
Under consideration for publication in Knowledge and Information Systems

Mining Minimal Distinguishing Subsequence
Patterns with Gap Constraints
Xiaonan Ji∗, James Bailey∗, Guozhu Dong∗∗

∗NICTA Victoria Laboratory, Department of Computer Science and Software Engineering,
University of Melbourne, Victoria, Australia
∗∗Department of Computer Science and Engineering, Wright State University, Ohio, USA

Abstract. Discovering contrasts between collections of data is an important task in data min-
ing. In this paper, we introduce a new type of contrast pattern, called a Minimal Distinguishing
Subsequence (MDS). An MDS is a minimal subsequence that occurs frequently in one class
of sequences and infrequently in sequences of another class. It is a natural way of representing
strong and succinct contrast information between two sequential datasets and can be useful in
applications such as protein comparison, document comparison and building sequential classi-
fication models. Mining MDS patterns is a challenging task and is significantly different from
mining contrasts between relational/transactional data. One particularly important type of con-
straint that can be integrated into the mining process is the gap constraint. We present an efficient
algorithm called ConSGapMiner (Contrast Sequences with Gap Miner), to mine all MDSs sat-
isfying a minimum and maximum gap constraint, plus a maximum length constraint. It employs
highly efficient bitset and boolean operations, for powerful gap based pruning within a prefix
growth framework. A performance evaluation with both sparse and dense datasets, demonstrates
the scalability of ConSGapMiner and shows its ability to mine patterns from high dimensional
datasets at low supports.

Keywords: Data mining algorithm, sequential pattern, frequent pattern, emerging pattern, gap
constraint, contrast pattern.

1. Introduction

Contrasting collections of data is an important objective in data mining and sequences
are a particularly important form of data. In this paper, we introduce a new type of
pattern that is useful for contrasting collections of sequences, called a Minimal Dis-
tinguishing Subsequence (MDS). A distinguishing subsequence is a subsequence that

Received Nov 30, 2005
Revised Feb 1, 2006
Accepted April 1, 2006

2 X.Ji et al

appears frequently in one class of sequences, yet infrequently in another. A distinguish-
ing subsequence is minimal if none of its subsequences is distinguishing. A key property
of an MDS is that its items do not have to appear consecutively – there may be gaps be-
tween them. As mentioned in (Chan et al, 2003), in the analysis of purchase behaviours,
web-logs and biochemical data (e.g. motifs research), sequence patterns with gaps are
often much more useful than ones with no gaps.

There are many situations where MDSs are useful, such as the comparison of pro-
teins, design of microarrays, characterisation of text and the building of classification
models. We give two specific examples to highlight the idea.

Example 1.1. When comparing the two protein families1 zf-C2H2 and zf-CCHC, we
discovered a protein section CLHH appearing as a subsequence 141 times among a total
of 196 protein sequences in zf-C2H2, but never appearing among the 208 sequences in
zf-CCHC. This subsequence represents a very strong contrast feature, that is potentially
interesting to biologists. From a classification perspective, an unknown protein sequence
containing CLHH as a subsequence seems unlikely to be a member of the zf-CCHC
family.

Indeed the potential usefulness of contrasts for protein datasets is highlighted by
work in (She et al, 2003), where it is observed that biologists are very interested in
identifying the most significant subsequences that discriminate between outer mem-
brane proteins and non outer membrane proteins. Furthermore, the higher dimensional
structure of proteins makes allowing gaps in a subsequence particularly important. El-
ements which have a gap between them in the sequence, may in fact be spatially very
close in the 3-dimensional protein.

Example 1.2. Comparing the first and last books from the Bible, we found that the
subsequences “having horns”, “faces worship”, “stones price” and “ornaments price”
appear multiple times in sentences in the Book of Revelation, but never in the Book of
Genesis. (The gap between the two words of each pair is ≤ 6 non trivial words.) Such
pairs might be seen as a fingerprint associated with the Book of Revelation and may be
of interest to Biblical scholars.

Items in an MDS do not necessarily have to appear immediately next to each other
in the original sequences. However, subsequences in which items are far away from
each other are likely to be less meaningful than those whose items are close in the orig-
inal sequence. A key focus, therefore, is to set a gap constraint when mining the MDS
set. This restricts the distance between neighbouring elements of the subsequence. The
benefits are that the mining output is smaller and more intuitive and the mining process
can be faster.

Challenges: Several challenges arise in the mining of MDS. The first is that the Apriori
property does not hold for distinguishing subsequences, meaning that the subsequences
of a distinguishing sequence are not necessarily distinguishing themselves. (In con-
trast, the property does hold for frequent subsequence patterns.) Hence, any bottom up
mining strategy needs to employ extra techniques for pruning the search space. This
is especially important, since the search space is exponential and the number of MDS
patterns present in the data may also be very large.

The second challenge is that the MDS’s frequency threshold cannot be set as high
as it is in frequent subsequence mining. There, for some of the dense databases, the

1 More information on the protein families can be found in Section 6.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 3

thresholds may need to be set to at least 80% (Wang and Han, 2004). Using the same
thresholds for MDS mining is likely to result in empty output. In MDS mining, thresh-
olds below 30% are needed for dense databases.

The third challenge arises with respect to the gap constraint. Gap constraints have
been considered in other contexts, such as episode pattern mining (Méger and Rig-
otti, 2004; Casas-Garriga, 2003; Zhang et al, 2005). Techniques there rely upon storing
all possible occurrences in a list. For each candidate, a scan through the list is per-
formed to test if it fulfills the gap constraint. This may be workable in pure frequent
pattern mining under high frequency thresholds. However, since the gap constraint is
not class preserved (see Section 4 for a brief explanation) (Zaki, 2000) and the search
space is potentially larger in MDS mining, the occurrence list may be very large and
thus such scans become very costly.

Our contributions: Besides introducing the concept of minimal distinguishing subse-
quences, we describe a new algorithm called ConSGapMiner (Contrast Sequences with
Gap Miner), to efficiently mine the complete MDS set for a (minimum, maximum) gap
constraint. We employ a novel technique using efficient bitset and boolean operations,
to determine whether a candidate subsequence can satisfy the gap constraint. We also
employ several other pruning strategies.

We also show how our general approach can easily accommodate the specification
of a length constraint and how it can be easily modified to mine other kinds of patterns,
such as frequent sequential patterns with gap constraints.

Experimental analysis shows that ConSGapMiner is able to efficiently mine MDSs
from some very dense real-world databases, using a relatively low frequency threshold.
Indeed, using the gap constraints, it is able to mine patterns for some very long proteins,
in circumstances that would challenge the current generation of frequent subsequence
miners.

Organization: The rest of the paper is organised as follows. Section 2 surveys related
work in the area. Section 3 introduces the basic concepts used, as well as terminologies
and notations used throughout the paper. Section 4 describes the basic ConSGapMiner
algorithm. Discussion of extensions of the basic algorithm to include minimum gaps,
length constraints and more complex minimization is provided in Section 5. Experi-
mental and performance results are given in Section 6. Finally, future work is discussed
in Section 7 and a summary of our results is given in Section 8.

