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Abstract

Semi-supervised or constrained community detection incor-
porates side information to find communities of interest in
complex networks. The supervision is often represented as
constraints such as known labels and pairwise constraints.
Existing constrained community detection approaches often
fail to fully benefit from the available side information. This
results in poor performance for scenarios such as: when the
constraints are required to be fully satisfied, when there is
a high confidence about the correctness of the supervision
information, and in situations where the side information
is expensive or hard to achieve and is only available in a
limited amount. In this paper, we propose a new constrained
community detection algorithm based on Lagrangian mul-
tipliers to incorporate and fully satisfy the instance level
supervision constraints. Our proposed algorithm can more
fully utilise available side information and find better quality
solutions. Our experiments on real and synthetic data sets
show our proposed LagCCD algorithm outperforms existing
algorithms in terms of solution quality, ability to satisfy the
constraints and noise resistance.

Introduction

Community detection is an important task in knowledge
discovery which aims to identify densely connected sub-
graphs or communities in networks. Many physical, social
and biological networks exhibit community structure which
is fundamental for analyzing such complex systems (Lanci-
chinetti and Fortunato 2009). A community can be defined
as a group of vertices where there are more edges inside the
community than edges linking vertices of the community
with the rest of the network (Fortunato 2010). As commu-
nity detection is mainly deployed as an unsupervised task
in knowledge discovery, communities are found by analyz-
ing just the topological structure of the network. However, in
some applications of community detection, there exists other
information available about the true communities or desired
assignments of vertices, which can help the community de-
tection process to achieve better quality results and noise re-
sistance (Eaton and Mansbach 2012). The side information
may be obtained as a result of complex experiments or from
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expert knowledge in the domain. Some constraints may also
be imposed on the system due to known natural or resource
limitations.

Incorporating side information has been studied in con-
strained clustering schemes such as constrained k-means
adaptations (Ganji, Bailey, and Stuckey 2016; Wagstaff et al.
2001; Pelleg and Baras 2007). However, one cannot directly
apply the k-means type constrained clustering algorithms for
a constrained community detection problem without proper
embedding of the network into Euclidean space. However,
choice of a proper embedding technique for semi-supervised
applications without compromising on the network topolog-
ical information is a challenge. To the best of our knowl-
edge, this approach is not used in constrained community
detection literature.

In recent years, some semi-supervised approaches have
been devised for community detection to incorporate known
labels and pairwise instance level supervision constraints.
Some directly modify the network adjacency matrix based
on the supervision information (Zhang 2013; Ma et al.
2010). In another scheme (Eaton and Mansbach 2012), a
variation of so called modularity measure (Newman and
Girvan 2004) is proposed to incorporate supervision con-
straints. Some approaches also have been proposed based
on NMF, non-negative matrix factorization, (Ma et al. 2010;
Li et al. 2017) which consider a fixed penalty term for vio-
lating the supervision constraints.

However, these approaches have some drawbacks and
limitations: First, they often have little control over the con-
straint satisfaction rate and may fail to satisfy many of the
constraints. This is mainly because the existing approaches
don’t have any mechanism to differentiate between easy and
difficult constraints. Some constraints are easy to satisfy
even using an unsupervised scheme, because the constraint
aligns with the similarity measure or objective of the cor-
responding algorithm. However, some constraints are diffi-
cult (eg. those which cannot be satisfied by an unsupervised
scheme). The existing approaches assume the same level
of difficulty for all of the supervision constraints and they
don’t have any adaptation mechanism to deal with more dif-
ficult constraints. Consequently they often leave such con-
straints unsatisfied. Second, existing semi-supervised com-
munity detection algorithms often require a large amount
of side information to be able to achieve a significant im-



provement in the solution quality in comparison to the un-
supervised case. This is not always feasible for real world
problems. Third, although some of the semi-supervised ap-
proaches are shown to be more noise resistant than the unsu-
pervised approaches, they still can be quite sensitive to noisy
links in the data.

In this paper, we propose a constrained community de-
tection approach which is targeted to satisfy all of the con-
straints to fully utilise available side information and achieve
high quality solutions. We next describe three example sce-
narios where failing to fully satisfy the constraints can lead
to poor performance.

First, scenarios where the constraints are imposed on the
problem by natural and physical barriers or resource limita-
tions and the constraints are consequently strictly required
to be satisfied. E.g., in a road network clustering problem
where some construction makes a road unusable, a solu-
tion violating this unavailability constraint is not a feasible
solution. Second, scenarios where a high degree of confi-
dence is available about the correctness of the side infor-
mation. Achieving correct supervision information often re-
quires time, cost and effort. For example, expensive biologi-
cal experiments or medical tests like biopsies. In these cases
one expects the community detection algorithms to fully en-
code all the supervision information into the best possible
solution as a return on the investment in providing the su-
pervision. Third, for vague and difficult-to-detect communi-
ties and noisy data, supervision can make a tangible differ-
ence on the solution quality and this is only achievable by
approaches which are able to fully benefit from the super-
vision. Hence, algorithms which cannot fully utilize the side
information, often provide poor quality solutions on difficult
problems.

