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Abstract

Exploratory data analysis aims to discover and generate mul-
tiple views of the structure within a dataset. Conventional
clustering techniques, however, are designed to only provide
a single grouping or clustering of a dataset. In this paper,
we introduce a novel algorithm called CAMI, that can un-
CAMI takes
a mathematically appealing approach, combining the use of

cover alternative clusterings from a dataset.

mutual information to distinguish between alternative clus-
terings, coupled with an expectation maximization frame-
work to ensure clustering quality. We experimentally test
CAMI on both synthetic and real-world datasets, compar-
ing it against a variety of state-of-the-art algorithms. We
demonstrate that CAMI’s performance is high and that its
formulation provides a number of advantages compared to
existing techniques.

1 Introduction

Data clustering is an important topic in data mining.
However, clustering is a challenging task, whose diffi-
culty is caused by the lack of a unique and precise def-
inition of what a cluster is [22, 19]. Information is not
available about the underlying structure of the data, nor
is there a unique similarity measure for differentiating
clusters. Hence, it is not surprising that there is often
no single clustering solution that explains the structure
of a given dataset, especially if it is complex and rep-
resented in a high dimensional space. This challenge
has given rise to the recently emerging area of alterna-
tive clustering analysis, whose goal is to seek different
partitions (or clusterings), in order to describe different
grouping aspects for a given dataset (e.g. [22, 2, 8, 9]).

For example, consider the data given in Figure 1
and assume the number of clusters to be uncovered
is 3. It is clear that both of the clustering solutions
found in two Figures 1a and 1b are equally valid and
important, since they fit the data well and have the
same clustering quality. It would be difficult to justify
keeping only the first clustering, while omitting the
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(a) 1st clustering (b) 2nd clustering
Figure 1: Two alternative clusterings of the same
dataset, each with 3 clusters. Point shapes show cluster
membership.

second. We can also identify similar examples in real-
life applications. For example, in text mining, one can
cluster documents by their subjects or writing styles; or
in biology, proteins might be classified by either their
structure or function. In each case, both clustering
solutions are equally important and each could be used
to provide a different interpretation of the data.

In this paper, we develop a new and mathematically
appealing algorithm called CAMI (Clustering for Al-
ternatives with Mutual Information), to simultaneously
uncover a pair clusterings from a dataset. Essentially,
it is a regularized expectation maximization technique,
which mazimizes the likelihood of each of the alterna-
tive clusterings over the data, while at the same time,
manimizes the similarity between them. To quantify the
dissimilarity between two clustering solutions, we go be-
yond first and second order statistics by using mutual
information based on Shannon’s entropy theory [7]. Our
motivation here is that mutual information can effec-
tively capture the information shared between two dis-
tributions and it fully utilizes the information contained
in the data as nonlinearly specialized by the probability
density function [7, 27]. Furthermore, by formulating
each clustering solution as a mixture model of multi-
variate normal distributions, we exploit the convolution
property of Gaussian kernels and provide an algorithm
which leads to a simple form of dual objective optimiza-
tion function. Consequently, both the E- and M-steps



are an appealing extension of the conventional EM algo-
rithm and they maintain its advantages in computation
and implementation.

An important aspect of our approach is that the
CAMI algorithm is completely unsupervised. It does
not require any a-priori knowledge to search for the
various alternate clusterings, except the number of
clusters M. This distinguishes it from the majority
of previous work in the area, which targets the semi-
supervised setting, where either a known clustering
must be explicitly provided [8, 9], or some form of side-
information is required to support the searching of an
alternative one [6, 14]. Such semi-supervised approaches
may not always be feasible, since clustering is often used
as the first step in data analysis and extra information
may be hard to obtain beforehand.

Our contributions in this paper are:

1. We develop and propose a new algorithm, CAMI,
to simultaneously discover two alternative cluster-
ings of a dataset. It combines the advantages of
two mathematically sound frameworks: informa-
tion theory and the framework of maximum likeli-
hood. CAMI seeks to optimise two criteria 1) each
clustering has high quality of clustering (in terms
of maximum likelihood), 2) the mutual information
between them is minimized.

2. Unlike nearly all existing techniques, CAMI is a
completely unsupervised learning technique. It
is the second work in this line but the first one
addressing the problem from information theory.

3. We experimentally compare CAMI with seven well
known algorithms on both synthetic and real-world
datasets. Our results show that CAMI’s perfor-
mance is comparatively very strong and it is very
promising to use as the basis for alternative clus-
tering discovery.

2 Related work

Semi  Supervised —Alternative  Clustering: Semi-
supervised clustering has been extensively studied
in the literature [24, 3, 16, 10]. Most of the existing
techniques fall into two general approaches, which use
a-priori knowledge as either positive or negative infor-
mation toward the desired clustering. In the former
case, prior knowledge (typically expressed in instances’
must-link and cannot-link constraints [18, 24, 4]) is
used to improve clustering results by guiding algorithms
toward the target clustering. In the latter case, which
is more related to our problem, prior knowledge takes
the form of negative information about the desired
clustering. In [15], authors proposed a conditional