2. Related Work

Emerging patterns, introduced by (Dong and Li, 1999; Dong and Li2, 2005), can be used
to build high accuracy classification models in relational databases (Dong et al, 1999; Li
et al, 2001). However it is difficult to translate the mining techniques for emerging
patterns to sequential databases, since the order in which items occur in sequential data
is significant and items may also occur multiple times. Contrasts for relational data have
been considered in other work as well, see (Bay and Pazzani, 2001; Webb et al, 2003)
for details.

In (Chan et al, 2003), the related concept of emerging substrings is introduced.
These are strings of items used to differentiate between two classes of sequences. A
suffix tree is used to store all the substrings. Version space trees have also been used
to mine substring patterns satisfying a conjunction of constraints (Fischer and Raedt,
2004; Raedt and Kramer, 2001; Mitchell, 1982). Because substrings are a special case

4 X.Ji et al

of subsequences using maximum gap as 0, our framework can also be used to mine
minimal distinguishing substrings. However, since the items in subsequences may not
necessarily appear consecutively, the use of substring data structures like suffix trees
or version space trees is unsuitable for mining them. Also, the search space for subse-
quence patterns with gap constraints is larger and consequently the mining problem is
more difficult.

An algorithm is given in (Hirao et al, 2003) to mine a single best subsequence pat-
tern maximizing some function, which describes pattern goodness (and can describe
contrasts). It does not produce a collection of patterns.

Work in (Lesh et al, 2000) examines the useful feature space for sequence databases.
The algorithm used is SPADE (Zaki, 2001), relying on the Apriori property. Thus, any
contrast patterns it finds must have all their subsequences being contrast as well. This
assumption isn’t true for MDS patterns.

References (Zaki, 2000; Méger and Rigotti, 2004) consider sequential pattern min-
ing with gap constraints. However, these algorithms store all occurrences for a given
candidate in a list, which needs to be scanned when checking the gap constraint. This
idea becomes less effective in situations where the alphabet size and support thresholds
are small and many long sequences need to be checked (such as in protein datasets). Gap
constraints have also been considered for repetitive pattern mining with a single long
sequence. Refer to (Méger and Rigotti, 2004; Casas-Garriga, 2003; Zhang et al, 2005)
for details.

There exists a large body of work on finding motif patterns for protein sequences
(see e.g. (Narasimhan et al, 2002)). Such patterns are related to MDSs, but are quite dif-
ferent and thus require different mining techniques. They also take into account various
biological constraints and usually have 100% support.

Gap constraints are applied in alignment of genome or protein sequences (Gusfield,
1997). When computing the optimal alignment of two sequences, scoring functions can
be adjusted to give penalties for insertions or deletions. Under this regime, alignments
containing bigger gaps are less likely to be chosen. For this paper, we explicitly define
the minimal and maximum gap, rather than allowing it to be automatically determined.

3. Definitions and Terminology

Let I be a set of distinct items. We call I the alphabet and |I | the size of the alphabet.
A sequence S over I is an ordered list of items, denoted as e1e2e3...en, where ei ∈
I for 1 ≤ i ≤ n. For example, DNA sequences are sequences over the alphabet of
{A, C, G, T}, and the Declaration of Independence document is a sequence over the
alphabet consisting of English words. We write S[i] to denote the i-th item of S, namely
ei. Note that the sequences we consider are univariate sequences, i.e. each element of
the sequence is a single item. Although more general sequence definitions exist, the
univariate representation is able to capture some of the most important and popular
sequences, such as DNA, proteins, documents and Web-logs.

A sequence S′ is a subsequence of a sequence S = e1e2e3...en (and S is a super-
sequence of S′), written as S′ ⊆ S, if S′ = ei1ei2 ...eim

such that 1 ≤ i1 < i2 < ... <
im ≤ n. S′ is a substring of S if ij+1 = ij + 1 for all 1 ≤ j < m. For example, AB is a
subsequence of ACBC but BA isn’t, and CBC is a substring of ACBC.

Definition 3.1. (Max-Prefix) A sequence e1e2e3...en’s max-prefix is e1e2e3...en−1.
The max-prefix is formed by removing the last item in S.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 5

Example 3.1. ABC is the max-prefix of ABCD while AB isn’t. According to our defi-
nition, a sequence has exactly one max-prefix.

Definition 3.2. (Subsequence Occurrence) Given a sequence S = e1e2e3...en and a
subsequence S ′ = e′1e

′
2...e

′
m of S, a sequence of indices {i1, i2, ..., im} is called an

occurrence of S′ in S if 1 ≤ ik ≤ n and e′k = eik
for each 1 ≤ k ≤ m, and ik < ik+1

for each 1 ≤ k < m.

Example 3.2. For the sequence S=ACACBCB and subsequence S’=AB, there are 4 oc-
currences of S′ in S: {1,5}, {1,7}, {3,5} and {3,7}.

We now define the gap constraints, which restrict the allowed distance between items
of subsequences in sequences.

Definition 3.3. (Gap constraint and satisfaction) A (maximum) gap constraint is spec-
ified by a positive integer g. Given a sequence S = e1e2...en and an occurrence
os = i1i2...im of a subsequence S ′, if ik+1 − ik ≤ g + 1 ∀k ∈ {1...m − 1}, then
we say the occurrence os fulfills the g-gap constraint. Otherwise we say os fails the
g-gap constraint. If there is at least one occurrence of a subsequence S ′ fulfilling the
g-gap constraint, we say S ′ fulfills the g-gap constraint. Otherwise S ′ fails the g-gap
constraint. We will later consider the minimum gap constraint.

Example 3.3. In Example 3.2, only the occurrence {3,5} fulfills the 1-gap constraint.
Thus, the subsequence S ′ fulfills the 1-gap constraint since at least one of its occur-
rences does. No occurrence of S ′ fulfills the 0-gap constraint and so S ′ fails the 0-gap
constraint.

Given a set of sequences D, a sequential pattern p and a gap constraint g, the count
of p in D with g-gap constraint, denoted as countD(p, g), is the number of sequences
in D in which p appears as a subsequence fulfilling the g-gap constraint. The (rela-
tive) support of p in D with g-gap constraint is defined as suppD(p, g) = countD(p,g)

|D| .
Given a positive threshold δ, if suppD(p, g) ≥ δ, we say p is frequent in D with g-gap
constraint. Otherwise p is infrequent.

Definition 3.4. (g-MDS and the g-MDS mining problem) Given two classes of se-
quences pos (the positive) and neg (the negative), two support thresholds δ and α, and
a maximum gap 2 g, a pattern p is called a Minimal Distinguishing Subsequence with
g-gap constraint (g-MDS for short), if and only if the following conditions are true:

1. Frequency condition: supppos(p, g) ≥ δ;
2. Infrequency condition: suppneg(p, g) ≤ α;
3. Minimality condition: There is no subsequence of p satisfying 1 and 2.

Given pos, neg, δ, α and g, the g-MDS mining problem is to find all the g-MDSs.

The minimality condition is important, since it both reduces output size and improves
performance, as well as making patterns shorter (more succinct). This is especially im-
portant for datasets with long sequences, where the number of patterns output may be
huge. Similar issues regarding concise representations arise in frequent and emerging
pattern mining as well. In frequent pattern mining, mining closed or maximal patterns is

2 We examine incorporation of a minimum gap constraint in Section 5.1. Also, in ConSGapMiner, the gap
constraints for pos and neg do not necessarily have to be the same. In this paper, we use the same gap
constraint for both, to make illustration easier. More discussion is provided in Section 5.