In this paper, we propose a Lagrange multipliers based
constrained community detection framework to find the
maximum modularity network partition satisfying user spec-
ified constraints. We show that in contrast to existing ap-
proaches, our proposed LagCCD algorithm is able to satisfy
almost all the constraints and achieve better solutions even
when there is a limited amount of side information avail-
able. We also show the LagCCD outperforms existing semi-
supervised community detection techniques for a number of
real networks and for vague communities and noisy data.

Related Work

There has been an increasing interest in the semi-supervised
community detection problem in the last decade. Some ap-
proaches such as the label propagation proposed by Silva et
al. (Silva and Zhao 2012) focus on situations when the la-
bels of a fraction of vertices are known in advance. Starting
from each vertex as a community, the label propagation al-
gorithm (Silva and Zhao 2012) merges non-labeled commu-
nities with the labeled ones with highest gain in modularity
score and continue until all communities are labeled. This
ordered way of labelling vertices however, doesn’t necessar-
ily results in maximum modularity. Allahverdyan et al. (Al-
lahverdyan, Ver Steeg, and Galstyan 2010) studied the effect
of known labels supervision type on the detectability thresh-
old of communities in sparse graphs as it is known that when

inter-cluster connections are dense, communities are not de-
tectable properly.

Pairwise instance level constraints are another supervi-
sion type which indicate pairs of vertices which must be as-
signed to same community ( must-link constraint) and pairs
that should be assigned to different communities (cannot-
link constraint). Yang et al. (Yang et al. 2015) incorporate
must-link constraints in a semi-supervised community de-
tection scheme which is a unified representation and gener-
alized interpretation for spectral clustering and NMF based
methods. The must-link information is encoded by adding
a graph regularization term to penalize the latent space dis-
similarity of corresponding pairs.

Zhang et al. (Zhang 2013) directly modify the adjacency
matrix based on the available supervision constraints. This
is equivalent to connecting and disconnecting edges be-
tween must-link and cannot-link pairs in the original graph.
Then the modified adjacency matrix can be used in a spec-
tral clustering, NMF or other schemes to community detec-
tion. Xiaoke Ma et al. (Ma et al. 2010) proposed a NMF
based algorithm called SNMF-SS to incorporate pairwise
constraints. They define violation cost matrices for must-
link and cannot-link pairs and modify the similarity matrix
Kto K = K—aWyp + BW¢r where parameters o and 3,
the relevant importance of the two constraint types, are set
in a way that the K remains non-negative.

Newman (Newman and Girvan 2004) proposed a global
criterion called “modularity” for unsupervised community
detection problem which soon after its introduction, be-
came one of the most popular community detection mea-
sures (Fortunato 2010). Modularity quantifies deviations
of the network from a randomized network with the as-
sumption that there exist no community structure in ran-
dom graphs. Many unsupervised community detection al-
gorithms has been proposed based on modularity maximiza-
tion so far (Newman 2006; Fortunato 2010; Inderjit S. Jutla
and Mucha 2011). Modularity quantifies deviations of the
network from randomness according to a null model. How-
ever, there are few approaches which apply the modularity
measure in semi-supervised community detection.

Among the existing approaches, Eaton et al. (Eaton and
Mansbach 2012) proposed a modularity-like measure based
on a variation of Potts spin-glass model from statistical
mechanics which incorporates pairwise constraints. A con-
straint violation cost is added to penalize both must-link and
cannot-link violations. The spin-glass model can be seen as
a modified modularity matrix which can be optimized using
some optimization schemes.

However, none of the above semi-supervised community
detection approaches is committed to fully satisfy the con-
straints and benefit from each and every single constraint.

In our previous work (Ganji, Bailey, and Stuckey 2017),
we proposed a constraint programming framework for in-
corporating variety of constraint types and objective func-
tions for constrained community detection. To the best of
our knowledge, this work is the only method in the literature
of constrained community detection which aims (and has the
ability) to satisfy all of the supervision constraints. Although
the constraint programming framework has the flexibility to



incorporate variety of constraint types including size and
number of communities, pairwise and ad hoc constraints,
it doesn’t scale to larger graphs. When the only supervi-
sion available is limited number of pairwise must-link and
cannot-link constraints, the constraint programming frame-
work may not find a solution in a reasonable time. This paper
addresses this gap to take advantage of any limited number
of supervision constraints in a very short time.

