC suffer from the
same problem.

Consider this experiment: we generate five samples
Sn with n = [20, 40, 60, 80, 100] to simulate different
amount of missing values for a joint distribution (X,Y )
where X and Y are independent. For each sample, we
compute r2(Sn|X,Y ), we select Sn that achieves the
highest value, and iterate this process 10,000 times.
Given that the population value ρ2(X,Y ) = 0 for
all samples, all samples should have equal chances to
maximize the r2. However, Figure 4 shows that S20

has higher chances to maximize r2. This implies that
dependencies estimated on samples with missing values
have higher chances to be ranked higher in terms of
strength.
We would like that dependencies which share the same
population value for D had the same chances to max-
imize the dependency estimate D̂ even if estimated on
different samples. More formally:

Property 4.1. (Ranking Unbiasedness) If
D(X1, Y1) = D(X2, Y2) = .. = D(XK , YK) then the
probability of D̂(Sni |Xi, Yi) being equal or greater than
any D̂(Snj |Xj , Yj) is 1

K for all ni, nj, 1 ≤ i 6= j ≤ K.
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(b) Ar2 (adjusted)
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Figure 3: Average value of r2, Ar2, MIC, and AMIC on different amount of noise and different sample size n.
Raw measures show higher values for smaller n on average. Instead, Property 3.2 of unbiasedness with regards
to n is empirically verified for adjusted measures.
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Figure 4: Probability to select the sample Sn with
n = [20, 40, 60, 80, 100] according r2(Sn|X,Y ) fixing the
population value ρ2(X,Y ) = 0. The relationship with
n = 20 has more chances to be ranked higher.

For example in Figure 4 we would like constant probabil-
ity of selection equal to 1

5 = 0.20. Property 4.1 is useful
to achieve higher accuracy when the task is ranking the
pair of variables that show the stronger relationship.

Biases in ranking are well known in the decision tree
community [7] as shown in Example 2. Distributional
properties of the raw dependency measure have to be
employed to adjust for biases in ranking. For example,
ranking according to p-values or standardized measures
are possible solutions [7, 9]. They both quantify if the
estimate D̂ is statistically significant. Here we extend
the standardization technique to any dependency mea-
sure estimate D̂ to employ it for unbiased ranking:

Definition 4.1. (Standardization for Ranking)

SD̂(Sn|X,Y ) ,
D̂(Sn|X,Y )− E[D̂0(Sn|X,Y )]√

Var(D̂0(Sn|X,Y ))

is the standardized D̂(Sn|X,Y ), where E[D̂0(Sn|X,Y )]
and Var(D̂0(Sn|X,Y )) are, respectively, the expected
value and the variance of D̂ under the null.

Nonetheless, it is very difficult to satisfy the ranking
unbiasedness Property 4.1 just with SD̂. Therefore
we also define an adjustment to dependency measures

whose bias can be tuned according to a parameter α.
This is particularly useful when α can be tuned with
cross-validation, e.g. in random forests.

Definition 4.2. (Adjustment for Ranking)

AD̂(Sn|X,Y )(α) , D̂(Sn|X,Y )− q0(1− α)

is the adjustment at level α ∈ (0, 1] of D̂(Sn|X,Y ),
where q0(1 − α) is the (1 − α)-quantile of D̂0(Sn|X,Y )

under the null: i.e., P
(
D̂(Sn|X,Y ) ≤ q0(1 − α)

)
=

1− α.

At a fixed significance level α, the quantile q0(1 − α)
induces more penalization when the estimate is not sta-
tistically significant. With regards to Example 2, fixing
α = 0.05 we penalize the variable X1 and the variable
X2 by q0(0.95) equal to 0.036 and 0.053 respectively.
The latter variable gets penalized more because it is less
statistically significant having more categories. In con-
trast, SD̂ fixes the amount of penalization based on sta-
tistical significance and does not allow to tune the bias
during ranking. In the next section we aim to show the
shortcomings of raw measures and standardized mea-
sures for ranking tasks.

4.1 Ranking Biases of Raw and Standardized
Measures. We use r2 and its adjusted versions in a
case study: Ar2 is defined as per Eq. (3.3), Ar2(α) =
r2 − q0(1 − α) where q0(1 − α) is computed with the
Beta distribution (see Section 3), and the standardized
r2 is defined as:

(4.5) Sr2(Sn|X,Y ) =
r2(Sn|X,Y )− 1

n−1√
2(n−2)

(n−1)2(n+1)

We do not evaluate p-values because their use is equiva-
lent to the use of standardized measures which are also
much easier to compute.
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(a) X independent of Y (ρ2 = 0).
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(b) X linearly related to Y with 10% white noise (ρ2 > 0).