6 X.Ji et al

Table 1. A sequential database example

Sequence ID Sequence Class label
1 CBAB pos

2 AACCB pos

3 BBAAC pos

4 BCAB neg

5 ABACB neg

popular (Yan et al, 2003; Wang and Han, 2004). In emerging pattern mining (Dong and
Li, 1999; Dong and Li2, 2005), minimal and maximal borders are mined, rather than
the entire space of emerging patterns.

To differentiate patterns which are guaranteed to be minimal, from those which
may be minimal, we will use the following definition of Semi-Minimal Distinguishing
Subsequence.

Definition 3.5. (g-SMDS set) Any super set of the g-MDS set containing patterns that
satisfy the frequency and infrequency conditions, but not necessarily the minimality
condition, is called a Semi-Minimal Distinguishing Subsequence set with g maximum
gap constraint, g-SMDS set for short.

Example 3.4. Given the two sets of sequences shown in Table 1, suppose δ = 1/3
(and α = 0) and g = 1. The 1-MDSs are {BB, CC, BAA, CBA}. Notice that BB is
a subsequence of all the negative sequences, if no gap constraint is used. However all
the occurrences of BB in the negative fail the 1-gap constraint, so BB becomes a dis-
tinguishing subsequence when g = 1. Observe that every super sequence of an 1-MDS
fulfilling the 1-gap constraint and support threshold is also distinguishing. However,
these are excluded from the MDS set, since they are non-minimal and contain redun-
dant information.

4. The ConSGapMiner Algorithm

We now introduce our algorithm known as ConSGapMiner, for solving the g-MDS
mining problem. Extensions of this basic algorithm will be provided later in Section 5.
It operates in three stages: i) candidate generation, ii) support and gap calculation, and
iii) post processing (minimization). In the first stage, a candidate c is generated. In the
next stage, its frequency support and gap satisfaction is computed for both the pos and
neg. If supppos(c, g) ≥ δ and suppneg(c, g) ≤ α, then c is retained. Finally, in the third
stage, post processing is used to remove all the non minimal patterns and yield the final
g-MDS set. We now discuss each of these stages in turn.

4.1. Candidate generation

ConSGapMiner performs a depth-first search in a lexicographic sequence tree, similar
to frequent subsequence mining techniques such as (Ayres et al, 2002; Yan et al, 2003).
In the lexicographic sequence tree, each node contains a sequence s (we will inter-
changeably refer to nodes and the sequences they represent), a value for countpos(s, g)
and a value for countneg(s, g). Each node is the max-prefix of each of its children. Dur-
ing the depth-first search, we extend the current node by a single item from the alphabet,
according to a certain lexicographic order. For (the sequence of) each newly-generated
node n, we calculate its supports from pos and from neg.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 7

Fig. 1. The lexicographic tree.

Example 4.1. Part of the lexicographic tree for mining the database from Table 1 is
given in Figure 1. Observe that the branches of the lexicographic tree terminate at nodes
whose countpos = 0.

Two basic pruning strategies can be applied to reduce the size of the search space of the
tree. These will be applied in the candidate generation process.

Non-Minimal Distinguishing Pruning: This strategy is based on the fact that any
supersequence of a distinguishing sequence cannot be a minimal one. Suppose we en-
counter a node representing sequence s, where c is the last item in s and supppos(s, g) ≥
δ and suppneg(s, g) ≤ α. Then i) we need never extend s and ii) need never extend any
of the sibling nodes of s by the item c. Such an extension would lead to a supersequence
of s and wouldn’t be an MDS.

Example 4.2. In Figure 1, because supppos(AACC) > 0 and suppneg(AACC) = 0,
AACC must be distinguishing. Moreover, we know in the subtree of its sibling AACB,
suppneg(AACBC) must be 0, too. So AACBC can’t be an MDS.

Max-Prefix Infrequency Pruning: Whenever a candidate isn’t frequent in pos, then
none of its descendants in the tree can be frequent. Thus, whenever we come across a
node s, where supppos(s, g) < δ, we don’t need to extend this node any further. For
example, in Figure 1, it is not necessary to extend AAB (which has support zero in pos),
since no frequent sequence can be found in its subtree.

It is worth noting that this technique does not generalize to full a-priori like prun-
ing – “if a subsequence is infrequent in pos, then no supersequence of it can be fre-
quent”. Such a statement is not true, because the gap constraint is not class preserved
(Zaki, 2000). This means that an infrequent sequence’s supersequence is not necessarily
infrequent; this consequently increases the difficulty of our problem. Indeed, extending
an infrequent subsequence by appending will not lead to a frequent sequence, but ex-
tensions by inserting items in the middle of the subsequence may lead to a frequent
subsequence. An example situation is given next.

Example 4.3. For Figure 1, suppose δ = 1/3 and g = 1. Then AAB is not a frequent
pattern because countpos(AAB, 1) = 0. But looking at AAB’s sibling, the subtree rooted
at AAC, we see that countpos(AACB, 1) = 1. So a supersequence AACB is frequent, but
its subsequence AAB is infrequent.

The algorithm for candidate generation is given in Algorithm 1. Assume MDS is set
to empty initially. It is called at the top level by Candidate Gen({}, g, I, δ, α).

8 X.Ji et al

Algorithm 1 Candidate Gen(c,g,I ,δ,α): Generate new candidates from sequence c

Require: c:sequence, g:maximum gap, I :alphabet, δ: minimal support in pos,
α:maximum support in neg.

Ensure: MDS is a global variable containing all distinguishing subsequences gener-
ated from the entire tree.

1: ds = ∅ {to contain all distinguishing children of c}
2: for all i ∈ I do
3: if c + i is not a supersequence of any sequence in ds then
4: nc = c + i
5: supppos=Support Count(nc,g,pos)
6: suppneg=Support Count(nc,g,neg)
7: if supppos ≥ δ AND suppneg ≤ α then
8: ds = ds ∪ nc {nc is distinguishing}
9: else if supppos ≥ δ then

10: Candidate Gen(nc,g,I ,δ,α)
11: end if
12: end if
13: end for
14: MDS = MDS ∪ ds

4.2. Support Calculation and Gap Checking

For each newly-generated candidate c, countpos(c, g) and countneg(c, g) must be com-
puted. The main challenge comes in checking satisfaction of the gap constraint. A can-
didate can occur many times within a single positive sequence. A straightforward idea
for gap checking would be to record the occurrence of each candidate in a separate list.
When extending the candidate, a scan of the list determines whether or not the exten-
sion is legal, by checking whether the gap between the end position and the item being
appended is smaller than the (maximum) gap constraint value for each occurrence. This
idea becomes ineffective in situations with small alphabet size and small support thresh-
old and many long sequences needing to be checked, since the occurrence list becomes
unmanageably large. Instead, we use a new method for gap checking, based on a bit-
set representation of subsequences and the use of boolean operations. This technique is
described next.

Definition 4.1. (Bitset) A bitset is a sequence of bits which each takes the value 0 or 1.
An n-bitset X contains n bits, and X [i] refers to the i-th bit of X .