information bottleneck (CIB) method which treats
class labels of a given clustering as side information
in seeking an alternative clustering. The underlying
principle of CIB can be summarized as follows. Given
two variables X such as data objects and Y as features,
CIB attempts to find a clustering C such that the
shared information between X and C' is minimized,
while at the same time the information between Y
and C' is maximized conditioning on the information
provided by the variable Z which represents provided
class labels .! Although our work adopts an information
theoretic approach, there are key differences between
CIB and our approach. First, CIB is a semi-supervised
algorithm, requiring background information for one
of the alternative clusterings, whereas our approach
is unsupervised. Second, while our algorithm directly
minimizes the mutual information between the two
clusterings, CIB only conditions on the first clustering,
while maximizing the mutual information between C'
and Y. In other words, it uses mutual information in a
completely different way to our approach. Subsequent
to CIB, the COALA was proposed in [2]. Given a
known clustering, COALA generates a set of pairwise
cannot-link constraints and it attempts to find a dis-
parate data partition by using these constraints within
an agglomerative clustering process. COALA was
shown to be very effective with both high qualitative
and dissimilar clusterings discovered [2], though the
quadratic running time of the hierarchical clustering
can be a concern for large datasets.

The line of work developed in [8, 9] takes another
approach to alternative clustering, based on the notion
of orthogonality. In [8], the authors develop two tech-
niques to find an alternative clustering using orthogonal
projections. Intuitively, one can characterize a data par-
tition by a set of representatives (e.g., cluster means).
It is then possible to expect that a dissimilar partition
might be found by clustering the data in a space orthog-
onal to the space spanned by such representatives. Both
techniques developed in [8] exploit this idea. A similar
approach is further developed in [9]. This method is bet-
ter than [8] in that it does not suffer from the problem in
which the data dimension can be smaller than the num-
ber of clusters (e.g., spatial datasets). Very recently,
this approach has been further extended [21], where the
transformation matrix can be regularized by constraints
so that a good cluster in the original clustering can still
be found in the transformed space.

Unlike these orthogonal projection techniques, our
approach is unsupervised. Another key difference is that

TThe CIB’s minimization function is therefore F = I(X,C) —
BI(Y,C|Z), where § is a trade-off factor.



our approach seeks alternative clusterings in the original
data space (not an orthogonal one). Moreover, rather
than imposing the strict condition of orthogonality, we
minimize the information sharing amongst clusterings;
whilst maximizing the likelihood over the data in order
to ensure the clustering quality. Notice that, as has been
mentioned in [9] and confirmed in our experiments, or-
thogonality is quite a strong requirement and imposing
transformations to satisfy orthogonality does not always
ensure clusters can be discriminated better, since data
can be distorted by the transformation operation. In ad-
dition, once the data is transformed for orthogonality,
it may be difficult to interpret the alternative cluster-
ings, since they are represented using completely new
co-ordinates.

Unsupervised Alternative Clustering: Different from
the semi-supervised setting approaches, interesting re-
cent work in [17] proposes two algorithms to find dis-
parate clusterings in an unsupervised manner. In their
first algorithm, the concept of representative vectors is
introduced for each clustering solution. The objective
function of the k-means method is then subsequently
modified by adding terms to account for the orthog-
onality between mean vectors of one clustering, with
respect to the representative vectors of the other. In
the second algorithm, it is assumed that the data can
be modelled as a sum of mixtures and they associate
each mixture with a clustering solution. This leads to
the problem of learning a convolution of mixture distri-
butions by which the expectation maximization method
can be employed to find the distributions’ parameters.
Our work is similar to [17] in that we both deal with
the problem from the unsupervised learning approach.
However, the objective function used by our approach
is rather different from the one in [17]. We address the
problem from an information theory angle and attempt
to minimize the mutual information between clustering
solutions. Their work, on the other hand, is not based
on mutual information and instead uses dot products
to measure and optimise orthogonality between alter-
native clustering solutions. This use of orthogonality
makes their objective function a little similar to some
of the semi-supervised settings we have discussed ear-
lier. We provide an experimental comparison later in
the paper.

3 CAMI Algorithm Principles

An intuitive problem statement is as follows:

DEFINITION 3.1. Given a dataset D and a user supplied
parameter k, return two (alternative) clusterings CT
and C~ of D, such that CT and C~ are each of high
quality, they each have k clusters and the similarity

between Ct and C~ is low.

We will later be more precise about what is meant
by high quality and high dissimilarity. We begin our
description of the CAMI algorithm by reviewing some
background.

3.1 Background on General EM theory

In statistical learning, both the greatest gradient
and maximum likelihood can be used to estimate the
parameters of a density mixture model [20]. Under the
framework of maximum likelihood, one maximizes the
following log-likelihood function:

N
(3.1) L(©;X) = Zlogp(xi\@)

where the set of observations in d—dimensional space
X = {z,}N_, C R? is assumed to be independently
drawn from the distribution p(z|©) parameterized by ©.
The function L(0; X) is sometimes called the likelihood
of the parameters © given the fixed data X'. The goal
is to find the © that maximizes L. The Expectation
Maximization (EM) algorithm is a powerful technique
to iteratively compute the maximum likelihood when
the data observations X are viewed as incomplete
data and the likelihood function can be simplified by
assuming the existence of additional but missing data )
(corresponding to X'). With this addition, the complete
data is the combination of X and )’ and the technique
tries to maximize the likelihood of this combined data
via the iteration of computing two involved steps,
named the E- and M-steps. Particularly, in the E-
step, the algorithm determines the expectation of the
complete data log-likelihood based on the observations
X and the current parameter ©;:

(3.2) Q(0]6;) = Ellogp(X, Y| X, 0)]
In the M-step, it determines a new parameter by
maximizing this expectation:

(3.3) Oi11 = arg(r)nax Q(0]6,)

3.2 Alternative Clustering Objective Function
Using Mutual Information

The clustering problem can be viewed as a spe-
cial case of estimating parameters for a density mixture
model. For this approach, one can treat each clustering
solution as a mixture of models and the class label C'



of data observations plays the role of the missing data
Y in the EM technique. Each model (or distribution)
in the mixture corresponds to a cluster and the param-
eters of each distribution provides a description of the
corresponding cluster.