Incorporating the side-information has also been studied
in constrained clustering schemes such as the popular k-
means type algorithms (Ganji, Bailey, and Stuckey 2016;
Wagstaff et al. 2001; Pelleg and Baras 2007). However, ap-
plication of such algorithms on constrained community de-
tection is not straightforward. In order to use the k-means
type clustering algorithms for community detection, one
should first transform the network into Euclidean space pre-
serving the topological information of the graph and then
apply k-means type algorithms. Although in the context of
constrained clustering, using graph based approaches has
been investigated (e.g. for distance learning (Anand and
Reddy 2011) and spectral clustering (Wang and Davidson
2010; Ng, Jordan, and Weiss 2002)), to the best of our
knowledge converting the graph to Euclidean space to apply
constrained clustering techniques is not used for constrained
community detection in the literature.

In our previous work on constrained clustering (Ganji,
Bailey, and Stuckey 2016) we proposed a Lagrangian ap-
proach for a k-means type constrained clustering in order to
fully benefit from the supervision constraints. However, this
current paper is different from (Ganji, Bailey, and Stuckey
2016) because i) this paper has a different objective func-
tion (e.g. maximizing the partition’s modularity value) from
sum-of-squares clustering ii) in clustering problems, the cal-
culation of distances and cluster centers in Euclidean space
makes it appropriate for continuous Lagrange multiplier
methods. However, constrained community detection in this
paper is a discrete optimization problem in which the con-
tinuous method is no longer applicable. More details on our
discrete Lagrangian framework are provided next.

Proposed framework

Problem statement: Given a network G (V, E') with vertices
V and edges E, and a set of pairwise must-link (ML) and
cannot-link (CL) constraints, it is desired to find a partition
which satisfies the ML and CL constraints and has the high-
est possible modularity score.

To tackle this problem, the proposed LagCCD algorithm
uses discrete Lagrange multipliers method to convert the
constrained problem to an unconstrained one by adding
penalties to the objective function for any constraint viola-
tions. The LagCCD then systematically increases the penal-
ties to force the solution towards satisfying all of the con-
straints.

A discrete Lagrange multiplier method

The Lagrange multiplier technique is a well established and
efficient method for solving constrained optimization prob-
lems (Bertsekas 2014) which is able to maintain numeri-
cal stability and solution accuracy (Choi, Lee, and Stuckey

2000). Application of Lagrange multiplier methods to real
variable problems is more straightforward and well under-
stood (Bertsekas 2014). One can relax the discrete variable
problem to real variable problem by introducing some extra
constraints to restrict the real variable to only accept integer
values and then apply the continuous Lagrange multiplier
method on the relaxed problem. However, handling the addi-
tional constraints usually makes the computation expensive
and impractical. A better approach is the discrete Lagrange
multipliers method proposed by Shang and Wah (Shang and
Wah 1998; Wah and Wu 1999).

Suppose a minimization problem in the form of model (1)
with discrete variable & where Z = (21, x2, ...) is a vector.

min  f(Z) subjectto gi(¥)=0 Viel.m (1)
The Lagrangian objective function then can be defined sim-
ilar to the continuous type as follows:

L(#X) = f(&) + > Xigi(®) @)
1=1

Then one can find the optimum of the original con-
strained minimization problem (1) by finding a saddle
point to the Lagrangian function L(Z, X) This relationship
is based on discrete saddle point theorem restated as follows.

Theorem 1: Discrete saddle point theorem: (Choi, Lee,
and Stuckey 2000; Shang and Wah 1998; Wah and Wu 1999)

A vector of integer variable Z is the minimum of the con-
strained minimization problem (1) where for all 7 € 1..m,
g(Z) is non-negative for all possible values of Z if and only

if there exist Lagrange multipliers A* such that (z*, X*) is
the saddle point of the Lagrangian function (2)
Similar to the continues space the saddle point of the dis-
crete Lagrange function can be defined as follows.
Definition 1: (Z*, )\_;k)is a discrete saddle point of the La-
grange function (2) if for all & in neighborhood of #*, and

all possible A:

L(Z*,X) < L(Z*, X*) < L(Z, X*) 3)
According to Definition 1, the saddle point (Z*, X*) of the
Lagrangian function L(Z, X) is the minimum of L(Z, X) in
z—space and a maximum of L(Z, X) in A\-space. However,
because there are no differentiation in discrete space, none
of the calculus in continuous space is applicable. Hence a
local search is performed based on discrete gradient descent
to find a saddle point of the Lagrangian function. Based on
the understanding of gradients in continuous space, they ac-
tually define directions in a small neighborhood in which
function values decreases. Let NV;(Z) be the neighborhood
of a point & along the ith direction. Then, the ith component
of discrete gradient A is defined as L (&, X) — L(2’, X) where
2 € N;(%) and L(z/, X) < L(2", X) for all 27 € N;(Z). In
other words, the ith component of discrete gradient returns
the greatest drop in the Lagrangian function along the ith
direction. The gradient descent function G D then returns a
vector for updating Z according to the discrete gradient Az.
There is no unique GD function and it can also depend on
the current position (&, X) and the current iteration ¢.