We use a bitset to describe how a sequence can occur within another sequence.
Suppose we have a sequence S = e1e2e3...en, and another sequence S ′, which is no
longer than S. The occurrence(s) of S ′ in S can be represented by an n-bitset. This
n-bitset BS is defined as follows: If both i) there exists a supersequence of S ′ of the
form e1e2e3...ei and ii) ei is the final item of S′, then BS[i] is set to 1; otherwise it is set
to 0. For example, if S=BACACBCCB, the 9-bitset representing S ′ =AB is 000001001.
This indicates how the subsequence AB can occur in BACACBCCB, with a ’1’ being
turned on in each final position where the subsequence AB could be embedded. If S ′

isn’t a subsequence of S, then the bitset representing the occurrences of S ′ consists of
all zeros.

For the special case where S ′ is a single item, i.e. S ′ = e, then BS[i] is set to 1 if
ei = e. In the last example, the 9-bitset representing the single item C is 001010110.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 9

It will be necessary to compare a given subsequence against multiple other se-
quences. In this case, the subsequence will have associated with it an array of bitsets,
where the k-th bitset describes the occurrences of S ′ in the k-th sequence.

Initial Bitset Construction: Before mining begins, it is necessary to construct the
bitsets that describe how each item of the alphabet occurs in each sequence from the
pos and neg datasets. So, each item i has associated with it an array of |pos| + |neg|
bitsets. For a given item, the number of bitsets in its array which contain one or more
1’s, is equal to count(i, g).

Example 4.4. Consider the database in Table 1. The bitset array for A contains 5
elements, namely [0010, 11000, 00110, 0010, 10100]. Also, countpos(A, g) = 3 and
countneg(A, g) = 2.

Bitset Checking: Each candidate node c in the lexicographic tree has a bitset array as-
sociated with it, which describes how the sequence for that node can occur in each of the
|pos|+|neg| sequences. This bitset array can be directly used to compute countpos(c, g)
and countneg(c, g) (i.e. countpos(c, g) is just the number of bitsets in the array not equal
to zero, that describe positive sequences). During mining, we extend a node c to get a
new candidate c′, by appending some item i. Before we can compute countpos(c

′, g)
and countneg(c

′, g), we first need to compute the bitset array for c′. The bitset array for
c′ is calculated using the bitset array for c and the bitset array for item i, and is done in
two stages.

Stage 1: Using the bitset array for c, we generate another array of corresponding
mask bitsets. Each mask bitset captures all the valid extensions of c, with respect to the
gap constraint, for a particular sequence in pos ∪ neg. Suppose the maximum gap is g,
for a given bitset b in the bitset array of c. We perform g + 1 times of right shift of it
by distance 1, with 0s filling the leftmost bits. This results in g + 1 intermediate bitsets,
one for each stage of the shift. By ORing together all the intermediate bitsets, we obtain
the final mask bitset m derived from b. The mask bitset array for c consists of all such
mask bitsets.

Example 4.5. Taking the last bitset 10100 in the previous example and setting g = 1,
the process is:

10100 >> 01010
01010 >> 00101

OR 01111
01111 is the mask bitset derived from bitset 10100.

Intuitively, a mask bitset m generated from a bitset b, closes all 1s in b (by setting
them to 0) and opens the following g + 1 bits (by setting them to 1). In this way, m can
accept only 1s within a g + 1 distance from the 1s in b.

Stage 2: We use the mask bitset array for c and the bitset array for item i, to calculate
the bitset array for c′ which is the result of appending i to c. Consider a sequence s in
pos ∪ neg and suppose the mask bitset describing it is m and the bitset for item i is
t. The bitset describing the occurrence of c′ in s, is equal to m AND t. If the bitset of
the new candidate c′ doesn’t contain any 1, we can conclude that this candidate is not a
subsequence of s with g-gap constraint.

Example 4.6. ANDing 01111 (the mask bitset for sequence A) from the last example
with C’s bitset 00010, gives us AC’s bitset 00010.

Taking the last sequence in Table 1, ABACB, B’s 5-bitset is 01001 and its mask
5-bitset is:

10 X.Ji et al

Fig. 2. The generation of BB’s bitset array.

01001 >> 00100
00100 >> 00010

OR 00110
So BB’s bitset is: 00110 AND 01001 = 00000. This means BB is not a subsequence of
ABACB with 1-gap constraint.

Example 4.7. Figure 2 shows the process of getting the bitset array for BB from that
for B. From the figure we can see countpos(BB, 1) = 2 and countneg(BB, 1) = 0.

The task of computing bitset arrays can be done very efficiently. Modern computer
architectures have very fast implementations of shift operations and logical operations.
Since the maximum gaps are usually small (e.g. less than 20), the total number of
right shifts and logical operations needed is not too large. Consequently, calculating
supppos(c, g) and suppneg(c, g) can be done extremely quickly. The algorithm for sup-
port counting is given in Algorithm 2.

Algorithm 2 Support Count(c′,g,D): calculate suppD(c′, g)

Require: g:maximum gap and BARRAYc: the bitset array for max-prefix c of c′ and
IARRAYi, the bitset array for the final element i of c′.

Ensure: : return suppD(c′, g) and the bitset array for c′

1: count← 0
2: for all s ∈ D do
3: p←BARRAYc[s]
4: i←IARRAYi[s]
5: m = m XOR m {bitset m contains all zeros}
6: c← 0 {loop counter}
7: repeat
8: p = (p >> 1)
9: m = m OR p

10: c + +
11: until c = g + 1
12: m = m AND i
13: if (m 6= 0) then
14: count + +
15: end if
16: BARRAYc′ [s] = m
17: end for
18: return count/|D|

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 11

4.3. Minimization

We have already seen how non-minimal distinguishing pruning eliminates non-minimal
candidates during tree expansion. However, the pattern set returned by Algorithm 1 is
only semi-minimal, i.e. an SMDS set. For example, in Figure 1, we will get ACC, which
is a supersequence of the distinguishing sequence CC. Thus, in order to get the g-MDS
set, a post-processing minimization step is needed.

A naive idea for removing non-minimal sequences, is to check each against all the
others, removing it if it is a supersequence of at least one other. For n sequences, this
leads to an O(n2) algorithm, which is expensive if n is large.

Firstly, we observe that it is not necessary to check if a sequence is a supersequence
of any longer sequence. So first of all, we ensure that the sequential patterns are clus-
tered according to their length, when they are output during mining.

Secondly, we use a prefix tree for carrying out minimization. Sequences are inserted
into the tree in ascending order of length. Each sequence p to be inserted into the tree is
compared against the sequences already there. This is easily done by stepping through
each prefix of p, at each stage identifying the nodes of the tree which are subsequences
of the prefix so far. The process terminates when a leaf node or the end of p is reached.
If a subsequence of p in the tree is found, then p is discarded. Otherwise, p must be
minimal and it is inserted.

