
Lagrangian Constrained Clustering

Mohadeseh Ganji James Bailey Peter J. Stuckey
The University of Melbourne

Abstract

Incorporating background knowledge in clustering problems

has attracted wide interest. This knowledge can be repre-

sented as pairwise instance-level constraints. Existing tech-

niques approach satisfaction of such constraints from a soft

(discretionary) perspective, yet there exist scenarios for con-

strained clustering where satisfying as many constraints as

possible. We present a new Lagrangian Constrained Clus-

tering framework (LCC) for clustering in the presence of

pairwise constraints which gives high priority to satisfy-

ing constraints. LCC is an iterative optimization proce-

dure which incorporates dynamic penalties for violated con-

straints. Experiments show that LCC can outperform ex-

isting constrained clustering algorithms in scenarios which

satisfying as many constraints as possible.

Keywords Constrained clustering, Semi-supervised learn-

ing, Lagrangian multipliers method.

1 Introduction

Clustering is an important task in data mining and ma-
chine learning which has a wide variety of applications
in real-world problems. Many different algorithms have
been proposed for this unsupervised learning problem.
However, there often exists some pre-knowledge about
the true object memberships which can be incorporated
into clustering algorithms to enhance the quality of the
clustering. This side information can be obtained from
an oracle or expert knowledge (about the domain or
data set) or it might be the result of high precision
pilot-experiments. In clustering problems, this informa-
tion can be represented as instance-level or cluster-level
constraints. Using such constraints can also result in
greater algorithmic efficiency.

Due to its wide application, the problem of taking
advantage of side-information in data clustering, which
is called semi-supervised or constrained clustering, has
been widely studied over the last decade [1, 2]. Typ-
ically, the side information is represented as pairwise
instance-level constraints which model whether a pair
of objects must lie within the same cluster (a must-
link (ML) constraint) or lie within different clusters (a
cannot-link (CL) constraint).

These types of constraints have been investigated

in applications like GPS lane finding [3], image and
video segmentation [4, 1] and text categorization [5].
Many existing clustering algorithms, including the k-
means algorithm, have been adapted to work with
constraints [3, 6]. However, to our knowledge, no
existing constraint clustering algorithm aims to satisfy
all the constraints. Rather, satisfying the constraints is
desirable, but discretionary, and some algorithms fail
and terminate when facing a constraint they cannot
satisfy. In some other approaches, a degree of belief is
defined to tackle such situations and allow a percentage
of constraints to remain violated. However, these
algorithms are challenged to reach a good solution when
a large number of constraints need to be satisfied.

Our focus in this work is on situations where very
high priority must be given to satisfying constraints.
The success of an algorithm in this context is therefore
judged by how many constraints it satisfies, in addition
to the quality of the resulting clustering. This perspec-
tive is suitable for situations where the constraints are
guaranteed to represent ground truth. We give three
illustrations. Firstly, the constraints may describe a
known physical or mathematical property of a system,
where the user has complete confidence about the clus-
ter membership for some objects, E.g. A pair of ob-
jects in a road network that are unreachable (cannot-
link) due to a physical barrier. Secondly, the constraints
may be derived using a procedure that discovers ground
truth (cluster membership) for a small sample of ob-
jects, such as when using an expensive/invasive medical
test like a biopsy. Thirdly, some contexts such as image
segmentation allow the user to easily generate a large
number of constraints having very high confidence (pairs
of pixels which do/do not lie in the same segment).

Making an algorithmic commitment to satisfying
(almost all) constraint brings new challenges, partic-
ularly in regard to efficiency. The approach we will
present proposes a novel constrained clustering algo-
rithm which targets to satisfy as many constraints as
possible in a reasonable time. Constrained clustering
is most challenging in the presence of CL constraints.
The CL-feasibility problem is NP-complete as it is re-
ducible to the Graph k-Colorability problem [7] which is
known to be NP-complete [8]. To tackle this aspect, our

algorithm is based on Lagrangian relaxation [9] to sat-
isfy constraints. Lagrangian relaxation is an optimiza-
tion approach for solving constrained problems. It has
been successfully used for solving hard graph coloring
problems [10] and it has been shown to work effectively
for many classes of hard constrained optimization prob-
lems [11, 10]. We propose a new algorithm based on
a Lagrangian multipliers method, which given a clus-
tering problem with a set of must-link and cannot-link
constraints, clusters the data to satisfy as many con-
straints as possible.

In brief, the main contributions of this paper are as
follows:

• We address the problem of constrained cluster-
ing for situations where satisfying all constraints
has high priority and we propose a new La-
grangian based constrained clustering algorithm
(called LCC) which concentrates on satisfying con-
straints.

• Our proposed LCC algorithm not only achieves
very high constraint satisfaction, but also achieves
competitive performance in terms of quality and
robustness of the clustering results.

2 Related Work

Because of increasing interest in constrained clustering,
existing clustering algorithms have been adapted to in-
corporate constraints. The COP-kmeans algorithm [3]
is one of the variations of k-means which can incorpo-
rate instance level constraints. This algorithm, in a
first step, creates super instances based on the tran-
sitive closure of must-link constraints, and in a second
step, tries to assign each super instance to its closest
feasible cluster center. Although COP-kmeans can in-
corporate constraints, its greedy approach and inability
to change cluster assignments once they have been made
makes it vulnerable to the number and distribution of
constraints. It may reach a dead end and be unable to
find any feasible assignment and stop while the problem
is feasible.