For our problem, given the set of data samples
X = {x1,22,..xN}, we aim to discover two clustering
solutions C* and C~, each respectively partitions X as
a whole into M+ and M~ groups and the similarity
between them is to be minimized. C* and C~ are
parameterized by ©1 and ©~ respectively. Let © be
the combination parameters of @ and ©~, we therefore
define the likelihood function in our case as follows:

(3.4)
L(©;X) = L(O";: X) + L(O7; X) + nF(Ct;C7[0)

The first two terms on the right hand side of the
equation correspond to maximum likelihood functions
with respect to each clustering CT and C~, while the
third term F' measures their dissimilarity. n > 0 is a
regularization parameter which controls the compromise
between the degree of the difference and the maximum
likelihood.

At this stage, it is natural to ask whether it is rea-
sonable to combine both quality and dissimilarity terms
together in the objective function - i.e. do they measure
comparable quantities 7 Looking ahead, we will shortly
see that all three terms of the objective can be expressed
in terms of quantities related to probabilities. Hence the
objective can loosely be interpreted as a combination of
probabilities, with an additional regularization param-
eter used to provide scaling.

Since we would like to find two partitions over the
data that are as disparate as possible, the function F'
needs to be an effective tool for measuring clustering
dissimilarity. ~We make use of mutual information,
since it has been known to exploit well the dependence
between components, even in nonlinear cases [27].

In order to formally define mutual information, we
need to make use of the quantity entropy. Mathemat-
ically, the entropy of a continuous random variable X
with probability density function p(z) is defined by:
(3.5) H(X) = - [ pla)logp(z) do

Entropy can be interpreted as the number of bits
on average required to describe a random variable. The
negative of entropy is sometimes called information
(I(X) = —H(X)). The entropy for one random variable
also extends to the case of two random variables (joint
entropy):

H(X,Y)= —//p(af»y) log p(x,y) dx dy

A related concept to the entropy is the Kullback-
Leibler divergence. It is a measure of the distance
between two distributions p(z) and ¢(x) and is defined
by:

66 KLolo = [p@)isZD d

q(x)

Mutual information turns out to be a special case of
the KL divergence. It measures the information shared
between two objects or in other words, accounts for
the amount of information that one random variable
contains about another variable. Consider two variables
X and Y with a joint probability density function
p(z,y) and marginal probability density functions p(x)
and p(y), the mutual information I(X;Y) is the KL
distance between the joint distribution and the product
distribution p(z)p(y):

):
p(z,y)

p(x,y)log Y 4y dy
// p(2)p(y)
KL(p(z,y)llp(x)p(y))
which is obviously symmetric. Moreover, two random
variables have zero mutual information if and only if
they are statistically independent.

By using mutual information as a measure to com-
pute the dissimilarity (or independence) between two
clustering solutions C* and C'~, we wish to minimize
the mutual information sharing between them. There-
fore, we regularize our likelihood optimization function
with this amount as penalty. The objective function
now becomes:

I(X:Y) =

L(O; X) = L(OT;X) + L(O; X) — nI(CT;C7|O)

Under the assumption of independence of parti-
tions, mutual information can be written as the sum of
pair-wise mutual information between two clusterings.
We decompose the third term from the right hand side
into a sum of components, yielding:

(3.7)
L(©;X) = L(OT X) + L0 X)—n) _I(c]:c510;))
i

where ¢} is the " cluster of the first clustering C*
and ¢; is the 4" cluster of the second clustering C'~.
The parameter 6;; is again the combination of 0"
and 60 (respectively represented for ¢ and cj*) We
therefore have exploited pairwise mutual information in
order to measure the statistical dependence between two
clusters, each from a separate clustering.

The degree to which cluster cj contributes to C'" is
determined by the information sharing between cluster



¢ and all other clusters in the clustering C~. If ¢ has
its pairwise mutual information minimized, it is likely
to be independent from all clusters of clustering C~.
Therefore, we define the mutual information of cluster
¢ with respect to all the other clusters in C~ as:

¢ e )lo -
A P
We further observe that since I(X;Y) = H(X) +
HY)-HX,Y)=1(X,Y)-I(X) — I(Y), minimizing
the mutual information between two objects X and
Y is equivalent to minimizing the joint information
I(X,Y) = [[ p(z,y)logp(z,y)dxdy. That means the
a-priori probability of each cluster can be omitted
in the formula of pairwise mutual information above
(i-e., Eq. 3.8), without compromising our optimization
problem. Our objective function can therefore finally
be written as follows:

(3.9)
L(©; X)=

pleiscf)

(38) I(cf:C7)=

L(OT: X) + L(OX)—

4,J

3.3 Learning Parameters

We will consider the alternative clustering problem
using the framework of mixture models, which are a
powerful tool for probabilistic modeling of data. In
addition to their ability to represent complex density
functions which are extensively used in various density
estimation problems, such models also provide a princi-
pled probabilistic approach to cluster data. We employ
Gaussian mixtures for our models and thus, each cluster
is represented by a single multivariate Gaussian compo-
nent within the mixture. Specifically, the mixture prob-
ability density functions for two clusterings C* and C~
have the form:

Zﬁ (z]6;")
Z)\ p(x|0;)

where OF = {/\+

sponding to clusterlng solution C*. Each p(z|0]) is a
multivariate Gaussian density of the component ¢;” that
is parameterized by 0 = (u, ©), where pf is the dis-
tribution’s center and ¥ is its covariance matrix. A\f’s
are the mixing coefficients and they are subject to the
condition >, A = 1. Each Al can also be thought
of as the a priori probability of each component in the
mixture; i.e., )\+ = p(c; +). A similar explanation applies
to clustermg C with respect to the set of parameters
0.

p(z|O) = ZX"N z—puf, 5h)

p(z|07)

ZAN

+ .
0 M+} are parameters corre-

— 1y, 25)

)= ) _plcf, ¢;)logp(cf, c))

Given the system setting above, we rewrite the
objective function in a more specific form:

(3.10)

_ Mt M~

L(©; X)=) "log Z/\fp(m\ﬁj) + Z logz A5 p(x]05)
—n Z Z ple

By conditioning on the data observations x, the
joint distribution of the two components c¢;” and ¢
appearing in the last term of the equation can be

factorized as:

P e) = / p(cF)p(c; 2)p(a)de

7]10gp(z3])

(3.11)

which implies cj and ¢; being statistically independent
given the observation z. 2 According to Bayesian the-
ory, it follows that:

(3.12) /p<ci+|x>p<c;|x>p<x>dx

_ [ peDple) ey pleg)
-/ 2(@) @) P

;) [ plale )plale; )da
[ p(z)dx

Notice that [p(z)de = 1 which is a constant,
we thus optimize the lower bound of p(c, c; ) instead
(i.e., the numerator of the formula). Our strategy of
optimizing the lower bound of the objective is in line
with the philosophy of the standard EM algorithm,
which also optimizes a lower bound.

On the other hand, the integration term in the
numerator essentially is the convolution of two Gaussian
kernels, which interestingly has a very simple form [23,
12]:

ple)n(

>

(3.13) /./\/ T — )N(x—,uj_,Zj_)dx

_ +_ - oyt -
—N(Ni _/J’jazi +2j)

Observe that the integral computation was replaced
by the evaluation of the Gaussian kernel at the location
,u;r — p; - Hence, the information sharing between two
clustering solutions can be estimated as a sum of local
interactions, as defined by the kernel, over all pairs
of clusters between them. This result can also be
interpreted in terms of physics where one makes the
analogy between mean vectors (representatives for the

?In general, Eq. (3.11) does not factorize into p(c

Pn(e;),
see [5]. me



clusters) and “physical particles”. N (u; — 1 s Z;W—Zj_)
can be interpreted as the potential energy of the vector
mean ;L;-" in the potential field of vector mean p;, or vice
versa. We may call this potential energy an information
potential and it corresponds to the potential field in
physics. Therefore, optimizing the information sharing
between two clusterings is equivalent to optimizing the

Deploying the logarithm in the first sum and notic-
ing the term 22721 Zi\i; p(cf |zn) log p(cf |zy,) can be
omitted due to the availability of the membership prob-
abilities p(c;|z,) computed in the E-step. Optimizing
Q(O7|6;) is thus the same as optimizing the summa-
tions:

sum of these information potentials, which leads to (3.18)
achieving an equilibrium state, as in the case of moving N M*
particles in physics. @+|9+ Z ZP i [zn) og NN (2 — 1, )
Substituting Eq. (3.13) into the objective function, n=1i=1
the following equation is attained: Mt M~
(3.14) =0y Y p(ef e ) og AP AT N () — it SF +57)
M+ M- i=1 j=1
_ + + - -
= Z log _Z Arpoh)+) log; A P@E00) Mostep:
= x J1=
Mt M- The M-step involves more computation. First,
to find the expression for A\ we use the Lagrange
- p(ee7)og AFATN (uf—p  SF+57
; ; i€ (hf 77 J )optlmlzatlon method subject to the constraint Y, A\ =

We do not replace the first p(c;, ¢ ¢ ) for a reason
clear later. For simplicity, we present the computations
for the set of parameters ©F of clustering C*, the
computations for ©~ are completely analogous.

E-step:

The expectation step of the EM algorithm can be
divided into two terms, one is the expectation associated
with the likelihood:

)‘+N(mn N:r72:r)
S AN (0 — g, 30)

The other is the expectation related to the mutual

relationship:
(3.16)

p(c ey,

(3.15)  p(cf|wn, OF) =

MX Ny —ph 25 +3F)
Yo ARATN (1] — i, B7 + )

Notice that as the summations of both p(c; |z, ©;")
and p(c; |c ,©;") over i are equal to 1 and — log(w) is
convex, we can apply Jensen’s inequality to derive the
new bound for the objective function. In addition, the
information term is normalized by the same amount of
D om AN N (g — i, 85 + X)), the corresponding Q
function is then derived as follows:?