Compared to the naive O(n2) method, using a prefix tree can help avoid some du-
plicate comparisons, particularly for situations where there is substantial similarity be-
tween the sequential patterns, since each sequential pattern prefix is only stored once.
For example, consider two shorter patterns P1 =ABCC, P2 =ABCF and a longer pat-
tern P3 =ABCDE. To check whether P3 is minimal by using the naive way, we compare
P3 with P1 itemwise for 5 comparisons and with P2 itemwise for 5 comparisons to con-
clude that P3 is minimal. By using the prefix tree, ABC is built once and compared once,
which takes itemwise 3 comparisons and then another 2 comparisons to check the other
two items D and E. Finally we know that P3 is minimal, because no leaf is found. This
takes itemwise 5 comparisons total, rather than 10 comparisons using the naive way.

The algorithm for minimization is shown in Algorithm 3 and the complete algorithm
of ConSGapMiner is provided in Algorithm 4.

Algorithm 3 Minimization(ds): minimize the distinguishing subsequence set ds

Require: ds stored in main memory
1: pt← NIL {empty the prefix tree}
2: for all s ∈ ds in ascending order of |s| do
3: if ∃s′ ∈ pt that s′ ⊆ s then
4: remove s from ds
5: else
6: pt.add(s)
7: end if
8: end for

5. Extending the Basic ConsGapMiner Algorithm

We now examine several extensions to the basic approach just described. These in-
volve handling minimum gaps, length constraints and performing more complex types

12 X.Ji et al

Algorithm 4 ConSGapMiner(pos,neg,g,δ,α): mine all the g-MDS from pos to neg

Require: I : alphabet list, g: maximum gap constraint, δ: minimal support in pos, α:
maximal support in neg. A global set SMDS is used to contain the patterns gener-
ated by Candidate Gen

Ensure: g-MDS set mds
1: SMDS ← {} {ds contains nothing at the beginning}
2: c← {}
3: Candidate Gen(c,g,I ,δ,α)
4: mds =Minimization(SMDS)
5: return mds

of minimization. We also discuss the applicability of our framework for mining frequent
sequential patterns.

5.1. Allowing Minimum Gap Constraints

The first extension is to add a minimum gap constraint along with the maximum one.

Definition 5.1. (Minimum Gap Constraint) A minimum gap constraint is specified
by a positive integer q. Given a sequence S = e1e2...en and an occurrence os =
(i1, i2, ..., im) of a subsequence S ′, if ik+1 − ik ≥ q + 1 ∀k ∈ {1...m − 1}, then
we say the occurrence os fulfills the q-minimum gap constraint. Otherwise we say os

fails the q-minimum gap constraint. If there is at least one occurrence of a subsequence
S′ fulfilling the q-minimum gap constraint, we say S ′ fulfills the q-minimum gap con-
straint. Otherwise S′ fails it.

Example 5.1. Consider a sequence S =ACEBE. If a maximum gap g = 3 is given,
AE is a subsequence with 2 occurrences in S. The first is (1, 3) and the other is (1, 5).
If a minimum gap q = 2 is given, AE is a subsequence with one occurrence ((1, 5)).
Considering only the above maximum gap constraint, AC is a subsequence of S, but in
conjunction with the above minimum gap constraint, it isn’t.

The preceding definition of minimum gap constraint is quite similar to that for max-
imum gap. Minimum gaps can be useful for applications where we require items in a
sequence to be at least certain distance apart from one another. For example, in sce-
narios where the items in the sequence represent values being sampled over time, such
as a waveform, items that are too close to each other may represent information that is
overly similar. Minimum gaps may then be specified to help remove potential redun-
dancy in the discovered patterns. An interesting special case is when the value of the
minimum gap is specified to equal the value for the maximum gap. This will result in
patterns whose items are distributed in equal distance in the original dataset. This could
be viewed as a kind of quasi-periodicity.

Suppose we have a set of sequences D, a sequential pattern p and two gap constraints
g and q. The count of p in D with g as the maximum gap constraint and q as the
minimum gap constraint, denoted as countD(p, g, q), is the number of sequences in
D in which p appears as a subsequence fulfilling both the g-gap constraint and the q-
minimum gap constraint. The (relative) support of p in D with g-gap constraint and
q-minimum gap constraint is defined as suppD(p, g, q) = countD(p,g,q)

|D| .
We now redefine the mining problem to include both the minimum and maximum

gap constraints:

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 13

Definition 5.2. (Extended MDS mining problem) Given two classes of sequences pos
(the positive) and neg (the negative), two support thresholds δ and α, a maximum gap g
and a minimum gap q, a pattern p is called a Minimal Distinguishing Subsequence with
(g, q)-gap constraint ((g, q)-MDS for short), if and only if the following conditions are
true:

1. Frequency condition: supppos(p, g, q) ≥ δ;

2. Infrequency condition: suppneg(p, g, q) ≤ α;

3. Minimality condition: There is no subsequence of p satisfying 1 and 2.

Given pos, neg, δ, α, g and q, the (g, q)-MDS mining problem is to find all the (g, q)-
MDSs.

It is easy to extend the bit operations used in ConSGapMiner to handle this min-
imum gap constraint. The only part requiring modification is the construction of the
mask bitset. Recall that for a maximum gap constraint g, to construct the mask bitset,
we perform g + 1 times of right shift by distance 1 and OR the g + 1 intermediate
bitsets together. The resulting bitset is the mask of the given bitset. When a minimum
gap constraint q is added, we initially right shift the given bitset q times and discard the
intermediate bitsets. Then, we perform another g + 1− q right shift operations and OR
the g + 1− q intermediate bitsets to obtain the mask bitset.

Example 5.2. Consider the last sequence in Table 1 as an example. We know that B’s
bitset is 00111 w.r.t. g = 2. So BC’s bitset should be: 00111 AND 00010=00010.
Consider q = 2, we discard the first 2 intermediate bitsets which are 00100 and 00010.
Then we right shift g + 1− q = 1 times and the mask bitset is 00001. From this bitset
we can see that the adjacent two positions, which are 3 and 4, are closed and the third
position 5 is open. This mask bitset expresses the minimum gap constraint. By ANDing
this mask bitset with the single item C’s bitset 00010, we get 00000; so BC isn’t a
subsequence of ABACB, because it fails the minimum gap constraint q = 2.

5.2. Sequence Length Constraints

The use of a maximum length constraint is a popular way of reducing the search space
and size of the output for sequential pattern mining algorithms (e.g. (Zaki, 2000)). ConS-
GapMiner can be easily extended to mine patterns with lengths less than a given thresh-
old l. Here, by length we mean the number of items that appear in the pattern (as distinct
from window size, which refers to the maximum gap between the first and last item in
the pattern). We supplement the existing pruning strategies with another called max-
length pruning.

Max-Length Pruning: Whenever a candidate whose length is equal to l is gener-
ated, then it is never extended.

By keeping a counter of the depth of the tree within each node, it is then straightfor-
ward to determine the current length of each candidate for performing the comparison.
Using length constraint pruning is likely to result in a much shallower lexicographic
tree and thus faster mining time.

