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Abstract. Detecting the underlying community structure of networks
is an important problem in complex network analysis. Modularity is a
well-known quality function introduced by Newman, that measures how
vertices in a community share more edges than what would be expected
in a randomized network. However, this limited view on vertex similar-
ity leads to limits in what can be resolved by modularity. To overcome
these limitations, we propose a generalized modularity measure called
GM which has a more sophisticated interpretation of vertex similarity.
In particular, GM also takes into account the number of longer paths
between vertices, compared to what would be expected in a randomized
network. We also introduce a unified version of GM which detects com-
munities of unipartite and (near-)bipartite networks without knowing the
structure type in advance. Experiments on different synthetic and real
data sets, demonstrate GM performs strongly in comparison to several
existing approaches, particularly for small-world networks.

Keywords: Community detection, Modularity, Generalized modularity,
Vertex similarity, Resolution limit

1 Introduction

As many real-world systems can be represented by networks, much research has
focused on analysing networks and finding underlying useful structural patterns.
Examples include social and biological networks [1, 2], in which vertices represent
individuals or proteins and edges represent communications or interactions.

Among complex network analysis approaches, community detection is an
important task which aims to find groups of vertices which could share common
properties and/or have similar roles within the network [3]. This might reveal
friendship communities in a social network or an unexpected hard-to-predict
community structure in a biological dataset.
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Two important network structures covered in the literature are unipartite
and bipartite networks. In unipartite networks like social networks [1], the as-
sumption is connections within communities are dense and connections between
communities are sparse. However, some real networks are bipartite which means
they can be partitioned into two clusters such that no two vertices within the
same cluster are adjacent [4]. People attending events [5] is one example of a
bipartite network. In addition, there are some real networks with near-bipartite
properties. In these networks, there are some connections inside the two com-
munities but they are fewer than between-community connections. Networks of
sexual relationships are an example of near-bipartite networks.

Among community detection criteria, modularity [6] is one of the most im-
portant because according to [7], “Modularity has the unique privilege of being
at the same time a global criterion to define a community, a quality function
and the key ingredient of the most popular method of graph clustering.” After
its introduction, modularity was rapidly adopted and physicists, computer sci-
entists, and sociologists have all developed a variety of heuristic algorithms to
optimize modularity. They are based on greedy algorithms [8] spectral methods
[9], mathematical optimization [10] and other strategies [11, 7].

Given an un-weighted undirected network G(V,E), let di be degree of vertex
i, m be total number of edges and Aij be an element of the adjacency matrix
which takes value 1 if vertices i and j are connected and 0 otherwise. Suppose
the vertices are partitioned into communities such that vertex i belongs to com-
munity Ci. Then the modularity of the partition is defined by equation (1).

Q =
1

2m

∑
i,j

[Aij −
didj
2m

]δ(Ci, Cj) (1)

The matrix of elements Aij − didj
2m is called the modularity matrix which

is denoted by W . The modularity matrix records the difference between the
number of the edges connecting each pair of vertices and the expected number
of edges in a randomly distributed network of the same size with the same vertex
degree sequence (in the rest of this paper we call it a randomized network). If
the number of edges between i and j is the same as what is expected in the
randomized network, the corresponding element of the modularity matrix is
zero. Hence, nonzero values of the modularity matrix represent deviation from
randomness. The coefficient 1

2m normalizes modularity to the interval [-1,1].
For calculating the modularity of a network partition, one adds up the modu-

larities between each pair of vertices that lie in the same community. In equation
(1), δ(Ci, Cj), the Kronecker delta function performs this task by limiting the
summation to just over vertex pairs of the same community. The Kronecker
function has the value 1 if its arguments are equal and 0 otherwise.