Later research has focused on cases where inconsis-
tency in constraints is a concern. Therefore, algorithms
have been developed to be able to work with noisy or
inconsistent constraints by letting some of them remain
unsatisfied if it is impossible or too difficult to satisfy
them. To this end, Basu et al [12] introduced the PCK-
means algorithm which allows constraints to remain un-
satisfied if the cost of satisfying them is high or the
problem is infeasible. PCKmeans uses the instance-level
constraints in an initialization step to find a good esti-
mation of initial centres to start with. In this frame-
work, the must-link set is augmented by transitive clo-

sure and the cannot-link set becomes augmented by
adding cannot-link constraints for neighbours of initial
pairs which are constrained by a cannot-link constraint.

A more flexible k-means style constrained cluster-
ing algorithm called CVQE [6] allows constraints to re-
main unsatisfied if the cost of satisfying them is high or
the problem is infeasible. This algorithm has an objec-
tive function including penalty terms for violated con-
straints. Each assignment of constraint instances is con-
sidered and upon violation of constraints, a penalty is
added to the objective which is based on the distance be-
tween cluster centres. Checking all possible assignments
for cannot-link constraints requires O(k2) comparisons.

A followup to the CVQE algorithm called LCVQE
[13] avoids checking all possible assignments for cannot-
link constraints and its penalty calculations take into
account coordinates of the involved instances in the
violated constraint. However, this algorithm, similar to
CVQE, works better in the presence of more must-link
constraints [13] and has difficulty in satisfying cannot-
link constraints. This limitation is due to the fact that
cannot-link feasibility is an NP-hard problem.

Another important approach in the literature for
semi-supervised clustering is spectral constrained clus-
tering. Wang and Davidson [14] considered a degree
of belief on pairwise instance level constraints. In this
case, instead of considering constraints as hard (they
must hold), constraints have an attached degree of be-
lief, a real value between 0 and 1, where 1 represents
a hard constraint. In the spectral method proposed in
their paper, as opposed to some other methods, the aim
is not to satisfy as many constraints as possible, because
of possible inconsistency in constraints. Therefore, a
threshold is defined allowing a fraction of constraints to
remain unsatisfied. A lower bound is calculated for this
threshold to guarantee finding a feasible solution. Zhi et
al [15] incorporate more complex constraints in cluster-
ing. They show that any constraint represented using
conjunctive normal form (CNF) can be formulated as
a linear inequality. A specific percentage of constraints
are allowed to remain unsatisfied in this framework.

Duong et al [16] introduced a constraint program-
ming framework for constrained clustering that can
incorporate both instance-level and cluster level con-
straints. Minimizing the maximum cluster diameter
and the vector quantization error are two objectives.
The constraint programming framework is able to find
a globally optimum solution of the first criterion for data
sets of size up to 1500.

Babaki et al [2] used a column generation framework
for exactly solving the constrained clustering problem.
The objective function used in this framework is similar
to the k-means algorithm. However, this framework is

slow, even for small data sets. To fasten, Babaki et al,
initialize their column generation with the best solution
found from running the COP algorithm 500 times. This
can make the framework feasible for small datasets with
a very large amount of constraints.

Our LCC algorithm, described in the next sec-
tion, uses a Lagrangian relaxation strategy of increas-
ing penalties for constraints which remain unsatisfied
in subsequent clustering iterations. Such a scheme is
loosely connected with the machine learning classifica-
tion algorithm AdaBoost [17], which employs dynamic
weights in a classifier ensemble. Some main differences
are that our context is unsupervised, rather than super-
vised and that penalties (weights) are associated with
constraints rather than classifiers.

3 Lagrangian Constrained Clustering
Algorithm

In this section, we explain our Lagrangian constrained
clustering algorithm (LCC) which can tackle the diffi-
cult NP-hard problem of constrained clustering incor-
porating both must-link and cannot-link constraints.

We first create super instances using transitive
closure of must-link constraints. Hence we guarantee
100% satisfaction of must-link constraints. Then we
tackle the difficult problem of satisfying cannot-link
constraints using a Lagrange multipliers method.

We consider clustering of n instances xi, 1 ≤ i ≤ n
into k clusters, with must-link constraints (i, i′) ∈ ML
requiring that instance i and i′ are in the same cluster,
and cannot-link constraints (i, i′) ∈ CL which require
that instance i and i′ are not in the same cluster.
Note that we treat ML and CL (and NL introduced
later) as sets of unordered pairs. Let µj denotes the
center of cluster j, i.e. µj = (

∑
i=1..n,ci=j xi)/|{i | i ∈

1..n, ci = j}|, and let ci be the cluster that instance
i is assigned to. We assume a Euclidean distance
function D(x, x′). Equation 3.1 represents a constrained
clustering problem with instance-level constraints and
k-means like objective function which aims to minimize
the total distance of instances to their associated cluster
center.

min Z =

k∑
j=1

∑
1≤i≤n,ci=j

D(xi, µj)
2(3.1)

subject to

ci = ci′ ∀(i, i′) ∈ML

ci 6= ci′ ∀(i, i′) ∈ CL

We first create super instances to handle the must-
link constraints. Let E = {i = i′|(i, i′) ∈ ML}

be equations representing the must link constraints.
Let p map each instance i to a super instance j such
that (i, i′) ∈ ML → p(i) = p(i′), any two must-link
constrained instances are in the same super instance;
and p(i) = p(i′) → E |= i = i′, any two instances
in the same super instances are equal by transitivity
from the must-link constraints. Let wj = |{i|1 ≤
i ≤ n, p(i) = j}| be the weight of the super instance,
i.e. number of original instances it represents, and
Xj =

∑
1≤i≤n,p(i)=j xi/wj be the position of the super

instance, the average of the instances it represent. We
convert the cannot-link constraints to refer to the super
instances, obtaining NL = {(p(i), p(i′)) | (i, i′) ∈ CL}.