14 X.Ji et al

5.3. Coverage and Prefix-Based Pattern Minimization

In order to discover patterns which satisfy the minimality condition from Definitions 3.4
and 5.2, we have described strategies for pattern minimization which aim to determine
whether a pattern (or candidate) is a supersequence of some other pattern (or candidate).
For some situations, pursuing this kind strategy may be too aggressive and useful pat-
terns may be eliminated, since the gap constraint is not class preserved. Consider the
following example:

Example 5.3. Suppose pos={ACCBD, ACDBD, ABD} and two distinguishing patterns
ACBD and ABD have been found using δ = 1/2, g = 1, q = 0. We observe that
countpos(ACBD, 1, 0) = 2 and countpos(ABD) = 1. If we remove ACBD because it
is a super-sequence of ABD, we will lose a pattern which has higher frequency than its
subpattern and thus is arguably a more important feature.

To address this problem, we now describe two alternate minimization techniques.
The first is based on comparisons using coverage in pos, the second is based on prefix
comparisons. Both are less aggressive and remove fewer patterns than the minimization
we have previously described (which will be called basic minimization from now on).

In essence, we need to to use stricter conditions for minimality than that used in
Definitions 3.4 and 5.2. Given two MDSs, p1 and p2 and a reference dataset D, we wish
to remove p2 due to p1, if p1 occurs in every sequence from D that p2 does (p2 ⇒D p1

) . If p1 occurs in every sequence from pos that p2 does, then it is guaranteed that
(p2 ⇒D p1) only if D = pos. This is coverage based minimization. If p1 is prefix of
p2, then it is guaranteed that p2 ⇒D p1, with respect to any D. This is prefix based
minimization.

5.3.1. Coverage Based Minimization

To describe the implementation of coverage based minimization, we first begin by for-
mally defining the notion of coverage.

Definition 5.3. (Coverage Set) Given a sequence p, gap parameters g and q and the
datasets pos and neg, the coverage set of p is equal to the set of sequences from pos
in which p appears as a subsequence fulfilling both the g−gap constraint and the q-
minimum gap constraint. The coverage set can be represented by a bitset, containing as
many bits as there are sequences in pos. Bit i is turned on if p appears as a subsequence
in sequence i from pos. Otherwise it is set to zero.

When performing coverage based minimization, a sequence p1 can be eliminated
by a sequence p2 iff:

1. p2 ⊆ p1 and
2. the coverage set of p1 is a subset of the coverage set of p2.

To adjust the basic ConSGapMiner algorithm from Section 4 we have to change two
techniques, the first is the non-minimal distinguishing pruning step and the other is the
post-processing minimization.

For each candidate in the lexicographic tree shown in Figure 1, a coverage bitset is
attached. This coverage bitset contains as many bits as the total of sequences in pos.
A newly-generated candidate’s coverage bitset can be set by its bitset array. If the i-th
bitset in the array contains at least one 1, this candidate’s countpos is increased and the
i-th bit in the coverage bitset is set to 1. The rule for the pruning is then changed to:

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 15

Non-Minimal Distinguishing Pruning (adjusted): Suppose we encounter a node
representing sequence s, where c is the last item in s and supppos(s, g) ≥ δ and
suppneg(s, g) ≤ α. Then i) we need never extend s and ii) for any of the sibling nodes
s′, we AND s′’s coverage bitset with s’s coverage bitset and then XOR the resulting
bitset with s′’s coverage bitset. If the resulting bitset doesn’t contain any 1, then we
never need extend s′ by the item c. If the resulting bitset contains at least one 1, we
must extend s′ by the item c.

Boolean operations can be used to test whether s’s coverage is a superset of s′’s.
If this is the case, then no candidate in the subtree of s′ has a coverage which is not a
subset of s’s. In this situation, any extension of the nodes in the subtree of s′, with item
c can give a super-sequence of s with a subset of s’s coverage, which means it isn’t
minimal. If s′ has a non-subset coverage of s, then there may be an extension with item
c, which gives a distinguishing subsequence with a non-subset coverage of s’s and this
may be minimal, so we need to generate and keep it.

For the post-processing minimization, we still order the patterns in descending order
of their lengths. For each pattern we still keep a coverage bitset with the same mean-
ing as described above. For each pattern p, we find all the patterns which have shorter
lengths and with a coverage that is a superset of that of p. If such a pattern is found, the
standard way of checking whether this pattern is a subsequence of p or not is performed.
If it is a subset, p is eliminated. If no pattern can be found to eliminate p, then we retain
it in the MDS set.

5.3.2. Prefix Based Minimization

Performing prefix based minimization is substantially simpler than performing cover-
age based minimization. Two modifications are needed to the basic ConsSGapMiner
algorithm. First of all, the non-minimal distinguishing pruning step is adjusted to the
following:

Non-Minimal Distinguishing Pruning (adjusted): Suppose we encounter a node
representing sequence s, where c is the last item in s and supppos(s, g) ≥ δ and
suppneg(s, g) ≤ α. Then we need never extend s.

Secondly, no post processing minimization step is needed, since all distinguishing
sequences produced are guaranteed to be prefix minimal.

5.3.3. Comparison of the Three Minimization Techniques

We now compare the three minimization techniques we have described: basic minimiza-
tion, prefix based minimization and coverage minimization. We compare them in terms
of output size, running time and classification capability.

Suppose we denote the MDS set obtained using each of these strategies as MDS,
MDSpre and MDScov. Observe that MDS ⊆MDScov ⊆MDSpre, hence |MDS| ≤
|MDScov| ≤ |MDSpre|. In terms of running time, the search space for mining MDS
will be the smallest and the search space to mine MDSpre will be the largest. With
regard to classification ability, we would expect this to be correlated with the number
of patterns that are contained in an unknown test sequence (according to the gap con-
straints). Thus, MDSpre would have the most useful classification capability, since it
i) includes all the patterns that MDS and MDScov do, ii) may include some patterns
which do not have a subsequence that both exists in MDS or MDScov and is contained
in the test sequence. This means MDSpre will contain the most patterns which are con-

16 X.Ji et al

tained in an unknown test sequence during classification. In a similar way, we would
expect MDS to have the least powerful classification capability.

5.4. Applicability of the Approach to Frequent Sequential Patterns

Frequent sequential pattern mining with gap constraints has been identified as a useful
task (Zaki, 2000). ConSGapMiner can be adapted to mine this kind of pattern, too.
For this scenario, support only needs to be checked with reference to a single dataset.
The method for checking maximum and/or minimum gap constraints remains the same.
The main difference is that only max-prefix infrequency pruning can be used. The non-
minimal distinguishing pruning and post processing minimization techniques are no
longer needed, since a succinct representation is not required.

6. Performance Study

We have evaluated the performance of ConSGapMiner in a number of ways. Section 6.1
focuses on mining a special kind of MDS which has zero support in the neg dataset. This
kind of pattern is similar to the jumping emerging pattern (Dong and Li, 1999; Dong
and Li2, 2005). It captures very sharp contrasts between the datasets. Section 6.2 then
examines the mining of patterns with non-zero support in the neg. In Section 6.3 we then
show the distribution of the MDSs and look at the effect of using a maximum length
constraint. We use a minimum gap q = 0 for all experiments.