Brandes et al [12] showed that finding a clustering with maximum modularity
is an NP-hard problem. However, researchers have tackled community detection
using exact and approximation methods for modularity maximization. Among
exact methods, Aloise et al [10] introduced a column generation model which
can find communities of optimal modularity value for problems of up to 512
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Fig. 1. Examples for neglecting neighbours by Modularity

vertices. Among the wide range of approximation algorithms for modularity
maximization, the hierarchical iterative two phase method of Blondel et al [8] is
one of the best (see [7]). In the first phase, communities are merged together only
if this improves the modularity value of the partition, whilst the second phase
reconstructs the network whose nodes are communities of the previous phase.

Limitations of Modularity Although modularity performs effectively in
many cases, some limitations have been noted about its performance [7, 13].
First, modularity has a restricted interpretation of vertex similarity. Figure 1
illustrates this problem using hand-made examples. All structures shown in this
figure have 17 edges but the number of vertices are different. Degrees of the bold
vertices are the same and equal to 7 in all cases and they do not share any edges
together. Hence, in all three cases, the modularity value between the two bold
vertices is equal while one can clearly see that the structures are very different.

Figure 1 illustrates that modularity’s interpretation of vertex similarity is
limited to sharing common edges. While in reality, in addition to sharing an edge,
pairs of vertices are more similar and more likely to lie in the same community
when they have many neighbours in common. This is exactly one of the basic
vertex similarity measures called common neighbour index [14]. There are also
some other variations of vertex similarity measures based on number of common
neighbours and paths of longer lengths [15, 16, 14, 7].

We propose a new measure of community detection called generalized mod-
ularity (GM) which extends modularity’s assumption about similar vertices. In
addition to common edges, GM takes into account common neighbours and
longer paths between vertices and compares the number of these paths to a ran-
domly distributed network to achieve a more comprehensive interpretation of
vertex similarity.

Although in the literature, some research has tried to detect communities
based on a vertex similarity concept [17, 1], these approaches have mostly failed
to take advantage of modularity’s strength in noticing common edges between
vertices. The vertex similarity probability (VSP) model of Li and Pang [17] is
one such approach which is just based on common neighbours of vertices but
doesn’t notice common edges or relations of longer lengths.

In other work, Alfalahi et al [1] proposed the concept of vertex similarity for
modularity. They construct a virtual network which is initially the same as the
original network. Then, vertices with higher Jaccard [15] similarity index (which
is based on common edge and common neighbour concepts) than a pre-defined
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threshold, would have an extra edge in the virtual network. Finally, modularity
maximization is applied to the virtual network in order to find communities.
Although this approach aims to add vertex similarity concepts into modularity’s
common edge criterion, paths of longer length than two are neglected. Also, the
consideration of similarity between vertices strongly depends on the choice of
threshold value which divides similarity status of vertices into “similar” or “not-
similar”. In generalized modularity the interpretation of vertex similarity is not
limited to 0 and 1. In addition, as opposed to Alfalahi’s approach, GM benefits
from the comparison to random graphs for measuring vertex similarity. In this
sense, GM’s interpretation of vertex similarity is close to Leicht et al [16] who
proposed a vertex similarity index based on comparison to a randomized network,
though there are basic differences in context and approach of comparison.

The second limitation of modularity, the resolution limit, arises from its null
model. It causes the systematic merging of small communities into larger mod-
ules, even when the communities are well defined and loosely connected to each
other [13]. Fortunato and Barthelemy in [13] and Fortunato in [7] discussed this
issue in more detail. According to [7], in the modularity definition, the weak
point of the null model is the implicit assumption that each vertex can commu-
nicate with every other vertex of the network. This is however questionable, and
certainly wrong for large networks like the Web graph. To address the resolution
limit problem, multiresolution versions of modularity have been introduced [18]
which allow users to specify their target scale of communities. The choice of
correct value for this scale parameter is still an issue with these approaches.