(3.17)

ef) =

N M*
AF n— Xt
@+|@+ :§ § +|-Tn log 1N(m R My s z)
n=1i= p(Ci |xn)

fnzp (e le;)

+y— -+ vt v
)\i )\j./\/'(u] - X +Ej)

3To save space, we omit the term ©} in p(.|.).

1, and solve the following function (with « is the
Lagrange multiplier):

a% Qv(®+|®;r)+a<2)\f—1>] =0
or
o | X M~
T E:p(cZ |xn)log)\z+—772p(c lc )log)\jAJ =—«
i |n=1 Jj=1
Y1
ZF ¢ len) nz +p
n=1"71

Taking the derivative with respect to all other )\;”s
and summing both sides over ¢ gives us:

N MT M~ M* Mt

SN pe 1) = n DY plele) = —ad Af

n=11i=1 j=1i=1 i=1
N—-—ngM~ = -«

which results in

N M~ -
Az = don=t p(Cj_|$n) - "72]‘:1 p(Cj_|Cj )
P = N M-

(3.19)

The new estimates for the mean vectors can be
easily obtained by taking the derivative of the function
with respect to p;:

(3.20)
M*:Zn p(cen) /(E5) e (e e ) /(S5 )y
b (el ) /(B )0 plef e ) /(B +E7)

In order to get a new estimate of the covariance
matrix X7, we need to take the derivative of Eq. (3.18)




with respect to ¥. However, observe that the deriva-
tive of @ with respect to Zj cannot be solved directly
due to the existence of the inverse matrix (X} + %)t
appearing in the Gaussian kernel. One solution is to use
the Cauchy-Schwartz inequality to find a new bound for
the function. Particularly, since the Gaussian kernel is
always nonnegative, we can write (based on the Cauchy-
Schwartz inequality):

1 _ -
3 X 2log (N (uj — p, S +37))

1 - 2
210g( Nz —pf, % )N(x—uj,Ej)d:c>
%log/(N(ﬂ:—uT,ET)) dx/(N(z_ﬂ;aE;))2dx

% log V(0,2 )N (0,257 )

IN

It follows that the bound for the covariance matrix
is given by:

p(cj‘|xn) log )\j'./\/(x l% , Z+)

Taking the derivative of this bound with respect
to ET and let it equal to 0, the new estimate for the
covariance matrix is followed:

N M*

d
oxf (ZZP (i lzn) log AN (a0 — 1, )
n=11=1
MJr M~
ZZ +|c logA+/\ N(0, 22+)N(0’22j_)>
2_1 j=1
N
=3 et (2Z+ + g7 o= e ) W)
RS )
+ N —
or
o1 uf = SaerP(d l)n =i )en = )T

N M- —
Don=1 p(cﬂxn) - gzj':l p(CﬂCj )

The role of 7: The regularization parameter n acts as
a trade-off between how well our algorithm maximizes
the log likelihood function and how much it minimizes
the similarity between the two clustering solutions. If
1 is set very high, we favor dissimilarity between the
two clusterings over the log likelihood of each individual
clustering. The clustering solutions obtained therefore
may not fit the data well. Conversely, for a small

value of 7, the algorithm may return two clustering
solutions which are almost identical, and in fact it just
becomes the plain EM if n is set to 0. Empirically, we
have found that treating this parameter like learning
rates in a neural network’s training, with the initial
value of 15% of the dataset size, produces generally
good results (further information is provided in the
experimental evaluation). Specifically, we start the
algorithm with 7 initialized at 15% of the dataset size
and track the change in objective function. Once the
change in objective function becomes sufficiently small,
n is thereafter decreased, say to 90% of its value at each
iteration, and thus approached to 0 (which also ensures
the convergence of the algorithm). The intuition is that
we expect each cluster is initially formed in a subspace
in which it is mostly independent from those in the
opposite clustering. Once such subspaces have been
identified, n can then be reduced and the algorithm
will converge to solutions which are optimal in terms
of likelihood maximization.

4 Experimental Results

We next provide experimental results on both synthetic
and real-world datasets. We compare CAMI against
seven alternative clustering algorithms: two methods
developed in [17] named Dec-kmeans and Conv-EM, the
CIB method [15], COALA [2], two methods from [8]
denoted by Algol and Algo2, and the ADFT algorithm
from [9]. For the trade-off factor used in Dec-kmeans
and Conv-EM, we follow the heuristic method presented
in [17]. With the CIB method, we implement the
iterative version [13, 15] and its outputs are post-
processed by assigning each data point to the cluster
in which it has the highest probability. For ADFT,
we implement the gradient descent method integrated
with the iterative projection technique (in learning the
full family of the Mahalanobis distance matrix) [25, 26].
Also, in order to make the comparison fair, we use the
EM technique (instead of k-means) for the approaches
developed in [8, 9]. We run each algorithm 10 times and
report the average results.