We transform the constrained optimization prob-
lem of (3.1) to the unconstrained problem of equation
(3.2) by using super instances (X) to enforce must-
link constraints and adding a penalty term with a La-
grangian coefficient λ(i,i′) for violated cannot-link con-
straint (i, i′) ∈ NL.

min Z =

K∑
j=1

∑
ci=j

wiD(Xi, µj)
2(3.2)

+
∑

(i,i′)∈NL

λ(i,i′)viol(i, i
′, c)

The Lagrangian multiplier λ(i,i′) associated with
cannot-link constraint (i, i′) is multiplied by the “degree
of violation”, viol(i, i′, c), of the cannot-link constraint
(i, i′) for the current assignment c to penalize the
constraint violation.

Lets examine how we should measure the degree of
violation of a cannot-link constraint. Given a clustering
c then swap(i, j, c) is the additional cost that will be
added to the k-means objective if instance i is moved to
cluster j from its current cluster ci.

swap(i, j, c) = wiD(Xi, µj)
2 − wiD(Xi, µci)

2

We define the violation of a cannot-link constraint to be
0 if the two instances are in seperate clusters, otherwise
its the minimum of the swap costs for moving one of the
two instances involved.

viol(i, i′, c) =

{
0 ci 6= ci′

mini′′∈{i,i′},j 6=ci′′
swap(i′′, j, c) ci = ci′

Given a clustering c we can associate with a cluster
j the set of instances i which are part of violated cannot-
link constraints in NL whose minimum violation is de-
termined by moving i to j from ci. Let conf(j, c) =
{〈i, i′〉 | (i, i′) ∈ NL, viol(i, i′, c) = swap(i, j, c)} cap-
ture this set of instances and their associated violated

constraint.1 We can rewrite problem (3.2) as

min Z =

K∑
j=1

∑
ci=j

wiD(Xi, µj)
2(3.3)

+

K∑
j=1

∑
〈i,i′〉∈conf(j,c)

λ(i,i′)swap(i, j, c)

by simply collecting violation terms associated with
each cluster j.

In updating centers, we consider the objective (3.3)
and conflict sets. To find the best cluster centres
(and consequently the best assignment) to minimize the
objective (3.3), we set the derivative of the objective Z
over µj for each cluster j to zero and solve the equation
3.4. The solution to this equation (denoted by µ∗) is
the center updating rule in the LCC algorithm.

∂Z

∂µj
= 0

(3.4)

∑
ci=j

2wi(µj −Xi) +
∑

〈i,i′〉∈conf(j,c)

2wiλ(i,i′)(µj −Xi) = 0

µj

∑
ci=j

wi + µj

∑
〈i,i′〉∈conf(j,c)

wiλ(i,i′) =

∑
ci=j

wiXi +
∑

〈i,i′〉∈conf(j,c)

wiλ(i,i′)Xi

µ∗j =

∑
ci=j wiXi +

∑
〈i,i′〉)∈conf(j,c) wiλ(i,i′)Xi∑

ci=j wi +
∑
〈i,i′〉∈conf(j,c) wiλ(i,i′)

Having established the formalism for the LCC al-
gorithm, we provide some further intuition based on
the pseudo code of LCC algorithm (Figure 1). The
algorithm first creates super instances by merging in-
stances based on transitive closure and updates the co-
ordinates. Then, starting with a random assignment
and initial centres (line 1-3), it start the main itera-
tions till stopping criteria is met (lines 7-40). At each
iteration, the priority assignment for each instance i
is to its nearest centre ci (line 11). In the case that
the prior assignment causes any violation in cannot-link
constraints, the algorithm decides about possible reas-
signments (lines 12-35). Instead of all possible reassign-
ments of pairs (i, i′) ∈ NL|ci = ci′ , LCC just considers
the second nearest centre to i and i′ and compares the
swap cost of applying such reassignments (lines 14-21)

1We use angle brackets 〈i, i′〉 to emphasise this is an ordered
pair.

and defines the violation penalty based on the minimum
swap cost (associated with index i′′). Then it com-
pares three possible assignments and chooses whether
to accept the penalty and keep the constraint violated
or make it satisfied (lines 22-35). However, for han-
dling violated constraints in future iterations, we in-
crease the penalty by increasing Lagrangian multipliers
associated to the violated constraints if they remain vi-
olated (λ(i,i′) = αλ(i,i′), α > 1). This increased penalty
for difficult constraints helps in two ways: first, in up-
dating centres, it causes the second closest centre for
violated (i, i′) ∈ NL to move closer to one of the in-
stances; second it helps reject the option of letting the
constraint remain violated by increasing the violation
cost. At the end of each iteration (line 39), it updates
the centres based on the coordinates of the cluster mem-
bers and the instances in the conflict set of each cluster.
Updating centres is done according to equation (3.4).
The algorithm keeps track of the best solution at each
step (lines 37-39). As the main goal of LCC frame-
work is to satisfy constraints, we consider this priority
by defining best solutions based on the lexicographic
order of the number of violated constraints and the k-
means objective (sum of distances to cluster centres) We
consider the stopping criteria as a fixed number of iter-
ation where no improvement occurs and we also have a
maximum number of iterations to help us for cases with
slow convergence or inconsistent/infeasible constraints.