However, by considering longer paths, GM moderates the questionable as-
sumption of modularity’s null model. Because expecting network members to be
able to share a neighbour with others is a more reasonable assumption. Even
more realistic is the possibility of existence of paths with short lengths between
members of a network, in particular, networks with the small-world property.
According to Watts et al [19], small-world networks are those in which the typi-
cal distance L between two randomly chosen vertices grows proportionally to the
logarithm of the size of the network. This means the transition from one vertex
to any other vertex of the network requires just a few hops. It has been shown
that a wide range of real-world complex networks like social networks, the con-
nectivity of the Internet, wikis, collaboration networks and gene networks exhibit
small-world network characteristics. In addition to small-world networks, Watts
and Strogatz showed that in fact many real-world networks have a small average
shortest path length between vertices [19]. Thus, although GM is a global crite-
rion and considers the whole network for defining communities, the small-world
property of real networks supports the assumption behind its null model.

Modularity maximization and most community detection criteria are de-
signed for unipartite networks in which edges inside communities are more
dense. In near-bipartite networks, however, connections between communities
are denser than inside them and modularity maximization cannot find correct
communities because it aims to minimize the number of edges between commu-
nities. Although there are community detection methods for bipartite networks
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like modularity minimization and some others [4], they require knowing the type
of the data in advance. This problem is more important when it comes to near-
bipartite networks, since the identification of such networks is more difficult. In
this paper, we also propose a unified version of generalized modularity called
UGM which can detect communities in unipartite, bipartite and near-bipartite
networks without knowing the type of the network structure.

Briefly, the main contributions of this paper are:

– Extending the “modularity” community detection quality function and propos-
ing a new criterion named Generalized Modularity (GM) which takes advan-
tage of vertex similarity and longer paths between vertices.

– Proposing a more realistic null model in comparison to modularity, which
enables generalized modularity to perform better than modularity in small-
world data sets with communities of different scales.

– Introducing a unified version of the generalized modularity measure (UGM)
which is able to detect communities in unipartite, bipartite and near-bipartite
networks without any pre-knowledge about the structure of the data.

– Experimental comparison of the GM and UGM methods with some state of
the art approaches and statistically demonstrating their high performance.

2 Generalized modularity (GM)

The core concept of our proposed generalized modularity measure is to extend
modularity to take advantage of indirect communications between vertices.

According to the definition of modularity, a pair of vertices is likely to be
in the same community if they share more edges than what is expected from
a randomly distributed network. Pairs of vertices can be also similar to each
other based on the number of their shared neighbours [14, 7]. In generalized
modularity we believe that sharing more neighbours than what is expected (in a
randomized network) also expresses how likely it is for the pair to lie in the same
community. Likewise, two vertices are more likely to be in same community if
they have more paths of length three or more, than the corresponding expected
number in a randomize network. Hence, generalized modularity is inspired by
the concept of vertex similarity while preserving the basic idea of modularity.

The general form of the proposed GM measure is presented in equation (2)
which given a partition, adds up the elements of the WGM matrix for pairs of
the same communities. The generalized modularity matrix WGM is the weighted

summation of W
(`)
norms (equation (3)) which are normalized generalized modu-

larity matrices of level ` which means just relations with paths of length ` are

considered. α` represents the weight of contribution of W
(`)
norm in WGM .

QGM =
∑
i,j∈V

WGM
i,j δ(Ci, Cj) (2)

WGM =

∞∑
`=1

α`W
(`)
norm =

∞∑
`=1

α`
W (`)

||N (`)||
=

∞∑
`=1

α`
[N (`) − E(`)]

||N (`)||
(3)
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N (`) is the matrix representing the number of simple paths (paths contain-
ing no loops) of length ` between vertices. The matrix of N (`) is equal to the
adjacency matrix power to `, (A`), for ` = 1, 2. ||N (`)|| is the entry-wise 1-norm
of matrix N (`) which is summation of absolute values of the matrix elements.
The matrix E(`) represents the expected number of paths of length ` between
vertices in a randomized network. We can normalize each term by dividing it by
the total number of paths of corresponding length which is denoted by ||N (`)||.
According to equation (3), W (1) is exactly the same as the modularity matrix of
Newman [6] while the matrix W (2) is the existing number of common neighbours
(relations with paths of length 2) between vertices minus the expected number of
such common neighbours in a corresponding randomized network. Other terms
are also defined likewise.