No comparison is made against other systems, since we are not aware of any other
work that is suitable for mining g-MDSs. We use two kinds of sequences, one from
protein families and the other from books of the Bible. These two sequence types rep-
resent some interesting real-world applications. On the one hand, protein families use
a relatively small alphabet (20 amino acids), each containing relatively few sequences
with long average length. On the other hand, books of the Bible are built on a large
alphabet (several thousand words), and have thousands of sentences of small aver-
age length. The protein families were selected from PFam: Protein Family Database
(http://www.sanger.ac.uk/Software/Pfam/) and the Bible books were
downloaded from http://www.o-bible.com/dlb.html. All the experiments
were run on a 3.0GHz Intel Xeon PC,with 4 gigabytes of main memory, running UNIX.

We now give some more specific details on the datasets. (1) The pairs of protein
families that we used are listed in Table 2. These represent some challenging situations
and the dataset sizes are representative for protein families. (2) We extracted sequences
from the books of the Bible. This kind of sequential data differs from protein data, due to
its large alphabet size, much smaller sequence length and larger number of sequences.
We used all sentences in the first four books of the New Testament (Matthew, Mark,
Luke and John) as the positive class and all sentences in the first four books of the Old
Testament (Genesis, Exodus, Leviticus and Numbers) as the negative class. In order to
obtain meaningful patterns, we removed all the punctuation and frequently appearing
words such as ”and”, ”the”, ”of”. Each sentence corresponds to a separate sequence.
There are 3768 sequences in pos, 4893 sequences in neg, and a total (alphabet size) of
3344 unique words. Average sentence length is 7 words and the maximum is 23.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 17

Table 2. Protein family pairs.

Pair Id Pos #sequences Neg #sequence avg. len. (pos) avg. len. (neg)
1 DUF1694 16 DUF1695 5 123 186

2 CbiA 80 CbiX 76 195 106

3 SrfB 5 Spheroidin 4 1025 932

4 TatC 74 TatD DNase 119 205 262

Table 3. Some 6-MDSs from the Bible Books
substrings (support) subsequences (support)
unclean spirit (13) seated right (10)

eternal life (24) seated hand (10)
good news (23) answer truly (10)

forgiveness sin (22) full wonder (24)
chief priests (53) kingdom heaven (33)

6.1. Mining MDSs with zero support in neg

Protein Families: In Figure 3, we give the running time for varying frequency thresh-
olds (refer to a) and (maximum) gap size (refer to b). α is set to 0 for all cases. We can
see that as the maximum gap becomes larger, or as the frequency threshold δ becomes
lower, more time is required for mining. An important reason for this is that the MDS
output size increases dramatically in both situations. For example, consider the final pair
of protein families in Table 2. When g = 5 and δ = 24.3%, there are 20936 5-MDSs
output. Changing δ to 5.4%, the output size jumps to 3600822. For the same dataset
with δ = 27% and g = 3, the output size is 536, whereas for δ = 27% and g = 7, it is
314791. Some explanations for these are the following: The smaller the maximum gap
is, the earlier a candidate is likely to become distinguishing (being less likely to appear
in the neg) and so earlier pruning of the search space is possible. Similarly, earlier prun-
ing is possible for high values of the frequency constraint δ, since it is more difficult to
satisfy for longer (and thus lower) sequence nodes in the tree. Furthermore, the longer
sequences in the pos and neg are, the more time ConSGapMiner needs, since it has to
search to deeper levels in the lexicographic tree

Books of the Bible: Experimental results concerning the Bible books are shown in Fig-
ure 3. Looking at these figures, we can see that ConSGapMiner operates much faster on
this kind of data. The larger alphabet means that non-minimal distinguishing pruning
happens very early in the lexicographic tree, while the small average length means the
tree cannot become too deep. Table 3 lists some of the patterns returned when mining
the 6-MDS. Both contiguous patterns (substrings) and non-contiguous patterns (subse-
quences) are shown, with the number of times they occur. Obviously, for human un-
derstanding of the patterns, the meaning of the substrings is more straightforward than
subsequences. However, subsequence contrasts can sometimes capture combinations of
interesting words that are not found by substrings.

6.2. Mining MDSs with non-zero support in negative

Figure 4 shows the experiments of the four protein family pairs with varying α, fixed δ
and g. ConSGapMiner runs faster when α is bigger. This is because, as α increases, it
becomes easier for a candidate pattern to become distinguishing, because it is easier for
its support in neg to be below α. When this happens, the subtree of the candidate pattern

18 X.Ji et al

Family pair 1 (a): runtime vs δ, for
g = 5, α = 0.

Family pair 1 (b): runtime vs g, for
δ = 5(31.25%), α = 0.

Family pair 2 (a): runtime vs δ, for
g = 5, α = 0.

Family pair 2 (b): runtime vs g, for
δ = 8(10%), α = 0.

Family pair 2 (a): runtime vs δ, for
g = 4, α = 0.

Family pair 2 (b): runtime vs g, for
δ = 5(100%), α = 0.

Family pair 3 (a): runtime vs δ, for
g = 5, α = 0.

Family pair 3 (b): runtime vs g, for
δ = 20(27%), α = 0.

Bible: runtime vs δ for g = 6. Bible: runtime vs g for δ = 0.13%.
Fig. 3. Zero α experiments for protein families and Bible books.

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 19

Family pair 1: runtime vs α, for g =
5, δ = 18.75%.

Family pair 2: runtime vs α, for g =
5, δ = 7.5%.

Family pair 3: runtime vs α, for g =
5, δ = 40%.

Family pair 4: runtime vs α, for g =
5, δ = 13.5%.

Fig. 4. Non-zero α experiments for protein families.

can be pruned and the search space becomes smaller. But as α increases, the contrast
information carried by the mined patterns may be weaker because potentially more
negative sequences can match them as well. From Figure 4 we can also see the time used
by minimization procedure. This post-processing step only takes a small proportion of
the total running time.

6.3. Distributions of the MDS patterns and effect of the length constraint

We also examined the distribution of the MDSs mined from the four protein family
pairs. From Figure 6 we can see that the number of patterns drops while the support
increases. The patterns with high support in pos and low (even 0) support in neg are
considered to capture the most significant contrast information and considered to be
more valuable.

We now look at the patterns by considering their median lengths. Candidates with
smaller lengths are more easily found in neg; so a pattern needs to be reasonably long
to capture enough information to distinguish pos from neg. Also the minimization post-
process removes a lot of long patterns because some shorter subsequences are already
contained.

The speedups that result from using a maximum length constraint for the second
pair of the protein families in 2 are now shown. From Figure 5 we can see that as
the maximum length goes down, the mining process achieves a considerable speedup,
due to the depth of the lexicographic tree being no more than the maximum length
parameter.

From a classification point of view, the best patterns are those with high support
in pos, low support in neg and small lengths. These patterns capture strong contrast
information and are more likely to be contained in an unknown (test) sequence and
contribute to the identification of the most likely class (in a classification scenario). But
as we can see from the diagrams, these ”useful” patterns are relatively few. In order

20 X.Ji et al

Fig. 5. Varying the maximum length constraint (g = 5, α = 0).

to get enough ”useful” patterns, parameters need to be carefully set. The relationship
between parameter settings and the accuracy of classifiers is likely to depend on specific
dataset properties, but is an interesting topic for future work.

7. Discussion and Future Work

The results in the previous section are only a snapshot of the experiments we performed.
We also tested ConSGapMiner on a number of other protein datasets, with overall per-
formance being similar and pleasing overall. We now look at the complexity of the
algorithm, discuss some limitations and consider future work.