4.1 Clustering Evaluation

We evaluate the clustering results based on both
clustering dissimilarity and clustering quality mea-

sures. For measuring dissimilarity between two clus-
terings, we report the values of two different mea-
sures. The first is the normalized mutual in-
formation [11, 19, 16, 22] and it is defined by:
NMI(CH;C™) = I(C“"C‘)/( (CTYH(C™)), where
[(C+07) = MM N TP ) with Ny

denoting the number of shared instances between clus-
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Figure 2: Results for Syntheticl(Synl) dataset using
CAMI.

ters cj'GC’Jr and ¢ €C~. The second is the Jaccard
index (JI), which was used in [2, 9] to evaluate the dis-
similarity between clusterings.

For measuring clustering quality, we use the Dunn
Index, similar to [2,9]: DI(C) = %
C is a clustering, 6: C x C — RJ is the cluster-to-
cluster distance and A: C —R{ is the cluster diameter
measure.

Note that for the NMI and JI measures, a smaller
value s desirable, indicating higher dissimilarity be-
tween clusterings, while for the DI measure, a larger
value is desirable, indicating a better clustering quality.

where

Methodology: Recall that CAMI is an unsupervised
technique, meaning that it does not require any input
clustering to be provided. We will compare CAMI
against two classes of alternative clustering algorithms
i) unsupervised (Dec-kmeans, Conv-EM) and ii) semi-
supervised (COALA, CIB, Algol, Algo2 and ADFT). In
order to compare with the semi-supervised techniques,
we need to provide one clustering as input. To try and
achieve a fair comparison, we input the higher quality
clustering generated by CAMI to each semi-supervised
technique. CAMI is then compared against the semi-
supervised technique in terms of the quality of the
second clustering and the dissimilarity between the two
clusterings.

4.2 Synthetic Datasets

For the first synthetic dataset, we use a popular
one from [2, 8, 9], consisting of 4 Gaussian sub-classes.
Each Gaussian contains 100 2-dimensional data points

NMI JI DI | NMI JI DI

Methods Synl Syn2
Dec-kmean | 0.12  0.39 22| 039 0.34 2.1
Conv-EM | 0.12 04 215 0.4 0.36 1.9
CIB | 0.12 04 221 041 039 171
COALA 0 033 237 | 038 035 1.31
ADFT | 0.12 039 223 | 0.62 0.61 2.3
Algol | 0.25 041 1.95| 042 041 1.37
Algo2 | 0.26 0.43 19| NA NA NA
CAMI 0.1 038 2.25|0.37 0.33 2.73

Table 1: Results on synthetic datasets. DI measures
quality (higher is better) and NMI and JI measure
similarity (lower is better)

and the point distribution is shown in Figure 2a. By
setting the number of clusters M = 2, the goal of
using this dataset is to test whether our algorithm can
discover a pair of orthogonal clusterings. Figure 2 shows
some selective iterations of CAMI and a comparison
of its final result against other techniques is listed in
Table 1 (under Synl). Similar to other techniques,
our algorithm works well on this dataset, being able to
uncover two disparate clusterings. Looking at Table 1,
we also see that the average dissimilarity and quality
of CAMI is slightly better than CIB and two other
unsupervised techniques Dec-kmeans and Conv-EM,
but it is clearly better than Algol and Algo2, which
we have found to be more sensitive to the initial
parameters when clustering in the transformed space.
Of the existing methods, COALA seems to have the
best performance and its result is stable across all trials.
This is justified by the COALA’s hierarchical clustering
approach.

For the second synthetic dataset, we use a more
complicated scenario in which six Gaussians are gen-
erated and positioned in a ring shape as depicted in
Figure 1. By setting the number of clusters in each so-
lution to be 3, this dataset clearly contains two equally
high quality, yet dissimilar clusterings. In Figure 3, we
show the most popular clustering outputs of all algo-
rithms from 10 running times. For semi-supervised al-
gorithms, the clustering from Figure la was provided as
background information to guide the alternative cluster-
ing process. The corresponding measures are reported
in Table 1 (under Syn2). We note that the average
Dunn Index values reported in the Table (for both Synl
and 2) are computed based on the two clusterings out-
putted by un-supervised algorithms, while these values
for semi-supervised algorithms are based on the (single)
alternative clustering found. Also, the transformation
performed by Algo2 in [8] is undefined for this experi-
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Figure 3: Results on Synthetic2. Notice dimensions are
scaled in ADFT and Algol.

ment, since the number of clusters is greater than the
data dimensionality.

We observe that while CAMI can easily uncover two
dissimilar and high quality clusterings (see Figure 3a),
all the other algorithms are less successful in discover-
ing two equally important clusterings, even though the
semi-supervised setting were actually provided a first ac-
curate high quality clustering. It is possible to explain
this result as follows. First, we found that the outputs
of Dec-kmeans and Conv-EM to be quite similar, with
Dec-kmeans being slightly better on average. A visu-
alization of the clusterings returned by Dec-kmeans is
shown in Figure 3b (blue square points are represen-
tative vectors). As observed from this figure, two re-
sultant clusterings are quite dissimilar and orthogonal.

Nonetheless, we can also see that the clusterings are less
natural, since points on opposite sides of the ring still
being grouped together. This result confirms our values
computed in Table 1 in which the normalized mutual
information of both Dec-kmeans and Conv-EM is quite
small but their Dunn Index is also relatively low.