The expected number of paths of length one between i and j is calculated by
multiplying the number of edges connected to i (degree of vertex i) by the prob-
ability that an edge ends in j which is dj/2m. By applying a similar approach,
we calculate the expected terms in W (2) and W (3) for a pair of vertices in an
un-weighted network. Note that the direct edges between two vertices cannot
participate in any path of length 2 and 3 between them. So, in equation (4),

apart from didj/2m expected connections between i and j, we expect (di− didj
2m )

remaining edges of i to contribute in simple paths of longer lengths. For these
edges, the probability to be linked to the intermediate vertex k is dk/2m and
then an edge from the set of dk − 1 remaining edges of k must be linked to j
with probability of (dj − didj

2m )/2m. Since the probability of existence of edges
between vertices are independent to each other, the probability of existence of a
path of length ` simply equals the multiplication of probabilities of each of its `
edges. Finally, as intermediate vertex k can be any vertex of the network except
i and j, we have a summation over all possible ks.

E
(2)
i,j =

∑
k∈V \{i,j}

[
(di − didj

2m )dk

2m

][
(dk − 1)(dj − didj

2m )

2m

]
(4)

W
(2)
ij = N

(2)
ij − E

(2)
i,j = (A2)ij −

(di − didj
2m )(dj − didj

2m )

(2m)2

∑
k∈V \{i,j}

dk(dk − 1) (5)

Similarly, we can calculate the expected value for paths of length 3 which
vertices i and j are connected through two intermediate vertices k and k′.

E
(3)
i,j =

∑
k,k′∈V \{i,j}

[
(di − didj

2m )dk

2m

][
(dk − 1)dk′

2m

][
(dk′ − 1)(dj − didj

2m )

2m

]
(6)

In the calculation of paths of length 3 as opposed to the two previous cases,
there is a possibility for loops which are illustrated in Figure 2. Among these four

topologies, just Figure 2-a is considered in the calculation of term W
(3)
ij , because
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Fig. 2. Four different possible topologies for paths of length 3 between i and j

the existence of the other three paths is dependent on the existence of a common

edge between i and j which we already considered in the calculation of W
(1)
ij .

As matrix (A3) counts all four topologies, we use matrix (A3)′ of equation (7)
which just represents the number of simple paths of length 3 between vertices.
Hence, the third term of the generalized modularity is equal to the equation (8).

(A3)′ij = (A3)ij −Aij(di + dj − 1) (7)

W
(3)
ij = N

(3)
ij − E

(3)
i,j = (A3)′ij −

[
(di − didj

2m )(dj − didj
2m )

(2m)3

( ∑
k∈V \{i,j}

dk(dk − 1)
)2]
(8)

The number of terms in generalized modularity increases according to the
path lengths considered, however, paths of length more than 3 are more com-
plicated as the number of possible topologies and non simple paths rapidly in-
creases. In addition, intuitively, it seems they would have smaller importance
weight (αl) than the first couple of terms. Therefore, in this paper, we limit gen-
eralized modularity to its first three terms which are related to paths of length
(` = 1, 2, 3).

2.1 Comparison to Modularity

Although our GM quality function was initially inspired by modularity, extend-
ing the measure to consider neighborhoods with longer paths leads to improve-
ments in several aspects.

First, GM is more comprehensive in its interpretation of similarity as it con-
siders vertex similarity as well. Therefore, when edge related properties are still
the same (as in Figure 1), GM can detect communities better than modularity
since it uses common neighbours and the neighborhood of longer paths as well.