Lagrangian constrained community detection
(LagCCD)

Modeling (f, L): We first explain how to model the semi-
supervised community detection’s objective function using
Lagrange multipliers method. Suppose the network is repre-
sented by adjacency matrix A where A;; = 1 if there is an
edge between 4 and j and A;; = O otherwise. Let k; be the
degree of vertex ¢. The modularity of a partition then can be
calculated according to Equation (4) where n is the number
of vertices and W is the modularity matrix (Newman and
Girvan 2004) which quantifies the deviations of the network
from randomness. Elements of the modularity matrix W are

equal to A;; — ’;\ZJI . Modularity of a partition is calculated
by summation over modularity values between pairs of the
same community using the 0,1 variable x. x;; is equal to 1
when ¢ and j are assigned to same community and O other-

wise.

= 3 E| > 2 Wijai )

i=1j=1

In order to be consistent to the previous section, we turn
the modularity maximization to a minimization problem by
changing the objective from Q(Z) to f(Z¥) = —Q(Z). We
also ignore the constant normalization factor 1/2|FE| for
simplicity. The modularity-based semi-supervised commu-
nity detection in presence of must-link and cannot-link con-
straints can be represented by (5).

min  f(& Z Z i %ij (5
subject to
1-—- Tij = 0 V(’L,j
Ty = 0 V(Z,j) eCL
zij € {0,1}

The Lagrangian function (6) then adds the penalty terms

correspond to violated constraints to the original objective
function.

L(&,X, [T) = 6)
— 22 Wy + 203 D) AwpPi(—ay)
i=1j=1 i=1j=1(i,j)eML

n
ZZ Z 1(i.5) P 1] xij

i1=1j=1(4,j)eCL

In the Lagrangian function (6), PML and P®L are the
penalty matrices whose elements are zero except for pairs
(4, j) corresponding to must-link and cannot-link constraints
which have a positive penalty. The penalty value can be set
according to the importance of each constraint or based on
the degree of confidence on correctness of them. It can also
be set as a proportion of the modularity value or any other
similarity score between pairs which implies violating a con-
straint has a higher penalty when the supervision is align

with the similarity score of the pair. The penalties will af-
fect the objective value just when a constraint is violated.
Note that an ML constraint is violated when the correspond-
ing pair (7, j) are not in same community which is encoded
by 1 — x;;. In the Lagrangian function (6), A, i are the La-
grange multipliers correspond to the must-link and cannot-
link constraints. These multipliers lead the algorithm toward
satisfying all the constraints by systematically increasing the
penalty over violated constraints. Note that if the constraints
are all satisfied then L(Z, X, i) = f(Z).

Corollary 1: A matrix of integer variable & is the optimum
of the semi-supervised modularity optimization problem (5)
if and only if there exist Lagrange multipliers X* and /i*
such that (Z*, X*, 7*) is the saddle point of the Lagrangian
function (6).

Proof: Since both gME(7) = 1—z;; and g“% (%) = z;; in
problem (5) are non- negatwe for all possible values of & and
the penalty matrices P L and PSL are also non-negative,
Theorem 1 is appllcable Hence, the optimum of the problem
(5) is equal to the saddle point of its corresponding Lagrange
function (6), if one exists.

Next we present a theorem for finding a saddle point of
the Lagrangian function also showing this function can be
represented as a modularity-like objective.

Theorem 2: A saddle point of the Lagrangian function

L(Z, X, [i) is a matrix of integer variable # and Lagrange

multipliers X and 1 that satisfies all the below three condi-
tions:

ALL(E X, i) = Dp(= ). Z Gaij) (7)
i=1j5=1

gME(z) = (8)

gt (z) = 9)

Where given @ and © as element-wise matrix operations,
W€ is defined as:

wWe=w @ Z A (i) P]V[L o) Z PCL
(i,7)eML (i,4)eCL
(10)

Proof: The proof contains two parts:
Firs we show the A, L(Z,\, i) is equal to A,L(Z, A, [i)
where A is a discrete space operator. By expanding the La-
grangian function of equation (6) and rewriting based on the
terms including Z we reach to equation:

1)

- u<i,j)P5L)l‘ij

(i.3)eCL

%31
tl

Z Z (Wz] + Z )\(2 J)PZ]

(4,j)eML
Z A ])PJVIL

Given a Lagrange multiplier ), the second part of the La-
grangian function (11) is a constant term with zero effect

on A, L(Z, X, ii) and can be ignored. The remaining part of



(11) is equal to Z(f, X, fZ) given the W€ described in equa-
tion (10).