As our algorithm handles the must-link satisfaction
problem in its first step, its main focus and advantage
over existing algorithms is its ability to tackle the NP-
hard problem of constrained clustering with cannot-link
constraints. As opposed to the CVQE and LCVQE
algorithms which are designed for the case of many
must-link and a few cannot-link constraints [13], our
method handles large numbers of must-link and cannot-
link constraints easily and its performance increases
with existence of more constraints of both kinds.

4 Experiments results

In this section, we present experimental results to
evaluate the Lagrangian constrained clustering (LCC)
method and compare it to some state of the art existing
clustering algorithms which incorporate instance level
constraints. Table 1 represents some information about
the 12 real data sets from UCI Repository which we
used in our experiments. In our experiments, we
used a termination criteria of 25 iterations without
improvement in the best solution and we also allowed a
maximum of 100 iterations for the LCC algorithm. The
penalty growth coefficient α was set to 2 for all data sets
and experiments. All the experiments were performed
on a Mac 2.7 GHz Intel Core i5 with 8GB RAM.

LCC(X, NL)
1. Let c be a random assignment of (super)instances to clusters
2. for (j ∈ 1..k)
3. µj =

∑
1≤i≤n,ci=j Xi/

∑
1≤i≤n,ci=j wi

4. bestV = |NL|
5. bestO =

∑
1≤i≤n wiD(Xi, µci)

6. bestc = c
7. while stopping criterion does not hold
8. V = 0; %% number of violations
9. conf(j, c) = {}
10. for (i ∈ 1..n)
11. ci = indexmin[D(Xi, µj) | j ∈ 1..k]
12. Assign i to ci
12. for ((i, i′) ∈ NL where ci = ci′)
13. h = ci
14. c′i = indexmin[D(Xi, µj)

2 | j ∈ 1..k, j 6= h]
15. c′i′ = indexmin[D(Xi′ , µj)

2 | j ∈ 1..k, j 6= h]
16. swapi = swap(i, c′i, c)
17. swapi′ = swap(i′, c′i′ , c)
18. if (swapi < swapi′)
19. i′′ = i; i′′′ = i′

20. else
21. i′′ = i′; i′′′ = i
22. %% Let the constraint remain violated
23. a = wi ×D(Xi, µh)2 + wi′ ×D(Xi′ , µh)2 + λ(i,i′) × swapi′′
24. %% Force i element to go to c′i
25. b = wi ×D(Xi, µc′i

)2) + wi′ ×D(Xi′ , µh)2

26. %% Force i′ element to go to c′i′
27. c = wi ×D(Xi, µh)2 + wi′ ×D(Xi′ , µc′

i′
)2

28. if (a ≤ b ∧ a ≤ c)
29. λ(i,i′) = α× λ(i,i′)
30. conf(c′i′′ , c) = conf(c′i′′ , c) ∪ {〈i′′, i′′′〉}
31. V + +
32. elseif (b ≤ a ∧ b ≤ c)
33. ci = c′i
34. else
35. ci′ = c′i′
36. O =

∑
1≤i≤n wiD(Xi, µci)

2

37. if ((V,O) < (bestV, bestO))
38. bestV = V ; bestO = O; bestc = c
39. update centres using Equation (3.4)
40.return bestc

Figure 1: Psuedo-code for the LCC algorithm for constrained clustering, starting from the super instances X and cannot-link constraints NL.

Table 1: Description of data sets

Instances # Features # clusters

Iris 150 4 3

Wine 178 13 3
Ionosphere 351 33 2

WDBC 569 30 2

KDD 600 60 6
Letter 600 16 3

Vehicle 846 18 4

Glass 214 9 6
Yeast 1484 8 10

Breast Tissue 106 9 6
Ecoli 336 7 8

Half Rings 400 2 2

4.1 Comparison to inexact methods We compare
LCC with CVQE [6] and the spectral algorithm of
Wang et al (CSP) [14]. For each benchmark of size
n we generated n/4, n/2 and n constraints, equally
divided into must-link and cannot-link constraints. For
generating each of must-link (cannot-link) constraints,
we pick a random instance and then randomly pick
another instance from the same (different) cluster based
on the ground truth (class labels). For each size
of the constraint sets we created 5 different sets of
constraints, and for each of these sets we ran each
algorithm 8 times. Hence, the results shown in Tables 2
and 3 are the average and standard deviation of the
results over these 40 independent executions. Run time
of algorithms was different according to size of data
sets and different constraint sets. The CSP spectral
method was faster (maximum 1.5 minutes) than LCC
(maximum 5 minutes) and CVQE (maximum 8 minutes
except for a few cases). A timeout of 15 minutes was
used for each algorithm. However, we were unable to
get any result for some constraint sets on the Yeast data
set for CVQE due to erroneous behaviour (— entries in
tables).