To illustrate how well generalized modularity can reveal the underlying com-
munity structures, we use visualization. The visual assessment of tendency (VAT)
[20], is a tool for revealing the number of clusters. It uses the logic of Prim’s al-
gorithm and reorders the objects of symmetric square dissimilarity matrix R to
show the number of clusters by squared shaped dark blocks along the diagonal
in the VAT image. We scaled each element of modularity and GM matrices to
(−Wij + 1)/2 to ensure elements are in interval [0,1] and then we used them
as dissimilarity matrix for VAT. Figure 3 presents VAT images of modularity
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     a                          b         c  

    

   

Fig. 3. VAT image of modularity matrix (top images) and generalized modularity
matrix (bottom images) for three data sets (a) LFR, (b) Political Books, (c) American
Football. Dark blocks in VAT images of GM correspond to communities in the data.

and GM (α1, α2, α3 = (0.25, 0.5, 0.25)) for an LFR data set (which is a com-
munity detection synthetic benchmark proposed by Lancichinetti [21]) and also
two real-world data sets. In this Figure, modularity’s VAT image does not reveal
the community structure of the data sets while dark blocks in GM’s VAT image
effectively distinguish community structures. A similar trend was also observed
for the other real-world and artificial data sets used in our experiments.

The second advantage of GM is related to community detection in data sets of
multi-scale communities. As explained about the resolution limit of modularity,
it is related to the assumption/interpretation of vertex similarity in modularity.
Modularity expects two similar vertices to share an edge while this is not rea-
sonable, in the sense that, in large networks each vertex cannot know about all
other vertices of the network. Although one cannot expect vertices to be able to
directly communicate with all other members of the network, it is more sensible
to expect them to be able to share a neighbour, or even more realistic, to expect
them to have a longer path to other members of the network. This idea is pow-
erful when it comes to small-world networks which are discussed in introduction
and proved to have a small diameter [19]. Even in large networks with this prop-
erty, although each vertex cannot communicate directly to all others, it is related
to all other vertices with comparatively very short paths. This fact supports the
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more realistic underlying assumption in the definition of generalized modularity
measure. So that in data sets with different community sizes in particular those
of small-world networks, GM can achieve higher performance than modularity.
However, GM is not completely free of resolution limit problems. Because GM
is a global optimization criterion which considers the whole network for defining
communities and resolution limit seems to be a general problem for all methods
with a global optimization goal [7].

The third advantage of our generalized modularity is discussed in Section 2.2
which introduces a unified version of the generalized modularity measure.

2.2 Unified generalized modularity (UGM)

As explained in the introduction, modularity maximization cannot detect com-
munities of bipartite networks. However, a specialised version of GM (in equa-
tion (9)) using the difference between the number of common neighbours and
the expected such numbers in a randomized network, can detect communities in
uni-partite, near-bipartite and bipartite networks without pre-knowledge of the

network type. In equation (9), W
(2)
ij is same as the term defined in equation (5).

QUGM =
1

||A2||
∑
i,j∈V

W
(2)
i,j δ(Ci, Cj) (9)

In unipartite models, the basic community detection principle is “edges inside
a community are dense and outside are sparse.” Consider a partition of a unipar-
tite network (Figure 4-a) detected by maximizing QUGM . As explained before,
the elements of W (2) are higher for pairs of vertices who have more common
neighbours than what is expected in a randomized network. As a general prop-
erty of unipartite networks, vertices have neighbours of the same community.
Hence, cluster members detected by QUGM have common neighbours which lie
within the same community. This means density of connections inside commu-
nities is much more than the edge density between communities. Therefore, the
QUGM criteria is completely aligned with properties of communities in unipartite
networks.

However, in bipartite (near-bipartite) networks, all (most) common neigh-
bours of members of the same cluster are definitely (probably) located in the
opposite community. In these networks, the basic community detection principle
is “edges inside communities are sparse and outside are dense.”