Figure 5: Probability to select the sample Sn induced on n = [20, 40, 60, 80, 100] according adjusted measures:
Sr2 satisfies the ranking unbiasedness Property 4.1 when ρ2 = 0 but not when ρ2 > 0. All measures show to be
biased in the latter case: it is difficult to satisfy Property 4.1 in general.

We perform similar experiments as in the previous
section: we fix the population value for a dependency
and compute estimates on different samples Sn to com-
pute their probability of selection. We select samples
according r2, Ar2, and Sr2. Figure 5(a) shows the prob-
ability of selection of different samples at fixed popula-
tion value ρ2 = 0. We can clearly see that the ranking
unbiasedness Property 4.1 is satisfied if we use Sr2 (top
plot). On the other hand the sole adjustment for quan-
tification Ar2 is not enough to remove r2 bias towards
small n. Nonetheless, Figure 5(b) shows that if we gen-
erate a linear relationship between X and Y with 10%
white noise (i.e., ρ2 is fixed to a value greater than 0),
Sr2 is biased towards big n. This is because we prefer
statistically significant relationships. This phenomena
might have been overlooked in the decision tree com-
munity [12, 13].

Given that it is difficult to satisfy the ranking
unbiasedness Property 4.1 in general, we show how α
in our adjustment Ar2(α) might be used to tune the
bias when it is possible. Figure 6 shows that with
big α (α ≈ 0.4) relationships on small n have higher
probability to be selected. On the other hand, small α
(α ≈ 0.05) tunes the bias towards higher sample size n.
On a real ranking task, it is reasonable to rank according
to Ar2(α) and see how the rank changes with changes
of α rather than relying on a single ranking based on
biased measures such as r2, Ar2, or Sr2. The best
value for α can be chosen by cross-validation when it
is possible. Similar conclusions can be drawn for MIC
and its adjusted versions.
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Figure 6: Probability of selection of a sample Sn when
X is linearly related to Y with 10% white noise using
Ar2(α): α tunes the bias towards small n with a big α
(bottom plot) or big n with a small α (top plot).

4.2 Experiments with Pearson Correlation and
MIC. MIC and r2 have been used in [1] to identify
the strongest related pair of socio-economic variables
using the WHO dataset. This dataset is a collection of
m = 357 variables for n = 201 countries. Some of the
variables have a high percentage of missing values and
they are available on much fewer than n = 201 samples.
In this section, we aim to alert the users of MIC and
r2 about ranking biases for relationships induced on
different sample size n. We conduce an experiment: we
choose a reference socio-economic variable Y and select
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Figure 7: Plot of the top-most dependent variable X to Y =“Breast cancer number of female deaths” according
different adjustments for r2. r2 and Ar2 favor relationships on small n. Sr2, and Ar2(α = 0.1) penalize
relationships on small n and select more reasonably X =“Breast cancer number of new female cases”.

the top related variable according to r2 and its adjusted
versions. Then, we estimate the dependency between
two variables based on the data points available for both
X and Y . We only consider dependencies estimated on
at least n ≥ 10 data points. Figure 7 shows the top-most
dependent variable X to Y =“Breast cancer number of
female deaths” using r2, Ar2, Sr2, and Ar2(α = 0.1).
The top-most dependent variable according to r2 and
Ar2 is X =“Aid given” which quantifies the amount of
aid given to poor countries in million US$. Instead, Sr2

and Ar2(α = 0.1) identifyX =“Breast cancer number of
new female cases” which seems a more reasonable choice
given that the number of deaths might be correlated
with new cancer cases. Indeed as seen in the previous
Section, r2 and Ar2 favour variables induced on small
n. Moreover from the plot in Figure 7 we see that they
are very sensitive to extreme values or outliers: i.e. the
United States show a very high number of deaths due to
breast cancer ≈ 43,000 in a year and a very high amount
of aid given ≈ 20 Billion US$; this increases the chances
for a high r2 or Ar2.