We prove the two sides of the theorem as follows:

“ =" side: Given a saddle point (Z*, X¥, [i*) we prove it
satisfies the three conditions. (7) is true from the definition of
saddle point which L cannot be improved in N (Z*). Hence
AL L(Z, X, i) is equal to zero which means A, L(Z, X, i) is
also equal to zero. Conditions (8) and (9) must be true as the
constraints must be satisfied at any solution point.

113 9

< 7 side: Given a solution (Z*, X*, i*) to equations
(7), (8) and (9), we prove it to be a discrete saddle point of
the Lagrange function (6). Because condition (7) holds, and
ALL(Z, XN, i) = A L(Z, X, [i) then A, L(Z*, X*, i*) = 0
which means no drop in L can be found in neighbour-
hood of #*. Hence, L(&*, \*, [i*) < L(Z, \*, [i*). Because
gML(x*) = 0and g“F(2*) = 0 according to conditions (8)
and (9), then L(Z*, X*, [i*) > L(&*, X, [i). So (&*, X*, [i*)
is a saddle point to the Lagrange function.

According to Theorem 2, a gradient descent local search
is devised to find a saddle point of the Lagrangian function
(6).

Gradiend descent and updating conditions (G D,Us,):
According to condition (7) in Theorem 2, the function

L(Z, X, i) can be considered in GD function for updating
variable Z. Recall that discrete gradient A is a local search
mechanism to find the direction with largest drop in the func-
tion. Starting from the initial partition of each vertex as a
community, the discrete gradient function evaluates all pos-
sible merges of a vertex with other vertices and records the
best merge with largest drop in L(Z, X, /i) to input to the
GD function. GD function then according to the best merges
found by A,, merges the corresponding vertices iteratively
until no more merges can improve the value of the Lagrange
function. The solution found at this stage is an update of
variable #. The Lagrange multipliers are then updated based
on the constraint violations. If a constraint is violated, the
corresponding Lagrange multiplier increases by a factor a.

Variable initialization (I5,I5,Iz): Because the update
of Lagrange multipliers is non-decreasing, generally, any
non-negative value can be used to initialize the Lagrange
multipliers. In this work, we initialize all the Lagrange mul-
tipliers to zero. We also initialize the variable # using an
unconstrained community detection solution.

The input to LagCCD are the modularity matrix, ML and
CL constraint sets, and an additional stopping criterion. The
pseudo-code of the LagCCD algorithm is shown in Figure 1.
After initializing the variables and setting the penalty terms
(lines 1-5), the main loop (lines 6-22) continues updating
the variable & and the Lagrange multipliers X and [ and
keep tracking of the best solution found until all constraints
are satisfied or a maximum iteration threshold is reached.
In the while loop, first the variable Z* is updated according
to the specified GD function (line 8) which basically finds

a new partition of the network according to L(z, X*, /i)

which is based on W¢ . Then the Lagrange multipliers Xt
and /it and the violation set V'iol are updated according to
the #'1 (lines 9-18). Note that the Lagrange multipliers cor-

Procedure LagCCD(W ,M L, C'L,max_iter)

1.t <0

2. Initialize the value of Z* with an unconstrained solution
3. Initialize the value of At and /it to 0

4. Build pML, pcl

5.bestV «— |ML| + |CL|; bestObj « 1; bestX «— &

6. while L(Z!, X', it)-f (&) > 0 and t < maz_iter do:
7. Viol — {}

8. update the variable Z+! based on GD, (L(Z, X!, jit))
9. for (i,j) e ML
10. if 7 ~1==0
11. /\E:rjl) —ax max(l,‘ Aijy)
12. Viol — Viol v {(i,7)}
13. else \{TL — X\
(4.4) (4:3)
14. for (i,j) e CL
15. if ==
16. u’éj’j —a X max(l,,ufij))
17. Viol «— Viol U {(i,7)}
t+1 t
18. else i 5y — g,
19.  Obj « f(z+1)
20. if (|Viol|, Obj) < (bestV, bestOby)
21. bestObj < Obj; bestV « |Viol|; best X « ztT!
22. t—1t+1

23. return best X
Figure 1: The LagCCD procedure

respond to satisfied constraints remain the same as previous
iterations (line 13 and 18). Then the objective value of the
partition 2**! is calculated and the algorithm keeps track
of the best solution found using best X . The best solution
is defined as the lexicographic minimum in the number of
violations and the objective value of the partition (line 20).
Note that any modularity-like scoring matrix such as the
generalized modularity (Ganji et al. 2015) and VSP (Li and
Pang 2014) can be used as W in the objective function. In
addition, any supervision in the form of known labels can be
decoded as must-link (between vertices with the same label)
and cannot-link (between vertices with different labels) con-
straints and then be incorporated by the LagCCD algorithm.