Consider a partition of a bipartite or near-bipartite network (Figure 4-b)
which is achieved by maximizing QUGM without any pre-knowledge about the
type of the network. QUGM maximization, assigns vertices with more common
neighbours— than the expected number in a randomized network— to the same
community. This leads to high density of between-community edges because
members of a community share neighbours which belong to the other com-
munity. Hence, QUGM maximization in bipartite and near-bipartite networks
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Fig. 4. Example of a unipartite network (left side) and a near-bipartite network (right
side)

finds communities with sparse inter-community connections and dense between-
community links. Therefore, the unified generalized modularity (UGM) measure
is able to detect communities in unipartite, near-bipartite and bipartite networks
without pre-knowledge of the network’s structure.

2.3 Finding communities based on the GM quality function

Similar to modularity maximisation, finding a partition with maximum general-
ized modularity is also an NP-hard problem. However, as GM can be represented
as a matrix (similar to the modularity matrix), heuristic and exact algorithms
of modularity maximization can be reused for partitioning data based on GM.

In this paper, we use an agglomerative community detection algorithm similar
to one of Blondel et al in [8] which is also discussed in the introduction section.
This algorithm considers each vertex as a community initially and then merges
these small communities in a way that increases the GM value of the partition.
It then updates the network information based on new communities and starts
the next iteration and continues until no further improvement is possible.

3 Experiments

In this section, we present empirical analysis of generalized modularity and com-
pare it with some state of the art approaches in the literature. All experiments
are done on a PC with core i7 CPU 3.40 GHz and 16GB RAM.

Data sets: In order to present a comprehensive comparison, we used four
different categories of data sets which are common in the literature.

– We used LFR data sets proposed in [21]. In LFR data sets, degrees follow
a power-law distribution p(d) = d−α with parameter α and the community
size a power-law distribution with parameter β. A mixing parameter, µ is
the proportion of external degree for each vertex. Based on the original LFR
data set in [21] we fixed α and β to be 2 and 1 respectively.
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Fig. 5. Synthetic data sets for testing the resolution limit

– To address the resolution limit of modularity, there are some structures of
networks proposed in [13] where modularity fails to detect the underlying
communities correctly. Similarly, we used four synthetic data sets with struc-
tures of Figure 5. In this figure, each circle represents a clique or complete
graph which is denoted by k. For instance, k50 is a complete graph or clique
of 50 vertices. Figure 5-d shows a circle of 30 cliques of size 5 [13].

– Four real-world data sets including Zachary Karate Club [22], Books about
US Politics, American College Football [2] and Sampson’s monastery data
set [23] were selected. These data sets were chosen because their ground
truth tags are known and we can measure performance by comparing the
results to the ground truth.

– We also used the South Women data set [5] as a real bipartite network. We
also generated random near-bipartite networks for further experiments.

Comparison measure: Since we have the real ground truth of the data sets,
for evaluating quality of partitioning, we use the Normalized Mutual Information
of equation (10) which is proposed by Danon et al [24].

Inorm(A,B) =
−2
∑CA
i=1

∑CB
j=1Nij log(NijN/Ni.N.j)∑CA

i=1Ni. log(Ni./N) +
∑CB
j=1N.j log(N.j/N)

(10)

In equation (10), A represents the real communities and B represents the
detected communities while CA and CB are the number of communities in
A and B respectively. In this formula, N is the confusion matrix with rows
representing the original communities and columns representing the detected
communities. The value of Nij is the number of common vertices that are in the
original community i but found in community j. The sum over the ith row is
denoted by Ni. and the sum over the jth column is denoted by N.j

In the rest of this section, first, we examine the unified version of generalized
modularity. Then we discuss the choice of model parameters αl based on a set of
training experiments. Finally, we report the comparison with other approaches.