In Table 2 we compare the methods in terms of
their ability to satisfy constraints. We show for each of
the three methods the average and standard deviation
of number of must-link (#ML) and cannot-link (#CL)
constraints violated in the partitions returned by the
algorithm. The table clearly shows the LCC is superior
in terms of satisfying constraints.

Since we have the ground truth of the data sets, for
evaluating quality of partitioning, we use the Normal-
ized Mutual Information of equation (4.5) which was
proposed by Danon et al [18].

Inorm(A,B) =

−2
∑CA

i=1

∑CB
j=1Nij log(NijN/Ni.N.j)∑CA

i=1Ni. log(Ni./N) +
∑CB

j=1N.j log(N.j/N)

(4.5)

In Table 3 we compare the methods in terms of
the normalized mutual information of the results they
achieved compared to the ground truth. Since LCC
directly enforces the must-link constraints, we might
imagine that NMI results are inflated by the fact that
directly enforce these ground truths. Similarly since we
make use of the ground truth in the cannot-link con-
straints this may also inflate the NMI value. To counter
this argument we also show the NMI value without
considering instances involved in must-link constraint -
ML and without considering instances involved in either
must-link or cannot-link constraints -ML-CL. Hence for
-ML-CL we consider the NMI only for instances with no
background knowledge given by the constraints.

The results of Table 3 illustrate that the LCC
method strictly improves in NMI as the number of
constraints grow. In most cases, -ML-CL and -ML
are also strictly improved by adding more constraints.
Compared to the other methods LCC is almost always
superior in NMI (exceptions are Wine and Breast Tissue)
once we use n constraints.

4.2 Comparison to Exact method In this experi-
ment we compare LCC with the state of the art Column
Generation Constrained Clustering (CCCG) framework
[2]. The CCCG framework optimizes the k-means ob-
jective satisfying all the constraints, and can prove op-
timality, which LCC cannot do. As the CCCG method
is very slow without initialization, we initialized the al-
gorithm with the best solution found by running the
CVQE algorithm [6] 10 times. However, the framework
is still very slow for small or moderate number of con-
straints. Here we used a timeout of 30 minutes. Ta-
ble 4 presents the results of our experiment in terms of
NMI on the Iris data set with different number of con-
straints. In cases marked — CCCG failed to find any
feasible solution within 30 minutes. Otherwise for all
cases both methods satisfied all constraints. We can see
that, for large numbers of constraints, LCC could reach
the optimal solution. For small and moderate numbers
of constraints where CCCG struggles to find a solution,
LCC obtains better quality solutions in much less time
(around 1 minute). For larger number of constraints
CCCG is superior, when the size of the problem is not
too large.

4.3 Sensitivity Analysis on number of con-
straints In this experiments we evaluate sensitivity
of constrained clustering methods’ performance to the
amount of background knowledge. Different number of
constraints (equally contain ML and CL constraints)
are randomly generated from ground truth based on
the procedure explained previously. The performance

Table 2: Comparing number of violations

CVQE Spectral (CSP) LCC

constraints # ML # CL # ML # CL # ML # CL

Iris
[n/4]=37 1.1±0.8 0.6±0.9 0.4±0.5 12.9±1.7 0.0±0.0 0.0±0.0
[n/2]=75 2.6±2.0 0.4±0.5 1.4±0.9 27.0±3.0 0.0±0.0 0.0±0.0
[n]=150 7.5±2.5 2.1±1.2 15±6.1 42.6±4.6 0.0±0.0 0.0±0.0

Wine
[n/4]=44 0.9±0.8 0.2±0.4 1.3±1.1 17.6±1.9 0.0±0.0 0.1±0.2
[n/2]=89 1.9±1.3 0.3±0.5 2.4±2.7 33.7±3.8 0.0±0.0 0.4±0.5
[n]=178 2.7±2.3 0.9±0.9 11.3±6.2 66.4±15.0 0.0±0.0 1.3±1.2

Ionosphere
[n/4]=87 9.7±1.1 1.0±1.1 4.2±4.6 32.5±9.8 0.0±0.0 1.3±0.6
[n/2]=175 20.7±4.7 6.2±1.6 28.6±5.1 46.1±14.3 0.0±0.0 5.9±3.6
[n]=351 36.5±4.4 17.4±3.8 35±21.5 113.8±54.2 0.0±0.0 7.1±5.1

WDBC
[n/4]=142 4.6±0.7 2.0±1.1 9.6±13.6 53.2±20.4 0.0±0.0 0.9±0.6
[n/2]=284 11.8±2.1 4.5±1.5 17.0±10.5 47.800 0.0±0.0 0.4±0.5
[n]=569 20.4±4.5 16.6±4.0 31.6±25.8 138.6±123.2 0.0±0.0 1.0±1.2

KDD
[n/4]=150 7.4±2.2 0.3±0.4 4.1±1.9 65.5±2.9 0.0±0.0 0.3±0.6
[n/2]=300 14.4±3.7 0.9±1.3 10.29±2.5 132.1±3.9 0.0±0.0 0.3±0.8
[n]=600 31.2±5.4 3.3±1.8 44.2±9.6 223.8±29.4 0.0±0.0 3.2±3.7

Letter
[n/4]=150 8.3±2.3 0.0±0.2 0.8±1.0 70.3±0.8 0.0±0.0 0.0±0.2
[n/2]=300 15.7±5.5 2.5±1.5 6.4±2.7 133.8±3.7 0.0±0.0 0.6±1.0
[n]=600 24.7±5.5 3.4±2.0 30.4±12.4 261.6±12 0.0±0.0 1.4±1.6