MIC is even more inclined to select variables in-
duced on small n. For example we see in Figure 8
that if we target Y =“Maternal mortality” which quan-
tifies the number of female deaths during pregnancy
(out of 100,000 live births), and we choose MIC or
AMIC to identify the top dependent variable, we get
X =“Oil consumption per person” (tonnes per year).
There seems to exist an inversely proportional relation-
ship between X and Y , possibly due to the common
cause of overall economic development but it is difficult
to argue in favor of the amount of oil/energy consump-
tion per person as the most dependent variable to ma-
ternal mortality. We also identified the top variables
according to SMIC and AMIC(α = 0.01) computed
with 10,000 Monte Carlo permutations. More specif-

ically, SMIC = MIC−EMIC0

SDMIC0
, where SDMIC0 is the

unbiased estimator of the standard deviation of MIC
permutations; and AMIC(α) = MIC− q0(1−α), where

Table 1: Average sample size n for the top relation-
ships in the WHO datasets. The raw estimator of a
dependency measure D̂ favours relationships on small
n. Instead, its standardized version SD̂ favours big n.
With AD̂(α) it is possible to tune the bias towards small
n (big α) or big n (small α).

Measure r2 MIC

D̂ 114.6 (min) 103.1 (min)

AD̂ 115.1 106.9

SD̂ 133.7 (max) 131.8 (max)

AD̂(α = 0.4) 116.2 (min) 111.7 (min)

AD̂(α = 0.05) 121.1 119.4

AD̂(α = 0.1) 120.2 (max) 117.4 (max)

q0(1 − α) is the d(1 − α) · Se-th MIC value from the
sorted list of S MIC permutations in ascending order
(See Appendix A.1 for more details). The top variables
according to SMIC and AMIC(α = 0.01) are instead
variables related to communicable/non-communicable
(infectious/non-infectious) diseases which is more intu-
itively related to mortality.

Table 1 shows the average sample size n for the
chosen top variables with different adjustments. The
user of dependency measures should be aware of the
bias of raw dependency estimators D̂ towards small n
and try to explore results from their adjusted versions
SD̂ and AD̂(α) when ranking. Ultimately, the latter can
be chosen to tune the bias towards smaller n (big α) or
big n (small α).

4.3 Experiments with Gini gain in Random
Forests. Splitting criteria are known to be biased to-
wards variables induced on small n or categorical with
many categories. Standardized measures and p-values
are the state-of-the-art strategy to solve this prob-
lem [7, 12, 13, 9]. However, we saw that standardized
measures are unbiased in ranking only when the pop-
ulation value D(X,Y ) = 0, and the user might better
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Figure 8: Plot of the top-most dependent variable X to Y =“Maternal Mortality” according different adjustments
for MIC. MIC and AMIC are biased towards small n. SMIC and AMIC(α = 0.1) select more reasonably either
X =“Years of life lost to communicable diseases” or X =“Years of life lost to non-communicable diseases”.

tune the bias using the parameter α. The optimal α can
be found with cross-validation.

Here we use the expected value E0[Gini] and the
variance Var0(Gini) of Gini proposed in [7] to standard-
ize Gini gain as per Definition 4.1 (See Appendix A.2 for
more details). Moreover, we employ them to compute
the adjusted Gini gain AGini(α) as follows:

Proposition 4.1. The adjustment for ranking at level
α ∈ (0, 1] for Gini gain is:

AGini(Sn|X,Y )(α) = Gini(Sn|X,Y )− q̃0(1− α)

where q̃0(1−α) is an upper bound for the (1−α)-quantile
of Gini gain equal to:

E[Gini0(Sn|X,Y )] +

√
1− α
α

Var(Gini0(Sn|X,Y )).

The proof of this upper bound is proposed in the
supplement A.2.

We compare WEKA random forests with Gini,
SGini, and AGini(α) as splitting criteria. To our knowl-
edge this is the first time SGini and AGini(α) are
tested in random forest. The forest is built on 1,000
trees taking care of sampling data with no replacement
(50% training set records for each tree) to not intro-
duce further biases towards categorical variables with
many categories [14]. We employed 17 UCI datasets
and 2 datasets with many categorical variables studied
in [15]. The latter datasets are related to biological clas-
sification problems and some of the variables can take
as many categories as the number of amino acids at a
given site in a viral protein: e.g. in the HIV dataset,
there exist variables which can take 21 possible values
and induce splits of 21-cardinality in the trees. Table 2
shows the AUC performance of random forest computed
with 50 bootstrap 2-fold cross-validation using different
splitting criteria. All our adjustments improve on the
AUC of the random forest built with Gini. We fixed α
in AGini(α) to show that using a value of 0.05 or 0.1

on average increases the random forest’s AUC: see Fig-
ure 9. Moreover, we also tuned α with cross-validation
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Figure 9: AUC of random forest varying α: with
α = {0.01, 0.05} it achieves the best results on average.

for the best performance. Indeed, the performance of
random forests with AGini(α) with α tuned is statisti-
cally better than the one built with Gini according to
the 1-sided Wilcoxon sing rank test: p-value = 0.0086.
Although the observed effect size is small, it was con-
sistent, and there is no extra computational effort. We
strongly believe that adjusted splitting criteria are bene-
ficial given that i) they can be plugged in random forests
where Gini is currently used to improve classification
accuracy on data sets with categorical variables or with
missing values, ii) they exhibit the same computational
complexity as the Gini, and iii) they are easy to imple-
ment, in particular much easier than the estimation of
their confidence interval with a possibilistic loss function
proposed recently [16].