3.1 Testing unified generalized modularity

We tested our unified generalized modularity of equation (9) on several real and
artificial unipartite, bipartite and near-bipartite networks to evaluate its per-
formance. We compared the proposed UGM model with modularity and VSP
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Table 1. Comparison of UGM to other algorithms on unipartite networks

Data sets #vertices #cluster UGM Modularity VSP

LFR10K-0.3 10000 24 1.00 1.00 1.00
LFR10K-0.4 10000 23 1.00 0.98 1.00
LFR10K-0.5 10000 22 1.00 0.97 0.99
LFR15K-0.3 15000 19 1.00 0.99 1.00
LFR15K-0.4 15000 20 1.00 0.99 1.00
LFR15K-0.5 15000 19 1.00 0.92 0.99
Karate Club 34 2 0.83 0.64 0.12
PolBooks 105 3 0.54 0.54 0.54
Football 115 12 0.17 0.20 0.16
Samson T4 18 4 0.64 0.59 0.64
Samson T1-T5 25 2 0.60 0.57 0.62
Figure 5-a 65 3 1.00 0.88 0.79
Figure 5-b 40 3 1.00 0.87 0.63
Figure 5-c 40 4 0.93 0.93 0.93
Figure 5-d 150 30 0.86 0.89 0.86

p-Value baseline 0.0209 0.0588

model of Li and Pang [17]. We chose the VSP model since it is one of the few
unified community detection algorithms and is expected to detect communities
without knowing the network structure type. For the sake of consistency, we
used the same algorithm (greedy algorithm of Blondel et al [8]) to maximize the
three examined measures. Information of the data sets are presented in three
first columns of Table 1. The normalized mutual information index achieved by
UGM, modularity and VSP are shown in the remaining columns respectively.
The real-world and artificial data sets were introduced earlier. We used mixing
parameter 0.3–0.5 and generated large LFR data sets with average degree of 30
and maximum degree of 70. In Table 1, the LFR data sets are named based
on their size and mixing parameter. The Samson data set represents affect re-
lations among the novices in a New England monastery which were measured
at five moments in time. The first Samson data set in Table 1 is just based on
measurements on the fourth moment and the second data set is based on all
measurements at five moments. Based on results of Table 1, UGM outperforms
modularity and the VSP method in most data sets. Friedman statistical test
results are also reported with null hypothesis of no difference in performance.

We also tested UGM on the bipartite network of Southern Women [5] who
participated in social events. The proposed UGM measure 100% correctly detects
the two groups in this bipartite network without knowing the structural type in
advance.

For further comparison, we also generated near-bipartite networks. In ran-
domly generated near-bipartite networks, each vertex shares an edge with a
(randomly chosen) member of the same community with the probability Pin
and the minimum degree of vertices is chosen uniformly from range of 1 and
corresponding community size. In Figure 6, performance of GM, modularity and
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Fig. 6. Sensitivity analysis of methods on randomly generated near-bipartite network
which has communities of size 500 and 300.

VSP are analysed over the change in Pin parameter. By increasing Pin, the data
set becomes less and less bipartite as the percentage of inter-community edges
increases. Figure 6 illustrates that the high performance of GM is maintained
on near-bipartite networks up until they become close to unipartite.

As explained earlier, when not knowing the type of data in advance, modu-
larity maximization fails to detect communities and performs poorly on bipartite
or near-bipartite data sets.

3.2 Training parameters of generalized modularity

According to the definition of GM in equation (3), parameters α1, α2 and α3

determine the importance of each term to the generalized modularity. We can
tune these parameters based on use of training data.

For training the parameters, we chose the LFR benchmark data [21] because
we can generate it in different sizes and features and it properly simulates real
world [7]. Similar to Lancichinetti et al [21], we used LFR data sets of size 1000
while the size of communities is between 20 and 100 and the average degree is 20
and the maximum degree is set to be 50. The mixing parameter ranges from 0.1
to 0.5 and we also used a LFR with mixing parameter 0.7 in which communities
are not well defined and community detection seems to be more challenging.