Experiments

In our first experiment setup, we generated different num-
ber of constraints based on the ground truth of the real data
sets and compared the performance of different algorithms
in terms of their ability to satisfy the constraints and produce
good solutions. The information about the real data sets in-
cluding their number of vertices (n) and edges (IEl) and num-
ber of ground truth communities (k) are shown in Table 1.
We use an information theoretic measure called Normalized
Mutual Information (NMI) (Leon Danon and Arenas 2006)
to evaluate quality of the solutions against the ground truth.

For each real data set of size n we generated n/2, n and 2n
constraints equally divided into must-link and cannot-link
pairs. For generating must-link (cannot-link) constraints, we
randomly pick an instance and then pick another random in-



Table 1: Information of the real data sets

Data set n IEl k
Sampson T4 (Sampson 1968) 18 15 4
Sampson T1T5 (Sampson 1968) 25 69 2
Strike (Michael 1997) 24 38 3
Zakhary’s Karate club (Zachary 1977) 34 78 2
Mexican (Gil-Mendieta and Schmidt 1996) 35 117 2
Dolphin (Lusseau et al. 2003) 62 159 2
Political Books (Krebs unpublished ) 105 441 3
Word adjacencies (Newman 2006) 112 425 2
Football (Girvan and Newman 2002) 115 441 12
Political blogs (Adamic and Glance 2005) 1490 9545 2

stance from the same (different) community based on the
ground truth labels. For each size of the constraint sets we
generated 5 different sets of random constraints and reported
the results of 50 independent executions in Table 2.

The first two columns of Table 2 are the data sets and their
number of vertices and the third column is the total number
of constraints equally divided to must-link and cannot-link
constraints. Note that as a preprocessing step one can aug-
ment the set of must-link and cannot-links by inferring new
constraints from them. However, in order to have total con-
trol over the ultimate number of constraints provided, we
don’t augment the constraint sets in our experiments.

Our proposed algorithm is denoted by LagCCD. The pa-
rameter « is 1.2 and maximum iteration is set to 30. Vi-
olation penalty in PM% and PCL are set to 1. We used
GenLouvain (Inderjit S. Jutla and Mucha 2011) as the op-
timization step in GD where we used W ¢ as the similarity
matrix. Given a similarity scoring matrix, first, GenLouvain
finds the communities of highest gain and greedily merges
the communities and reconstructs the network in the second
phase to finally find the partition with the maximum score.

The next column section in Table 2 reports the results of
the spin-glass model (Eaton and Mansbach 2012). We de-
rived the spin-glass matrix based on the parameters and for-
mulations of the paper (Eaton and Mansbach 2012). To be
consistent with execution of our algorithm, we used Gen-
Louvain (Inderjit S. Jutla and Mucha 2011)" as the optimiza-
tion algorithm.

Considering the adjacency matrix as a similarity matrix,
we also compared with the spectral clustering algorithm de-
scribed in (Zhang 2013), denoted by SC in Table 2 which
systematically modifies the adjacency matrix based on the
side information.

The next algorithm in Table 2 is called SNMF-SS which
incorporates pairwise constraints in a non-negative matrix
factorization model (Ma et al. 2010). We used an adjacency
based similarity matrix and set violation cost to 1 for both
must-link and cannot link constraints (entries of W, , and
Wer). The parameters o and 3 should be set in a way that
the similarity matrix K in K = K — oWy + Wey re-
mains non-negative. We set « and 3 to 0 and 0.03 respec-
tively according to (Ma et al. 2010) to ensure nonnegativ-

'A variation of Louvain (Blondel et al. 2008)

!

—#—LagCCD §” ——LagCCD
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£

Normalized Mutual Information

3 o
o 200 400 800 1000 o 70 w00 500 000

600 600
Number of Constraints. Number of Constraints

Figure 2: Sensitivity to number of constraints on LFR - 0.75 (left)
and LFR - 0.8 (right)

ity. We modified the implementation of (Kuang, Ding, and
Park 2012) to perform SNMF-SS. Note that we don’t com-
pare with K-means type constrained clustering algorithms
(Ganji, Bailey, and Stuckey 2016; Wagstaff et al. 2001;
Pelleg and Baras 2007) because their calculations are in Eu-
clidean space and one cannot directly apply them to a net-
work data without proper transformations.