5 Conclusion

In this paper we discussed how to adjust dependency
measure estimates between two variables X and Y us-
ing the null hypothesis of their independence. This is
particularly important to achieve interpretable quantifi-
cation of the amount of dependency. For this task,
we proposed the quantification adjusted measures Ar2

and AMIC. However, quantification adjustment is not
enough to achieve accurate ranking of dependencies.



Table 2: Random forest AUC using different splitting criteria. Either (+), (=), or (−) means statistically greater,
equal, or smaller according to the 1-sided paired t-test at level 0.05 than random forest AUC with Gini gain.

Dataset
Variable with
max number
of categories

Number
of

classes

mcategorical +
mcontinuous =

m
n Gini SGini

AGini
(α = 0.05)

AGini(α)
with α tuned

Credit-g 11 2 13 + 7 = 20 1000 77.47 78.17 (+) 77.66 (=) 78.16 (+)
australian 14 2 8 + 6 = 14 690 92.59 93.09 (+) 93.02 (+) 93.11 (+)
bio-promoters 4 2 57 + 0 = 57 106 97.03 97.29 (+) 97.41 (+) 97.53 (+)
flags 14 8 26 + 2 = 28 194 90.49 91.75 (+) 91.75 (+) 91.83 (+)
kr-vs-kp 3 2 36 + 0 = 36 3196 99.86 99.86 (=) 99.86 (=) 99.86 (=)
led7 2 10 7 + 0 = 7 3200 94.18 94.18 (=) 94.18 (=) 94.18 (=)
lymph 8 4 15 + 3 = 18 148 92.91 93.16 (+) 93.13 (=) 93.13 (=)
mfeat-pixel 7 10 240 + 0 = 240 2000 99.58 99.63 (+) 99.64 (+) 99.64 (+)
mito 21 2 23 + 0 = 23 175 79.32 79.28 (=) 79.26 (=) 79.10 (=)
monks1 4 2 6 + 0 = 6 556 99.96 99.85 (−) 97.38 (−) 99.78 (−)
monks2 4 2 6 + 0 = 6 601 64.86 70.89 (+) 77.83 (+) 80.72 (+)
monks3 4 2 6 + 0 = 6 554 98.73 98.74 (=) 98.74 (=) 98.73 (=)
solar-flare 6 6 11 + 0 = 11 323 89.17 89.23 (+) 89.22 (=) 89.23 (+)
splice 6 3 60 + 0 = 60 3190 99.52 99.52 (=) 99.52 (=) 99.52 (=)
steel 2 2 6 + 27 = 33 1941 99.94 99.93 (−) 99.93 (−) 99.94 (−)
tae 2 3 2 + 3 = 5 151 72.25 72.33 (+) 73.23 (+) 73.65 (+)
tic-tac-toe 3 2 9 + 0 = 9 958 97.83 97.93 (+) 97.95 (+) 97.94 (+)
c-to-u 5 2 42 + 3 = 45 2694 89.74 89.42 (−) 89.28 (−) 89.61 (−)
HIV 21 2 1030+0 = 1030 355 84.08 89.27 (+) 89.58 (+) 89.58 (+)
p-value for the 1-tailed Wilcoxon signed rank test against random forest with Gini 0.0114 0.0295 0.0086

In particular, it is very difficult to achieve ranking
unbiasedness. In this task, the user should explore
the possible rankings obtained with standardized and
ranking adjusted measures, varying the parameter α.
We demonstrated that our Sr2, Ar2(α), SMIC, and
AMIC(α) can be used to obtain more meaningful rank-
ings, and that AGini(α) yields higher accuracy in ran-
dom forests. The code for our measures and experi-
ments has been made available online1.
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Supplementary Material

A Dependency Measure Estimators

Here we formally define the dependency measure esti-
mator of Gini gain between two categorical variables
X and Y and the Maximal Information Coefficient
(MIC) [1] on a sample Sn.
Gini gain and mutual information (a.k.a. infor-
mation gain)

