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Abstract

Supervised feature selection is an important problem in pattern recognition.
Of the many methods introduced, those based on the mutual information
and conditional mutual information measures are among the most widely
adopted approaches. In this article, we re-analyze an interesting paper on
this topic recently published by Sotoca and Pla (Pattern Recognition, Vol.
43 Issue 6, June, 2010, p. 2068-2081). In that work, a method for supervised
feature selection based on clustering the features into groups is proposed, us-
ing a conditional mutual information based distance measure. The clustering
procedure minimizes the objective function named the minimal relevant re-
dundancy—mRR criterion. It is proposed that this objective function is the
upper bound of the information loss when the full set of features is replaced
by a smaller subset. We have found that their proof for this proposition is
based on certain erroneous assumptions, and that the proposition itself is not
true in general. In order to remedy the reported work, we characterize the
specific conditions under which the assumptions used in the proof, and hence
the proposition, hold true. It is our finding that there is a reasonable con-
dition, namely when all features are independent given the class variable (as
assumed by the popular naive Bayes classifier), under which the assumptions
as required by Sotoca and Pla’s framework hold true.
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information properties, clustering, classification, naive Bayes classifier.

1. Introduction

Feature selection plays an important role in building efficient pattern
recognition systems. When done properly, feature selection can greatly im-
prove prediction accuracy whilst reducing computational cost, as well as
potentially providing insights into the underlying data generating process.
In this paper, we comment on a recent work by Sotoca and Pla [1], which
proposes an approach for feature selection using mutual information. We
show that the two key results from this work do not hold true in general.
In order to remedy these issues, we investigate whether there exist special
conditions under which the reported theoretical results hold true. We discuss
several such conditions in this paper.

1.1. Background

The feature selection method proposed by Sotoca and Pla [1] falls into
the filter paradigm, for which one needs to specify a measure of dependency
between the features and the class variable. This dependency measure is
then used to rank the feature subsets, and choose the one most relevant to
the class variable. Of the many dependency measures available, those based
on information theoretic concepts are very popular, not only for the feature
selection problem [2, 1, 3], but across many topics in pattern recognition
and data mining [4]. This popularity can be explained due to the strong
theoretical foundation that exists within information theory. Given two ran-
dom variables X and Y with domains X and )Y respectively, their mutual
information (MI) is defined as:
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The MI measures the information shared between random variables, and is
general enough to detect any kind of dependency, be it linear or non-linear.
Also of interest is the conditional mutual information (CMI) between X and
Y given another random variable Z, defined as:
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The CMI can be interpreted as the information that X can predict about
Y (and vice-versa) that Z cannot. We refer interested readers to [5] for
comprehensive discussion on these measures and their basic properties.

The task of feature selection using the MI can be described as follows.
Suppose we have an input dataset with N samples, M features X = {X1,..., Xy},
and a target classification variable C'. The goal of feature selection is to se-
lect the optimal feature subset X = {Xj,...,X,,} of m (normally < M)
features that shares the maximal mutual information with C":

X' = argmax I(X;C). (3)
Xcx

It is difficult to estimate the high dimensional MI, since in practice we only
have a limited number of samples. Therefore, many works have approximated
(3) with lower order MI. An example is the well known minimum Redundancy
Maximum Relevance (mRMR) criterion [2], which maximizes the pairwise MI
between the features and the class variable, i.e., relevancy, while penalizing
the pairwise MI between the features, i.e., redundancy:
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1.2. The minimal relevant redundancy (mRR) criterion

In this section, we briefly review the minimal relevant redundancy (mRR)
criterion introduced by Sotoca and Pla [1]. They observe that maximizing
I (5?;, C) is in fact also equivalent to minimizing the information loss about
C, ie., I(X;0) — I(X;C) = I(X;C|X), when the full set of features X is
replaced by a subset X. This is clear, since we have I (X; C) = constant for a
fixed data set. Thus, the aim is to solve the following optimization problem:

X' = argmin [(X;0) — I(X; C) = argmin I(X; C|X). (5)

XcX XcX

However it can still be difficult to estimate the high order CMI I(X; C|X),
and also it is not clear as what optimization procedure can be employed to
solve (5). Sotoca and Pla’s subsequent development relies on the following
key result:



Proposition 1. [Sotoca and Pla [1]] Let X = (Xi1,...,X,n) be a subset
of m random variables from the original set of M random wvariables X =
(X1,...,Xn), that is, X C X, then, the decrease of mutual information of
the original and the reduced set with respect to a relevant variable C' is upper

bounded by:
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This looks to be an attractive result, since it allows one to replace the
loss function with its upperbound, which is based solely on low order CMIs.
More specifically, this result offers a theoretical basis for replacing the single
high order CMI term with a sum of triple-wise CMIs, which are much more
amenable to numerical estimation with limited sample size. Also, Sotoca and
Pla note that this bound resembles the objective of a K-means clustering
process, i.e.,
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(7)
where the conditional posteriors p()zj|Xi) = 1/m correspond to a uniform
distribution, instead of the delta distribution (i.e., p()?j | X;) = 1if X; isin the
cluster centered by X ; and 0 otherwise) as in the usual K-means algorithm.
This observation suggests that the features can be clustered into groups,
then one or a small number of representative features from each group may
be chosen to form the selected feature subset. The procedure looks to be
both theoretically and practically appealing, since it addresses both feature
diversity (via the clustering process—the features in different clusters are
deemed to be as different as possible) and joint-optimality, via the bound in
(6), while admitting low sample complexity (the use of low order CMI).

Clustering the features using a K-means like procedure does encounter
some practical difficulties, as it is not clear as how to define the mean feature
(centroid) for a cluster. Sotoca and Pla therefore instead use a hierarchical
clustering approach. For that purpose, they propose a conditional mutual
information based distance, which they argue is a true metric in the feature
space:



Proposition 2. [Sotoca and Pla [1]] The following conditional mutual in-
formation distance:

D(X;; X;) = I(Xi; C|X;) + I(X;; C| X3) (8)

satisfies the properties of a true metric, i.e., non-negativity, identity of in-
discernibles, symmetry, and triangle inequality.

This also looks to be an appealing result. A true metric not only conforms
well with one’s intuition about distance, but also, working in a true metric
space can potentially provide important theoretical and algorithmic advan-
tages, since many useful theoretical results and efficient algorithms already
exist for metric spaces.

2. Theoretical problems with the mRR framework

Although the mRR framework appears appealing, we have found that it
contains some theoretical shortcomings. In this section, we reanalyze the de-
velopment of the two key results in the mRR framework, namely Proposition
1 and 2, and point out the gaps in the analysis.

2.1. Erroneous assumptions made in Proposition 1 proof

The proof offered for this proposition relies on the following properties
of the mutual information and condition mutual information where it is as-
sumed:

Assumption 1. Conditioning on a third feature always reduces the mutual
information, i.e.,

I(X;C|2) < I(X;C) (9)

Assumption 2. Increasing the conditioning set always reduces the condi-
tional mutual information, i.e.,

I(X,C|Zy,...,2Z) < I(X;C|Z), Vi=1,...k (10)

Unfortunately, we will show here, via a simple counter example, that
Assumptions 1 and 2 do not hold true in general. Let X and C be two inde-
pendent random binary variables, each with equal probability for the ‘0" and
‘1’ states. Let Z; = X AC and Zy = X V C. Thus Z; and Z, are also two
other random variables. From these definitions, it is straightforward to write
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Figure 1: An example where Assumptions 1 and 2 fail to hold

down the joint and conditional probability distributions P(X,C), P(XC, Z;),
P(XC,Z,y), P(XC,Z,Zy) and P(XC|Z1Z,) as in Fig. 1. From these distri-
butions, it is easy to verify that Assumption 1 is violated here. More specif-
ically, we have that I(X;C|Z;,) = I(X;C|Z;) = 0.187 bit > I(X;C) = 0,
that is, conditioning on a third variable can increase the MI. In this example,
X and C' are marginally independent, but become dependent conditioning
on any variable Z; or Z,. Within the Bayesian network literature, this ef-
fect is termed “explaining away”. It is also easy to show that Assumption
2 also does not hold true in this example, as I(X;C|Zy, Z5) = 0.5 bit >
I(X;C|Zy) = 0.187 bit. Thus, given both Z; and Z,, then X and C share
significantly more information than if only Z; or Z, was given individually.

2.2. Proposition 1 does not hold true in general

We have shown that the proof for Proposition 1 is erroneous. Does there
exist a correct proof for it? Unfortunately, such a proof does not exist, as



Proposition 1 itself does not hold true in general. Indeed, using the above
example, if we take X = (X, 7}, 75), and X = (7}, Z3), then according to
Proposition 1 we must have:

I[(X:C|X) = I(X;C|Zy, Z5) < % {I1(X:C|Z,) + I(X:C|Zy)} (11)

but this is not true, given that in the above example, I(X; C|Z;, Z3) is larger
than I(X;C|Z,) + 1(X;C|Z,).

2.3. Erroneous proof for Proposition 2

The proof of the metricity property of the CMI distance is also erroneous.
The following derivation step was used in the proof (for the triangle inequality

property):

which is in fact equivalent to the erroneous Assumption 2.