Vehicle
[n/4]=211 51.7±4.7 1.7±0.8 2.4±1.8 98.0±1.9 0.0±0.0 1.7±1.5
[n/2]=423 96.1±7.6 4.5±1.4 9.6±5.3 190.2±13.1 0.0±0.0 4.1±2.1
[n]=846 185.6±8.7 15.3±2.0 31.4±23.8 378.6±31.9 0.0±0.0 30.1±6.5

Glass
[n/4]=53 8.3±1.9 0.6±0.6 4.6±3.9 18.2±2.5 0.0±0.0 0.0±0.2
[n/2]=107 18.2±4.0 0.7±0.7 6.8±3.8 37.0±7.5 0.0±0.0 0.2±0.5
[n]=214 33.9±5.2 3.0±1.7 15.6±7.9 68.3±13.0 0.0±0.0 1.3±1.7

Yeast
[n/4]=371 62.2±8.2 3.2±1.8 40.0±9.4 111.2±16.2 0.0±0.0 0.8±1.0
[n/2]=742 — — 91.6±25.4 193.2±50.5 0.0±0.0 5.8±4.4
[n]=1484 — — 252.8±24.1 293.2±21.3 0.0±0.0 15.6±2.8

Breast Tissue
[n/4]=26 4.5±1.7 0.1±0.3 1.4±1.5 5.0±2.8 0.0±0.0 0.1±0.3
[n/2]=53 7.3±2.2 0.3±0.3 3.6±2.2 12.6±4.4 0.0±0.0 0.3±0.7
[n]=106 13.4±2.7 1.0±0.8 14.1±3.0 16.9±6.9 0.0±0.0 1.4±1.6

Ecoli
[n/4]=84 5.4±2.2 0.5±0.5 5.2±3.4 12.2±1.6 0.0±0.0 1.0±0.4
[n/2]=168 9.9±3.1 1.8±0.7 16.2±4.8 22.8±4.4 0.0±0.0 2.2±1.9
[n]=336 22.6±6.8 4.1±2.0 41.0±6.3 25.1±9.5 0.0±0.0 5.0±3.1

Halfrings
[n/4]=100 1.6±1.3 0.0±0.0 3.4±2.1 4.0±2.1 0.0±0.0 0.4±0.2
[n/2]=200 4.3±1.1 0.1±0.3 11.0±5.1 5.6±3.8 0.0±0.0 2.0±0.9
[n]=400 7.7±2.8 1.1±1.5 19.4±12.6 13.4±8.4 0.0±0.0 0.6±0.3

of LCC, CVQE and the CSP spectral algorithm are
demonstrated in terms of normalized mutual informa-
tion value of the results compare to the ground truth.
For each number of constraints, 10 different constraint
sets are generated and we run each algorithm 5 times
on each constraint set. Finally, the average and stan-
dard deviation of the results are represented in Figures 2
and 3 for Ionosphere and WDBC data sets respectively.
Note that although column generation framework is de-
signed to take the most advantage of background knowl-
edge, it was too slow (due to data size and number
of constraints) to be practical to use in this sensitiv-
ity analysis experiment. The Figures 2 and 3 show that
although CVQE can compete with LCC in small num-
ber of constraints, LCC is superior to take advantage
of background knowledge when number of constraints
grows.

4.4 Sensitivity Analysis on incorrect con-
straints The LCC algorithm is designed to greedily
satisfy all the constraints with the assumption that con-
straints are correct and should be satisfied. In this ex-
periment we deliberately add a number of incorrect con-
straints to the constraint set obtained from the ground
truth of Iris data set. Note that we add this experiment
for completeness since false constraints violate the main
assumption of LCC framework.

To generate test sets, we consider a constraint set
with 100 constraints (equally divided to ML and CL
constraints) and changed 1 to 10 randomly selected
constraints to be disagree with the ground truth (1 to
10 percent) and generated 10 different noisy sets for
each size. Figure 4 shows the average and standard
deviations of normalized mutual information gained by
each method. Clearly all methods are worsened by
noise in the constraints, but LCC is the most affected,

Table 3: Comparing Normalized Mutual Information (NMI)

CVQE Spectral (CSP) LCC

const NMI -ML -ML-CL NMI -ML -ML-CL NMI -ML -ML-CL

Iris
[n/4]=37 0.75±0.02 0.74±0.03 0.74±0.03 0.07±0.02 0.03±0.01 0.00±0.00 0.79±0.02 0.77±0.02 0.76±0.01
[n/2]=75 0.77±0.02 0.74±0.03 0.74±0.05 0.09±0.03 0.01±0.01 0.00±0.00 0.84±0.03 0.78±0.04 0.77±0.04
[n]=150 0.76±0.03 0.78±0.05 0.82±0.12 0.14±0.07 0.07±0.05 0.00±0.00 0.88±0.05 0.79±0.08 0.77±0.1

Wine
[n/4]=44 0.82±0.02 0.82±0.02 0.83±0.04 0.04±0.02 0.01±0.01 0.00±0.00 0.46±0.03 0.46±0.03 0.44±0.03
[n/2]=89 0.83±0.04 0.82±0.06 0.82±0.06 0.06±0.03 0.02±0.01 0.00±0.00 0.50±0.05 0.44±0.07 0.44±0.07
[n]=178 0.86±06 0.82±0.08 0.78±0.08 0.07±0.05 0.02±0.02 0.00±0.00 0.67±0.03 0.50±0.08 0.47±0.13