Second, the alternative clustering uncovered by the
CIB method also looks quite unnatural as shown in
Figure 3c. This is perhaps because CIB purely relies
on the mutual information for its clustering process and
does not explicitly have a quality objective. This is also
a fundamental difference between CIB and CAMI. With
our algorithm, the clustering quality is still ensured by
the expectation maximization technique.

The COALA is quite successful in uncovering a sec-
ond dissimilar clustering, since both its normalized mu-
tual information and Jaccard index are small. How-
ever, its clustering quality is rather poor, due to the
imbalance amongst the clusters attained (shown in Fig-
ure 3d). This is probably because COALA has cho-
sen sub-clusters far apart to merge in its high levels of
agglomerative clustering process (to satisfy the cannot-
link constraints learnt from the first provided cluster-
ing).

The clustering found by ADFT (in Figure 3e)
is overly similar to the original clustering that was
provided as background knowledge. Here, it seems the
inversion of the stretcher matrix is not able to help in
uncovering a dissimilar clustering. This might be due to
that a stretcher matrix is intrinsically a diagonal matrix
with entries acting as stretching factors along each
dimension. And by the nature of the first clustering,
the inversion (i.e., orthogonality) of such matrix in this
case has simply scaled all dimensions with almost the
same factor.

Finally, Algol has attempted to find the dissimilar
clustering by projecting data on a space orthogonal to
the mean vectors of the first provided clustering. Such a
transformation, nonetheless, has distorted the data (as
plotted in the Figure 3f) and consequently prevented it
from deducing the correct hidden clustering. Moreover,
although Algol seems to fit well the data in its trans-
formed space, we observe that it is difficult to interpret
the resultant clustering due to its unnatural shape vi-
sualized in the original data space.

This experiment highlights an interesting case
where the output of CAMI is superior to the the ex-
isting methods. It also demonstrates well that various
techniques based on orthogonal transformations or pro-
jections do not always ensure discovery of a dissimilar
and high quality clustering. Conversely, CAMI’s ap-
proach of maximizing the likelihood over the data (to
meet quality criteria), while at the same time minimiz-



Figure 4: The average face image for each cluster found
by CAMI. 1st and 2nd rows respectively represent for
the 1st and 2nd clusterings

Methods | NMI JI DI
Dec-kmeans | 0.25 0.31 1.65
Conv-EM | 0.28 0.32 1.63
CIB 0.3 0.34 1.59
COALA | 0.29 0.32 1.62
ADFT | 0.33 0.35 1.54
Algol | 0.38 0.39 1.51
Algo2 | 041 042 1.45
CAMI | 0.21 0.29 1.68

Table 2: Results on CMUFace dataset. DI measures
quality (higher is better) and NMI and JI measure
similarity (lower is better)

ing the mutual information sharing amongst clusterings
(to ensure the dissimilarity) leads to a better result.

4.3 CMUFace Dataset

We have shown that our algorithm works well on
synthetic datasets. In this section and the next one, we
compare CAMI against the other algorithms on some
real datasets. We begin with the CMUFace data from
the UCI KDD repository [1]. This is an interesting
dataset, since data instances can be partitioned in
several different ways (e.g. by individual, by pose,
etc.). The dataset consists of images of 20 people
taken at various features such as facial expressions
(neutral, happy, sad, angry), head positions (left, right
or straight), and eye states (open or sunglasses). Each
person has 32 images captured in every combination
of these features. We randomly select 3 people along
with all their images and run the CAMI algorithm with
M = 3, to see if the clusterings found yield useful
information. As a pre-processing step, we apply PCA

and use the dimensionality that retains at least 90% of
the original data’s variance.

After running CAMI with M = 3 on this dataset,
we obtain two dissimilar clustering solutions. Clusters’
means of each solution are shown in Figure 4. Graphi-
cally, it is possible to observe that the uncovered clus-
terings explain two distinct ways that the images are
grouped. The clustering in the first row clearly shows
that images are categorized into different persons, while
the clustering in the second row reveals that they are
grouped by different poses. Due to space constraints,
we do not show the output pictures of other techniques.
However, we compare them via the measures reported in
Tables 2. We note that for semi-supervised algorithms,
the clustering which was grouped by person was pro-
vided as background information (since this is the eas-
ier clustering to discover). The Dunn Index in Table 2
is therefore reported for the second clustering, which is
expected to be based on different poses.

From Table 2, we see that all three unsupervised
algorithms are performing well with this dataset. How-
ever, CAMI with its minimizing information sharing be-
tween clusterings is better than the unsupervised algo-
rithms Dec-kmeans and Conv-EM. ADFT and COALA
are better than Algol and 2, which find the alternative
clustering in a completely transformed space. However,
their performance is still worse than CAMI. CAMI is
slightly better than COALA when the dissimilarity is
measured in terms of Jaccard Index, but clearly better
in terms of NMI. Its clustering quality measured using
the Dunn Index is also better than that of COALA and
considerably better than those of Algol and 2.

4.4 Other Real-World Datasets

We further compare the eight algorithms on three
real-world datasets selected from the UCI repository:
Vowel, Segmentation and Vehicle Silhouette. For the
Segmentation dataset, three attributes 5,7 and 9 are
removed as they were reported to be repetitive with
attributes 4,6 and 8 [1]. We report the Dunn Index of
both CAMI and these semi-supervised algorithms using
the second clustering obtained from each dataset (recall
that the higher qualitative clustering returned by CAMI
is provided as background to other semi-supervised
techniques). The results are shown in Table 3.