As the results in Table 2 show, our LagCCD algorithm
satisfies all of the constraints in most of the data sets. More-
over, it is considerably better than the baseline algorithms,
which produce many more constraint violations. The solu-
tion quality (NMI) achieved by LagCCD has the highest
NMI score across all of the test cases but one. A Friedman
statistical test with 95% confidence level is performed for
average number of violations and NMI over each constraint
size (e.g n/2,n,2n). The very low P-values for both vio-
lations and NMI, show the LagCCD outperforms the other
methods statistically significantly.

Sensitivity to the number of constraints

In this experiment we evaluate the abilities of the algo-
rithms to take advantage of provided side information by in-
creasing the number of supervision constraints gradually and
recording the NMI achieved by each algorithm. We use LFR
data sets proposed in (Lancichinetti, Fortunato, and Radic-
chi 2008). In LFR data sets, vertex degrees and community
size follow a power-law distribution with parameter « and 3
respectively. A mixing parameter, 4 is the proportion of ex-
ternal degree for each vertex. According to (Lancichinetti,
Fortunato, and Radicchi 2008) we fixed the parameters «
and § to 1 and 2 respectively. We generated data sets of
size N=1000 with communities of size 50 to 100 and mix-
ing parameter 0.75 and 0.8 where the communities are a bit
vague and difficult to detect. We increased the number of
constraints from 100 to 1000. Note that this number of pair-
wise constraints is still a small percentage of the total num-
ber of pairs in the data. We keep the number of constraints
low to evaluate which algorithm can most benefit from the
limited amount of side information. For each constraint size,
the average and standard deviation of 50 independent ex-
ecutions (10 repetitions on 5 constraint sets) are shown in
Figure 2 . As it is demonstrated in the figures, the LagCCD
algorithm takes the most advantage of the provided supervi-
sion and as opposed to the other algorithms, its performance
is improved by even a small increase in the number of su-
pervision constraints.



Table 2: Mean and standard deviation of number of violations and NMI score on different data sets