Iono
[n/4]=87 0.17±0.03 0.15±0.02 0.11±0.01 0.06±0.07 0.06±0.6 0.05±0.05 0.12±0.02 0.10±0.02 0.10±0.02
[n/2]=175 0.19±0.02 0.16±0.03 0.10±0.03 0.12±0.07 0.08±0.05 0.07±0.04 0.20±0.10 0.13±0.06 0.08±0.04
[n]=351 0.25±0.03 0.19±0.04 0.17±0.10 0.18±0.23 0.17±0.24 0.14±0.16 0.62±0.10 0.36±0.13 0.20±0.13

WDBC
[n/4]=142 0.60±0.03 0.58±0.03 0.59±0.03 0.13±0.23 0.13±0.23 0.13±0.23 0.62±0.12 0.55±0.11 0.47±0.11
[n/2]=284 0.64±0.01 0.60±0.03 0.64±0.02 0.43±0.25 0.40±0.24 0.40±0.24 0.77±0.03 0.68±0.03 0.57±0.04
[n]=569 0.67±0.05 0.62±0.09 0.69±0.08 0.33±0.29 0.33±0.29 0.26±0.24 0.90±0.03 0.79±0.05 0.56±0.05

KDD
[n/4]=150 0.77±0.02 0.77±0.02 0.77±0.02 0.03±0.01 0.01±0.01 0.00±0.00 0.68±0.04 0.67±0.04 0.69±0.04
[n/2]=300 0.77±0.02 0.77±0.02 0.78±0.02 0.03±0.01 0.02±0.01 0.00±0.00 0.72±0.04 0.70±0.04 0.72±0.04
[n]=600 0.79±0.03 0.77±0.03 0.80±0.03 0.10±0.05 0.04±0.02 0.00±0.01 0.81±0.01 0.74±0.05 0.76±0.03

Letter
[n/4]=150 0.62±0.06 0.61±0.06 0.61±0.05 0.02±0.01 0.01±0.00 0.00±0.00 0.58±0.10 0.56±0.10 0.56±0.09
[n/2]=300 0.65±0.04 0.62±0.06 0.61±0.06 0.03±0.01 0.01±0.01 0.00±0.00 0.72±0.10 0.64±0.10 0.63±0.11
[n]=600 0.73±0.04 0.67±0.05 0.66±0.07 0.04±0.01 0.01±0.01 0.00±0.00 0.86±0.05 0.73±0.09 0.71±0.11

Vehicle
[n/4]=211 0.10±0.01 0.11±0.01 0.10±0.01 0.01±0.00 0.01±0.00 0.00±0.00 0.17±0.02 0.16±0.03 0.17±0.03
[n/2]=423 0.11±0.02 0.11±0.02 0.11±0.03 0.02±0.01 0.01±0.00 0.00±0.00 0.18±0.02 0.15±0.03 0.15±0.04
[n]=846 0.11±0.00 0.10±0.01 0.12±0.03 0.02±0.01 0.01±0.01 0.00±0.00 0.25±0.03 0.14±0.02 0.15±0.04

Glass
[n/4]=53 0.36±0.02 0.35±0.03 0.35±0.00 0.12±0.03 0.07±0.02 0.04±0.03 0.40±0.04 0.37±0.03 0.37±0.03
[n/2]=107 0.37±0.03 0.33±0.03 0.34±0.00 0.14±0.07 0.06±0.03 0.03±0.05 0.43±0.04 0.36±0.03 0.36±0.03
[n]=214 0.37±0.04 0.33±0.04 0.28±0.00 0.18±0.07 0.04±0.04 0.00±0.00 0.51±0.04 0.36±0.04 0.32±0.04

Yeast
[n/4]=371 0.28±0.01 0.24±0.01 0.21±0.01 0.09±0.01 0.04±0.02 0.03±0.02 0.29±0.02 0.22±0.02 0.21±0.02
[n/2]=742 — — — 0.11±0.04 0.04±0.01 0.03±0.01 0.34±0.02 0.22±0.02 0.19±0.02
[n]=1484 — — — 0.14±0.01 0.04±0.01 0.03±0.00 0.41±0.02 0.21±0.02 0.19±0.02

Breast T
[n/4]=26 0.54±0.02 0.55±0.02 0.57±0.00 0.19±0.08 0.11±0.11 0.07±0.16 0.37±0.03 0.36±0.04 0.38±0.05
[n/2]=53 0.54±0.02 0.57±0.05 0.59±0.10 0.20±0.08 0.14±0.11 0.06±0.17 0.41±0.03 0.39±0.03 0.41±0.04
[n]=106 0.59±0.02 0.59±0.03 0.60±0.10 0.27±0.12 0.17±0.17 0.18±0.29 0.53±0.04 0.43±0.04 0.56±0.07

Ecoli
[n/4]=84 0.60±0.03 0.60±0.03 0.59±0.00 0.19±0.04 0.10±0.03 0.09±0.03 0.58±0.03 0.57±0.02 0.56±0.02
[n/2]=168 0.61±0.03 0.59±0.03 0.60±0.00 0.18±0.02 0.11±0.02 0.11±0.01 0.62±0.04 0.58±0.02 0.60±0.02
[n]=336 0.62±0.03 0.58±0.02 0.59±0.00 0.25±0.03 0.17±0.03 0.21±0.03 0.67±0.03 0.54±0.03 0.58±0.02