3. Conditions under which mRR is applicable

Since Sotoca and Pla’s mRR framework contains several interesting and
useful ideas, in this section we investigate the conditions under which As-
sumptions 1 and 2, and hence their two key Propositions 1 and 2, hold true.
More importantly, we assess whether such conditions, if they exist, are rea-
sonable and plausible in pattern recognition applications. We have identified
6], in which Renner and Maurer characterize a necessary and sufficient con-
dition for Assumption 1 to hold, while an anonymous reviewer pointed us to
[5, Theorem 2.8.1], where a sufficient condition for Assumption 1 is given.
We discuss these conditions below:

e From a communication theory point of view, Renner and Maurer [6]
report a necessary and sufficient condition for Assumption 1 as fol-
lows. Suppose X and C are two random variables, and Z is an output
variable from a communication channel that takes X and C' as inputs,
then a necessary and sufficient condition for Assumption 1 to hold, i.e.,
I(X;C) > I(X,C|Z), is that the conditional distribution P(Z|X C)
that characterizes the channel can be decomposed as R(X, Z)-S(Z,C)
where the two functions R and S depend only on (Z, X) and (Z C)
respectively.



e In [5], it is proven that a sufficient condition for Assumption 1 is that
X, C and Z form a Markov chain X — C' — Z, where Z is conditionally
independent of X given C, i.e., P(Z, X|C) = P(X|C)P(Z|C).

For ease of analysis, we next adopt the graphical notation of Bayesian
network (BN) [7]. A BN is defined by a graphical structure and a family of
probabilistic distribution, which together allow efficient and accurate repre-
sentation of the joint probability distributions over a set of random variables
(RVs) of interest. The graphical part of a static BN is a directed acyclic graph
(DAG), with nodes representing RVs and edges representing their conditional
(in)dependence relations. In a BN, a node is conditionally independent of all
its non-descendants, given its parents. In addition, it is often assumed that
parent-child in a BN admits a direct cause-consequence relationship.
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Figure 2: Bayesian network depiction for conditions where Assumption 1 holds.

The two possible network configurations for the Markov chain conditions
are presented in Fig. 2(a,b), while the network configuration for the ‘com-
munication channel’ scenario is presented in Fig. 2(c). The Markov chain
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condition requires a feature to be parent while another be child of C', or both
features to be child of C'. In order to assess the feasibility of this scenario, we
present an example real Bayesian network for lung cancer, adapted from [§].
Here, the target class variable C' is lung cancer. It can be seen that for this
network, there are triplets that form a Markov chain (e.g., Smoking — Lung
cancer — Coughing), and triplets that do not form a Markov chain (e.g., Lung
cancer, Coughing, and Allergy). Thus in general, the Markov chain condition
does not hold. The ‘communication channel’ scenario requires a feature to be
child of C, another feature to be the co-parent with C', and that each parent
acts independently on the child, i.e., P(Z|X,C) = R(X,Z)-S(Z,C). Again
from Fig. 2c, it is seen that not all triplets conform to this structure, e.g.,
{Smoking, Lung cancer, Genetic factor}, let alone the condition that each
parent acts independently on the child. Thus, it can be argued that the two
conditions under which Assumption 1 holds that we have investigated are not
likely to always be reasonable in general pattern recognition applications.

Until now, we have just investigated the conditions under which Assump-
tion 1 holds. We are yet to find out the requirements for Assumption 2 to
hold (which might be different from those for Assumption 1). As we do not
know how many such conditions exist, we therefore change our approach.
Instead of asking what are the conditions under which Assumptions 1 and
2 hold, then checking to see whether such conditions are plausible for real
pattern recognition applications, we now ask: on which commonly applied
Bayesian network structures Assumption 1 and 2 both hold true. Our obvi-
ous target is the naive Bayesian network structure, as assumed by the naive
Bayesian network classifier, in which the features are assumed to be condi-
tionally independent given the class variable, i.e., I(X;, X;|C) = 0,Vi,j as
in Fig. 3a. The naive Bayes network structure for the lung cancer problem
is illustrated in Fig. 3b. Note that in this network structure, every triplet
{X;,C, X,} forms a Markov chain X; <+ C' <> X;. The naive Bayes network
structure is actually an extension of the Markov condition in Fig. 2(b).