LagCCD Spinglass SC SNMEF-SS |
Violations NMI Violations NMI Violations NMI Viol NMI \
data #const | mean  std mean  std mean std mean  std mean std mean  std mean std mean  std
8 0.00 0.00 0.63 0.06 | 0.00 0.00 0.63 0.06 | 0.70 1.07  0.62 0.05 ] 3.28 0.50 0.59 0.03
Sampson T4 18 0.00 0.00 0.76 0.04 | 0.20 040 0.76 0.05 | 0.40 049 075 0.05 ]| 5.40 1.37 059 0.02
36 0.00 0.00 0.82 0.08 | 0.80 0.76  0.79  0.07 | 2.26 144 076  0.10 | 10.48 2.04 059 0.03
12 0.00 0.00 0.61 0.15] 0.20 040 0.59 0.14 | 0.80 1.09 056 0.11 | 2.34 1.39 053  0.06
Sampson TIT5 | 24 0.08 027 091 0.12 | 0.60 0.81 0.83 0.15 ]| 1.58 093 075 0.09 | 6.42 1.58 0.51 0.06
50 0.00 0.00 1.00 0.00 | 0.98 1.20 090 0.13 | 2.58 1.21 0.76  0.09 | 11.08 3.12  0.51 0.07
12 0.00 0.00 0.73 0.04 | 0.40 049 0.72 0.05 | 0.60 049 073 0.05] 2.02 1.56 0.65 0.05
Strike 24 0.00 0.00 0.75 0.12 | 1.40 1.03 0.72 0.05 | 1.40 1.03 073 0.04 | 3.64 225 065 0.05
48 0.00 0.00 0.90 0.09 | 1.60 1.03 0.81 0.06 | 2.20 1.74 076  0.06 | 9.08 297 063 0.04
16 0.00 0.00 0.72 0.09 | 0.00 0.00 0.73 0.10 | 0.24 0.51 0.70 0.08 | 3.14 0.69 0.69 0.02
Karate club 34 0.00 0.00 0.88 0.06 | 0.18 0.39 0.85 0.10 | 0.36 0.60 0.84 0.11 | 9.38 1.61 0.68 0.01
68 0.00 0.00 0.97 0.07 | 0.32 0.74 094 0.08 | 0.48 079 094 0.09 | 15.24 2.81 0.69 0.02
16 0.00 0.00 031 0.07]222 125 029 0.05 ] 3.70 1.81 0.29 0.05] 548 264 027 0.04
Mexican 34 0.00 0.00 043 0.11 | 3.90 226 030 0.06 | 6.08 242 031 0.05 | 12.00 2.10 027 0.04
70 0.00 0.00 0.79 0.10 | 4.24 265 060 0.14 | 1448 3,52 037 0.10 | 26.12 4.08 0.28 0.03
30 0.00 0.00 0.65 0.07 | 3.66 1.27 0.60 0.04 | 4.60 143 0,57 0.05] 8.88 1.89 049  0.02
Dolphin 62 0.00 0.00 0.71 0.10 | 6.20 1.63 065 0.05 ]| 7.62 1.34  0.61 0.04 | 18.40 256 048 0.02
124 0.00 0.00 096 0.05 ]| 4.76 3.11 0.81 0.11 | 13.26 290 0.65 0.05 | 31.92 228 049 0.01
52 0.00 0.00 0.66 0.03 | 7.20 203 056 0.02 ] 7.64 1.78 058 0.02 | 18.42 270 043  0.02
Political Books | 104 0.20 045 0.76 0.06 | 13.46 1.70 0.60  0.01 | 14.28 1.62 0.59 0.02 | 34.02 271 043  0.02
210 0.18 048 093 0.04| 1870 489 0.68 0.06 | 27.06  3.01 0.63  0.02 | 70.18 7.14 043  0.02
56 0.04 020 0.02 001 | 1062 2.08 0.01 0.01 | 1320 240 0.01 0.01 | 28.40 372 0.01 0.01
Word adjacency | 112 1.20 1.58 0.06 0.02 | 21.98 276 0.01 0.01 | 28.06 244 0.01 0.01 | 56.44 2.79 0.01 0.01
224 888 284 032 0.05|5192 205 003 001 |6478 352 002 001 ]| 11222 540 0.01 0.01
56 0.00 0.00 0.27 0.02]2034 3.15 0.21 0.01 | 21.16  3.01 0.22  0.01 | 24.78 3.89 0.19 0.01
Football 114 0.08 027 039 0.03]| 4124 286 023 002 |4368 432 023 0.02 | 5248 347 0.19 0.01
230 0.10 046 0.68 0.05]| 8532 368 023 001 [ 9244 287 024 0.02| 10682 571 0.19 0.01
Political blogs 744 0.74 1.08 036 0.01 [ 3828 339 036 0.00|5688 440 033 0.01 | 371.56 1.50 0.05 0.00
1490 546 222 047 0.01 | 81.62 6.80 043 0.01 | 13554 1039 036 001 | 74344 235 0.05 0.00
2980 10.36 477 0.75 0.02 | 14558 8.13 0.59 0.01 | 313.54 13.01 043 0.01 | 1489.22 3.04 0.05 0.00
size 1 0.005 0.020 0.002 0.011 0.002 0.002
P-value size 2 | base base 0.002 0.011 0.002 0.002 0.002 0.002
size 3 0.002 0.002 0.002 0.002 0.002 0.002
Sensitivity to noise ‘ . B I %
Real world data is usually perturbed by noise and it is crucial w %%11 — %; { % Jf%

for community detection algorithms to maintain their solu-
tion quality at acceptable level in noisy situations. In this
experiment we evaluate the noise resistance of the proposed
LagCCD algorithm and compare it with other existing ap-
proaches. To generate noisy data we perturbed a fraction of
the network by adding or deleting the edge between a ran-
domly picked pair of vertices. The noise ratio in the figure is
based on the fraction of original number of edges in the data
which has been modified. Figures 3 show the mean and stan-
dard deviation of the results on Dolphin data set (Lusseau et
al. 2003) and the data set about books on US politics(Krebs
unpublished ). Each point in these figures is the result of
125 independent executions over five independently gener-
ated noisy data and 5 supervision constraint sets of the same
size (equal to the network’s number of vertices). As it is
shown in both instances of Figures 3, similar to other meth-
ods, the performance of the LagCCD algorithm decreases in
noisy situations. However, the LagCCD algorithm can main-
tain its higher performance and demonstrate more noise re-
sistance than the other semi-supervised algorithms when the
data gets noisier.

Conclusion

In this paper, we proposed a constrained community detec-
tion algorithm based on Lagrange multipliers which incor-
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Figure 3: Sensitivity to noise on Dolphin (left) and Political Book
(right) data sets

porates known labels and pairwise supervision types in a
modularity maximization scheme. Its philosophy is to ex-
ploit available side information as fully as possible. Our ex-
periments on real and synthetic data sets demonstrated im-
proved performance of LagCCD in comparison to existing
state of the art algorithms, in both noisy situations and sce-
narios with limited amounts of information. An interesting
future direction is to encode other constraint types for com-
munity detection using our framework.
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