In the generalized modularity matrix of equation (3), without loss of gener-
ality, we assumed α1, α2 and α3 to be between 0 and 1 and α3 to be equal to
1−α1−α2. We considered 5 levels for each parameter α1 and α2 and examined all
15 unique combinations of three parameters of our GM measure. Tabel 2 presents
the average Inorm over all training data sets for each combination. Based on re-

sults reported in Table 2, all combinations of GM which include W
(1)
norm (α1 > 0),

on average, perform better than modularity. It shows that presence of W
(1)
norm

is essential but also using W
(2)
norm and W

(3)
norm improves the results. In Table 2
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Table 2. Empirical training for parameter configuration for generalized modularity

α2

0 0.25 0.5 0.75 1
0 0.831 0.844 0.850 0.852 0.861
0.25 0.866 0.877 0.881 0.877

α1 0.5 0.873 0.877 0.878
0.75 0.869 0.874
1 0.866

it is shown that the combination of 0.25W
(1)
norm + 0.5W

(2)
norm + 0.25W

(3)
norm has

the best performance on average over our train data sets. Therefore, we use this
combination in subsequent experiments for comparison with other methods.

3.3 Comparison with other methods

In this section, we compare our trained GM community detection model with
some state of the art models in the literature. We compare GM with the modu-
larity based algorithm of Blondel et al [8]4 and the vertex similarity probability
(VSP) model of Li and Pang [17]. In order to be consistent in the experiments,
we used the same algorithm of Blondel et al [8] for optimizing VSP and GM
models. Table 3 reports average Inorm value of 10 independent runs.

Table 3 demonstrates that GM performs much better than the other methods
over different data sets. It performs very strongly in large data sets. Besides, it
detects communities of real world networks more precisely. Note that our results
for the VSP model do not exactly match with experiments reported in [17],
possibly due to differences in optimization procedure (which wasn’t described in
that paper). GM also detects small communities in data sets of Figures 5-a and 5-
b. The reason that GM couldn’t outperform modularity in the data set of Figure
5-d is because this data set has a large diameter in comparison to size of the
network which shows its structure is very different from small-world networks.
The result of a pairwise Friedman statistical test is also reported at the bottom
of Table 3. The null hypothesis of this test is two algorithms have no significant
difference in their performance. This hypothesis is rejected based on the very
small p-values, indicating statistically significant differences in performance.

4 Conclusion

We have proposed a generalized modularity criterion (named GM) for commu-
nity detection in complex networks. Generalized modularity extends the interpre-
tation of modularity by taking into account paths between vertices rather than

4 We also compared our method with modularity-based algorithms of Danon [24] and
Newman [11] but as method of Blondel et al [8] outperforms the other two, we just
report Blondel et al [8] here.
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Table 3. Comparison of GM to other state of the art models of community detection

Data sets #vertices #clusters GM Modularity VSP

LFR10K-0.3 10000 24 1.00 1.00 1.00
LFR10K-0.4 10000 23 1.00 0.98 1.00
LFR10K-0.5 10000 22 1.00 0.97 0.99
LFR15K-0.3 15000 19 1.00 0.99 1.00
LFR15K-0.4 15000 20 1.00 0.99 1.00
LFR15K-0.5 15000 19 1.00 0.92 0.99
Karate Club 34 2 1.00 0.64 0.12
PolBooks 105 3 0.56 0.54 0.54
Football 115 12 0.20 0.20 0.16
Samson T4 18 4 0.69 0.59 0.64
Samson T1-T5 25 2 0.60 0.57 0.62
Figure 5-a 65 3 1.00 0.88 0.79
Figure 5-b 40 3 1.00 0.87 0.63
Figure 5-c 40 4 0.93 0.93 0.93
Figure 5-d 150 30 0.86 0.89 0.86

p-Value baseline 0.0039 0.0196

just common edges. The modelling of existence of paths between vertices en-
ables GM to deliver better performance especially in small-world networks with
different community sizes and it can also work on bipartite and near-bipartite
networks. Although GM improves the resolution limit of modularity especially
in small-world networks, still it can have this problem and approaches to solve
it are a clear direction for future work.
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