Let X be a categorical variable with r possible
values, then nXi with i = 1, . . . , r is the count of records
with value i for X in the sample Sn. Similarly, let Y
be a categorical variable with c possible values, nYj with
j = 1, . . . , c is the count of records with value j for Y .
Finally, the count of records for the pairs that associate
the values i for X and j for Y is denoted as nij . Gini
gain are estimated on the empirical probabilities

nij

n ,
nX
i

n , and
nY
j

n which can be stored in a contingency table:

Y
nY1 · · · nYj · · · nYc

nX1 n11 · · · · · · · n1c

...
...

...
...

X nXi · nij ·
...

...
...

...
nXr nr1 · · · · · · · nrc

Figure 10: r × c contingency table that stores the
bivariate frequency distribution of X and Y for the
sample Sn.

Gini gain is defined as:
(A.1)

Gini(Sn|X,Y ) , 1−
c∑
j=1

(nYj
n

)2

−
r∑
i=1

nXi
n

(
1−

c∑
i=j

(nij
nXi

)2)
Instead, the mutual information (MI) between X and
Y is defined as:

(A.2) MI(Sn|X,Y ) ,
r∑
i=1

c∑
j=1

nij
n

log2

nij · n
nXi n

Y
j

Maximal Information Coefficient (MIC)
Given a sample Sn from the continuous variables X

and Y , MIC is the maximal normalized MI computed
across all the possible r×c grids to estimate the bivariate
frequency distribution ofX and Y . Each r×c discretizes
the scatter plot of X and Y in r ·c bins to compute their

frequency distribution:
(A.3)

MIC(Sn|X,Y ) , max
r×c grids with r·c≤na

MI(Sn|X,Y )

log2 min {r, c}

where a is a parameter often set to 0.6 [1].

A.1 Distribution of MIC under the null. The
distribution of MIC0(Sn|X,Y ) can be computed using

s = 1, . . . , S Monte Carlo instances MIC
(s)
0 of MIC com-

puted on the sample S0
n = {(xσx(k), yσy(k))} obtained by

permutations of the sample Sn: σx(k) and σy(k) are the
permuted indexes of the points xk and yk respectively.
The expected value of MIC under the null can be esti-
mated with:

(A.4) EMIC0 =
1

S

S∑
s=1

MIC
(s)
0

The standard deviation of MIC under the null can be
estimated with:

(A.5) SDMIC0 =

√√√√ 1

S − 1

S∑
s=1

(MIC
(s)
0 − EMIC0)2

A.2 Distribution of Gini gain under the null.
The analytical distribution of Gini gain in Eq. (A.1)
is difficult to compute. Nonetheless, it is possible to
compute its expected value and variance. According [7]
the expected value of Gini gain under the null using the
multinomial model is:

(A.6) E[Gini0(Sn|X,Y )] =
r − 1

n

(
1−

c∑
j=1

(nYj
n

)2)
and the variance Var[Gini0(Sn|X,Y )) is:

1

n2

[
(r − 1)

(
2

c∑
j=1

(nYj
n

)2

+ 2
( c∑
j=1

(nYj
n

)2)2

− 4

c∑
j=1

(nYj
n

)3)(A.7)

+
( r∑
i=1

1

nXi
− 2

r

n
+

1

n

)
×

(
− 2

c∑
j=1

(nYj
n

)2

− 6
( c∑
j=1

(nYj
n

)2)2

+ 8

c∑
j=1

(nYj
n

)3)]

We can compute the (1−α)-quantile of Gini gain under
the null using its expected value and variance:



Proposition 4.1. The adjustment for ranking at level
α ∈ (0, 1] for Gini gain is:

AGini(Sn|X,Y )(α) = Gini(Sn|X,Y )− q̃0(1− α)

where q̃0(1−α) is an upper bound for the (1−α)-quantile
of Gini gain equal to:

E[Gini0(Sn|X,Y )] +

√
1− α
α

Var(Gini0(Sn|X,Y )).

Proof. Let µ and σ be the expected value and standard
deviation respectively. We apply the Cantelli’s inequal-
ity to find an upper bound for q0(1 − α): P (Gini ≤
µ + λσ) ≥ λ2

1+λ2 for λ ≥ 0. If we set λ2

1+λ2 = α then

P (Gini ≤ µ +
√

1−α
α σ) ≥ α. This implies q0(1 − α) ≤

µ+
√

1−α
α σ. �
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