We should clarify here that the naive Bayes network is not a realistic
Bayesian network that reflects the actual relationships between variables,
but rather it is an assumption made by a learning algorithm, in this case the
naive Bayes classifier, in order to simplify the learning process. Albeit this
simplistic assumption, naive Bayes classifiers have been reported to perform
remarkably well, on par with state of the art modern classifiers on many
learning problems [9]. Text classification is a particular example where naive
Bayes classifiers were very successful [10]. There have been numerous empir-
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Figure 3: Naive Bayes network

ical works showing that the naive Bayes classifier predicts equally well as the
decision tree algorithm C4.5, as well as several theoretical investigations that
try to explain the surprisingly good performance of naive Bayes [11]. For this
network structure, Assumption 1 holds true as per the Markov chain condi-
tion. In the following, we prove that Assumption 2 also holds true on the
naive Bayes network structure.

Lemma 1. Given I(X; Z;|C) = 0,Vi we have:

Proof. LetZ ={Z1,...,Z;i_1,Zi+1,..., 2y}, weprove [(X;C|Z;,Z) < I(X;C|Z;).
We have I(X;C, Z;,Z) admitting the following decomposition:

1(X5C, 2, 2) = I(X; Z) + 1(X,C|Z) + I(X, 2IC, Z)
We now prove that I(X;Z|CZ;) =0 as follows:

I<X’ Z|Oa Zz) = ‘[(X7Zh . ‘7Zi—17Zi+17 - '7Zk|O7 Zl)
= [(X,Zl‘C, Ziazl) + ... —|—[(X,Zk’0, Zi7zl7' . .,Zk,1>

It can be proven that I(X; Z;|C, Z) = 0, Vi where Z is an arbitrary feature
set [12]. Thus I(X;Z|C, Z;) = 0, and so

1(X;C, Z:,Z) = I(X; Z;) + [(X, C|Z:) (13)
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On the other hand, I(X;C, Z;,Z) can also be decomposed as:

[(X;C, Z,,Z) = [(X; Z,, Z) + [(X;C|Zi, Z) (14)

We also have
I(X;2:,2) = I(X; Z;) + (X3 Zi|Z) 2 1(X; Z;) (15)
From (13)-(15) we have I(X;C|Z;,Z) < I(X;C|Z;). O

4. Discussion and conclusion

One of the best known principles of information theory states that con-
ditioning reduces entropy, i.e., H(X|Y) < H(X) [5]. Unfortunately, this
principle does not carry over to the mutual information. Conditioning can
either increase or decrease the mutual information. We note that Sotoca and
Pla are not the only one to have made this assumption for mutual informa-
tion. In a recent work [13], Guo and Nixon, in their mutual information based
feature selection work for gait recognition, asserted: “It is known that given
variables A, B and C, I(A, B|C) < I(A,B)”. Yet in both [1] and [13], the
authors reported reasonably good feature selection and classification results
with their proposed methods.

In the current paper, we have investigated the conditions under which
the assumptions that conditioning reduces mutual information and increas-
ing the conditioning set reduces mutual information, as required by Sotoca
and Pla’s framework, hold true. It is our finding that under the condition
of features conditionally independent given the class variable, as assumed
by the popular naive Bayes classifier, then these assumptions both hold true.
The conditionally-independent-features assumption is clearly a naive one, yet
naive Bayes classifiers have been reported to perform well on a wide range
of classification problems, and remain popular today, where they often serve
as baseline for evaluating more sophisticated classifiers. It is our expecta-
tion that feature selection procedures, such as the ones proposed by Sotoca
and Pla [1] and Guo and Nixon [13], will perform well in problems where
the naive Bayes classifier also delivers good performance. It is likely that
in these problems, the conditionally-independent-features assumption hold
true, either exactly or approximately. Under this condition, the framework
as proposed by Sotoca and Pla is appealing, as both feature diversity (via
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clustering) and joint-optimality (via the information loss bound) can be en-
sured, while admitting low sample complexity at the same time.

On classification problems where the conditionally-independent-features
assumption does not hold true, we have found that Proposition 1 will fail
to hold true in general, and hence the clustering process as proposed by
Sotoca and Pla can no longer be interpreted as minimizing the information
loss when the full set of features is replaced with a smaller subset. Thus,
while we can still perform feature clustering, the resulting chosen features
may only provide a good coverage of the feature space, but the joint quality
of these selected features, measured in terms of the joint MI, is not assured.
Nevertheless, in this case, feature diversity achieved via the feature clustering
process might still be useful. In this respect, Proposition 2 would be an
interesting result, as working in a proper metric space can provide certain
theoretical and algorithmic advantages. Unfortunately, the current proof,
based on Assumption 2 which does not hold true in general, is erroneous.
As we haven’t been able to prove or disprove this proposition in general, we
thus leave it it as an open problem for interested readers:

Open problem 1. Prove or disprove the metricity properties of the CMI
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