Halfrings
[n/4]=100 0.57±0.02 0.48±0.02 0.39±0.04 0.38±0.21 0.32±0.18 0.25±0.19 0.39±0.02 0.29±0.11 0.23±0.07
[n/2]=200 0.62±0.03 0.50±0.02 0.29±0.03 0.47±0.21 0.38±0.25 0.23±0.29 0.50±0.06 0.33±0.04 0.18±0.05
[n]=400 0.73±0.03 0.46±0.07 0.15±0.06 0.58±0.13 0.36±0.15 0.21±0.12 0.75±0.04 0.37±0.04 0.10±0.05

Table 4: Comparing LCC and CCCG algorithms: entries marked∗ are
proved optimal, no solution was found at timeout for − entries

CCCG LCC

#C NMI time (s) NMI time (s)

37 0.75 1800 0.80 1.2
75 – 1800 0.84 1.5

150 – 1800 0.88 1.6
200 0.92∗ 137.5 0.92 2.2
250 0.92 ∗ 3.2 0.92 1.9

300 1∗ 0.5 1 2.0
400 1 ∗ 0.2 1 2.4

since it concentrates on satisfying constraints. Note
that we didn’t include column generation framework
in this experiment but it is the kind of method which
would be mostly affected by noise constraints due to
its assumption (correctness of all constraints) similar to
LCC.

5 Conclusion

We have developed a k-means style algorithm for con-
strained clustering which is targeted at satisfying as
many of the constraints as possible, as opposed to sim-
ply improving the k-means objective. We compared per-
formance of the proposed LCC framework with some
state of the art exact and inexact algorithms. It is very
effective at satisfying constraints in comparison to ap-
proximate algorithms, and scales much better than ex-
isting methods that guarantee that all constraints are
satisfied. Sensitivity analysis also demonstrates that
LCC performs strongly in presence of more constraints.
Incorporating cluster level constraints is an interesting
direction of future work for the LCC algorithm.

References

[1] B. Wu, Y. Zhang, B.-G. Hu, and Q. Ji, “Constrained

Figure 2: Sensitivity analysis on number of constraints (Ionosphere)

Figure 3: Sensitivity analysis on number of constraints (WDBC)

clustering and its application to face clustering in
videos,” in Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on. IEEE, 2013, pp.
3507–3514.

[2] B. Babaki, T. Guns, and S. Nijssen, “Constrained
clustering using column generation,” in Integration of
AI and OR Techniques in Constraint Programming.
Springer, 2014, pp. 438–454.

[3] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al.,
“Constrained k-means clustering with background
knowledge,” in ICML, vol. 1, 2001, pp. 577–584.

[4] Z. Lu, M. Carreira-Perpinan et al., “Constrained spec-
tral clustering through affinity propagation,” in Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[5] S. Basu, A. Banerjee, and R. J. Mooney, “Active
semi-supervision for pairwise constrained clustering.”
in SDM, vol. 4. SIAM, 2004, pp. 333–344.

[6] I. Davidson and S. Ravi, “Clustering with constraints:
Feasibility issues and the k-means algorithm.” in SDM,
vol. 5. SIAM, 2005, pp. 201–211.

[7] I. Davidson and S. Basu, “A survey of clustering

Figure 4: Sensitivity analysis on number of incorrect constraints (Iris)

with instance level constraints,” ACM Transactions on
Knowledge Discovery from Data, vol. 1, pp. 1–41, 2007.

[8] M. R. Garey and D. S. Johnson, “Computers and in-
tractability: a guide to the theory of np-completeness.
1979,” San Francisco, LA: Freeman, 1979.

[9] M. Fisher, “An applications oriented guide to La-
grangian relaxation,” Interfaces, vol. 15, pp. 10–21,
1985.

[10] K. M. Choi, J. H. Lee, and P. J. Stuckey, “A lagrangian
reconstruction of genet,” Artificial Intelligence, vol.
123, no. 1, pp. 1–39, 2000.

[11] D. P. Bertsekas, Constrained optimization and La-
grange multiplier methods. Academic press, 2014.

[12] S. Basu, A. Banerjee, and R. J. Mooney, “Active
semi-supervision for pairwise constrained clustering.”
in SDM, vol. 4. SIAM, 2004, pp. 333–344.

[13] D. Pelleg and D. Baras, “K-means with large and noisy
constraint sets,” in European Conference on Machine
Learning. Springer, 2007, pp. 674–682.

[14] X. Wang and I. Davidson, “Flexible constrained spec-
tral clustering,” in 16th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2010, pp. 563–572.

[15] W. Zhi, X. Wang, B. Qian, P. Butler, N. Ramakr-
ishnan, and I. Davidson, “Clustering with complex
constraints-algorithms and applications.” in AAAI,
2013.

[16] K.-C. Duong, C. Vrain et al., “A declarative framework
for constrained clustering,” in Machine Learning and
Knowledge Discovery in Databases. Springer, 2013,
pp. 419–434.

[17] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences,
vol. 55, no. 1, p. 119139, 1997.

[18] A. D.-G. Leon Danon and A. Arenas, “The effect of size
heterogeneity on community identification in complex
networks,” Journal of Statistical Mechanics: Theory
and Experiment, p. P11010, 2006.