We also compare CAMI directly against the unsu-
pervised algorithms Dec-kmeans and Conv-EM in Ta-
ble 4. In this table, the quality reported is the average
Dunn Index of the two clusterings that are outputted
by the algorithms.

It can be seen that the clustering results of CAMI on
these datasts are also consistently better than those of
the other algorithms. In all cases, CAMI outperforms
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Figure 5: Impact on CAMI of varying the regularization parameter 1 on the clustering performance. For an ideal
result, NMI should be low and Dunn index should be high.

Seg. | Algol Algo2 ADFT COALA CIB CAMI Seg. | Dec-kmeans Conv-EM  CAMI
NMI 0.54 0.44 0.53 0.47 0.45 0.36 NMI 0.39 0.41 0.36
JI 0.39 0.31 0.37 0.34 0.31 0.27 JI 0.29 0.3 0.27
DI 1.3 1.25 1.29 1.21 1.32 1.4 DI 1.26 1.28 1.45

Veh. Veh.

NMI 0.4 0.39 0.37 0.27 0.35 0.23 NMI 0.26 0.25 0.23
JI 0.4 0.44 0.39 0.34 0.42 0.32 JI 0.36 0.34 0.32
DI 1.26 1.47 1.42 1.54 1.38 1.5 DI 1.4 1.4 1.53

Vow. Vow.

NMI 0.43 0.47 0.54 0.38 04 0.24 NMI 0.27 0.31 0.24
JI 0.2 0.22 0.38 0.28 0.26 0.11 JI 0.17 1.19 0.11
DI 1.24 1.29 14 1.3 1.25 1.33 DI 1.26 1.23 1.38

Table 3: Results on three real world datasets for CAMI
versus semi-supervised algorithms. DI measures quality
(higher is better) and NMI and JI measure similarity
(lower is better)

both semi-supervised and unsupervised algorithms in
terms of normalized mutual information and Jaccard
Index, indicating its two clusterings are more dissimilar
compared to those returned by the other algorithms.
For the Vowel dataset, CAMI’s dissimilarity value is
significantly better than those of semi-supervised tech-
niques. On the other hand, its clustering quality, mea-
sured in Dunn Index, is also very competitive. It is the
highest for the Segmentation dataset and only slightly
smaller than that of COALA in the Vehicle dataset and
ADFT in the Vowel dataset.

We also tested an alternate strategy whereby the
class labels of the dataset were used to form a clustering
as input to the semi-supervised techniques. This made
little difference to the results though and we do not
report them here due to space constraints.

Table 4: Results on three real world datasets of CAMI
versus unsupervised algorithms. DI measures quality
(higher is better) and NMI and JI measure similarity
(lower is better)

4.5 Impact of Regularization Parameter

As mentioned in Sections 3.2 and 3.3, the parameter
7 has been used to regularize the trade-off between
the degree of the dissimilarity between two clustering
solutions and their clustering quality. We next report
the behavior of CAMI when this parameter is varied.

In Figure 5, the relationship between the normal-
ized mutual information, the Dunn Index, and the reg-
ularization parameter 7 is shown for three real world
datasets: Vowel, Segmentation and Vehicle. The results
are reported when 7 is varied between 1% and 20% of
each dataset’s size. As expected, we observe that CAMI
favors the quality of each resultant clustering over the
dissimilarity between them when 7 is set to be small.
This is indicated by the high average values of the Dunn
Index and close to 1 of the normalized mutual informa-
tion. As 7 increases, values for both NMI and Dunn
Index decrease, implying that the clustering solutions
are more dissimilar, yet the clustering quality has been



somewhat compromised. Three graphs in Figure 5 truly
show the inverse relationship between the dissimilarity
and the quality of clusterings, and they provide informa-
tion helpful for suggesting an appropriate n value. As
observed from all three graphs, to achieve both require-
ments of high qualitative and dissimilar clusterings, the
best value of 1 can be set around 15%, since the aver-
age value of Dunn Index in this range is relatively high,
whereas that value of the NMI remains small.

5 Conclusions

Searching for alternative clusterings is an important
problem in exploratory data analysis with important
practical significance. We have addressed this difficult
problem by developing CAMI, an algorithm that uses
an appealing and mathematically well founded combi-
nation of expectation maximization (to guarantee qual-
ity) and mutual information (to ensure dissimilarity).

CAMI operates in a completely unsupervised man-
ner, not requiring a background clustering like most
other techniques. We have tested CAMI on both syn-
thetic and real-life datasets and compared it against
seven existing techniques. The experimental results
show that CAMI has strong performance overall, and
in most of the cases, its clustering quality and dissimi-
larity are better than those of the semi-supervised clus-
tering techniques. Its performance is also superior to
the only two existing unsupervised algorithms, which
confirms its advantages of combining mutual informa-
tion and the maximum likelihood framework.

For future work, we plan to extend the CAMI al-
gorithm and its mathematical framework to simultane-
ously uncover more than two alternative clusterings.
Another interesting avenue is to improve it to work
with statistical models other than the Gaussian mixture
model.
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