7.1. Complexity analysis

We analyze the time and space complexity of ConSGapMiner. Let L be the average
length of the sequences; A be the size of the alphabet; N be the total number of the
sequences in pos and neg.

Space complexity: Each bitset takes L/8 bytes to store and each bitset array takes up
(L∗N)/8 bytes. Initially all the single-item bitset arrays use up to (A∗L∗N)/8 bytes.
During the candidate generation, a depth-first search is performed in the lexicographic
tree. Suppose the longest pattern’s length is l, then the upper bound of the memory us-
age is (without any pruning of the search space): (l ∗ A ∗ L ∗N)/8 bytes. At runtime,
the deeper the candidate is located in the tree, the more branch pruning is possible so
the actual usage of memory is always less than (l ∗A ∗L ∗N)/8. For the minimization,
suppose the average length of the patterns is lavg and each item in the sequence can be
stored in 1 byte (that means A is less than 256 which is sufficient in most bio-sequence
mining problems) and the total number of minimal distinguishing subsequences is Tpat.
In the prefix tree, each node contains 1 byte for the item and 4A bytes for the children
links (suppose the machine is 32bit one). The upper bound memory used to store the
tree is lavg ∗ Tpat ∗ (4A + 1) considering no sharing of the prefix. So the memory us-
age by ConSGapMiner is max(l ∗A ∗ L ∗N)/8, lavg ∗ Tpat ∗ (4A + 1). Suppose we
have 1GB of memory, a reasonable assumption for today’s hardware; suppose A is 20,
which is the case for amino acids in proteins; and suppose the longest pattern contains
no more than 20 amino acids and that the average length of the MDSs is 10. Then Con-
SGapMiner can handle a dataset having an average length L of 1000 and the number
of sequences N of 20000, within (20 ∗ 20 ∗ 1000 ∗ 20000)/8 = 953MB, assuming an

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 21

Family pair 1 (a): Pattern distribution
according to supports (g = 9, δ = 31.25%

and α = 0).

Family pair 1 (b): Pattern distribution
according to lengths (g = 9, δ = 31.25%

and α = 0).

Family pair 2 (a): Pattern distribution
according to supports (g = 5, δ = 7.5%

and α = 0).

Family pair 2 (a): Pattern distribution
according to lengths (g = 5, δ = 7.5%

and α = 0).

Family pair 3 (a): Pattern distribution
according to supports (g = 4, δ = 40%

and α = 0).

Family pair 3 (a): Pattern distribution
according to lengths (g = 4, δ = 40% and

α = 0).

Family pair 4 (a): Pattern distribution
according to supports (g = 5, δ = 16.20%

and α = 0).

Family pair 4 (a): Pattern distribution
according to supports (g = 5, δ = 16.20%

and α = 0).
Fig. 6. Pattern distributions

22 X.Ji et al

output size 1000000 of MDSs. ConSGapMiner is thus likely to be practical for many
bioinformatic applications.

Time complexity Suppose Nexp nodes in the lexicographic tree are explored by ConS-
GapMiner and the maximum gap constraint is g. A pre-condition of the following anal-
ysis is that byte-wise bit operations can be finished in constant time and checking for
whether a bitset contains 1 or not can also be done in constant time. For each bitset, g+1
right shifts and ORing the intermediate bitsets require 2(g + 1)L/8 time to finish. The
last AND operation takes another L/8 time. So for each node, 2∗N ∗ (g+2)∗L/8+N
time is used to generate the bitset array and determine Countpos and Countneg . For
the total Nexp nodes, the time used to mine all the MDSs is roughly Nexp ∗ (2 ∗ N ∗
(g + 2) ∗L/8 + N). For short protein segments with maximum length no more than 64
or 32, all bit operations can be finished in constant time and soConSGapMiner will be
extremely fast.

7.2. Limitations

We now discuss some of the limitations of ConSGapMiner. Firstly, for very large maxi-
mum gap constraint, the shift operation of the bitsets may become costly. Secondly, for
extremely large datasets with many sequences longer than 10K, there may be insuffi-
cient main memory to use ConSGapMiner. From this point of view, it may be worth-
while to examine schemes for bitset compression. Finally, the parameters of δ, α, g and
q all have to be chosen by the user in order to give useful patterns. For users who lack
knowledge of the structure of the datasets, this may be a very difficult task. Hence, it
may be worthwhile to instead focus on “parameter free” mining (Tzvetkov et al, 2003)
mining the top k most distinguishing sequences.

7.3. Window Size Constraint

As mentioned earlier, the number of MDS patterns present for high dimensional datasets
can be very large. Gap size is certainly an important way of reducing this output size. A
window size constraint (limiting the maximum gap between the first and last item in an
MDS) appears to be more difficult to deal with and to require the maintenance of more
involved data than bitsets.

7.4. Suitability for Classification

The focus of this paper has been presenting an efficient algorithm for mining MDS
patterns. Of course, there is the important related question of how such patterns may
be used. We believe these patterns are interesting, due to their intuitive, human under-
standable form and ability to capture strong contrasts. Such contrast patterns can be
used directly by humans, and they can be used to build accurate classifiers. We have
carried out some preliminary experiments (not included in this paper) which indicate
that a simple classifier model built from these patterns is able to give very promising
predictive power for determining the correct protein family of an unknown sequence,
an important research topic in bioinformatics.

Evaluating a range of classifiers built using MDSs to select an optimal one is an
interesting direction. One possibility is to form a high dimension feature space with the

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 23

MDSs and then use an SVM to predict in this space dimension. This kind of direction
has been followed in (She et al, 2003), although only frequent substrings were used.

7.5. Using Different Gaps for pos and neg Datasets

As mentioned earlier, ConSGapMiner can be easily modified to mine patterns using a
gap constraint for the neg dataset which is different than that used for the pos dataset.
For example, mine all patterns using g = 0 in pos and g = 20 in neg. This will yield
MDSs which appear as substrings in pos and which have a very strict definition of non
appearance in neg - they must not appear as a substring, or as any subsequence with
gap less than 20. These can be thought of as being contrasts that are much sharper than
those that would be obtained if g = 0 were used for both datasets.

8. Concluding Remarks

We have introduced the data mining problem of minimal distinguishing subsequences.
These patterns can capture essential contrast information between different classes of
sequences.

Algorithmically, we studied the efficient mining of minimal distinguishing subse-
quences and made the following major contributions: (a) A prefix growth framework
for mining MDSs, utilizing a number of pruning techniques. (b) A bitset-manipulation
based technique for checking gap constraints. Analysis and experiments show that our
approach works well for a number of datasets, particularly high dimensional proteins.
(c) Some extensions of our algorithm show that it is flexible and can be extended easily
to deal with the mining of some other pattern types. (d) A thorough study of the perfor-
mance of the ConSGapMiner and the properties of the MDSs.

Acknowledgements: This work was partially supported by National ICT Australia. National ICT Australia is
funded by the Australian Government’s Backing Australia’s Ability initiative, in part through the Australian
Research Council.

24 X.Ji et al

References

Agrawel R and Srikant R(1995) Mining sequential patterns. In Proceedings of ICDE, pp 3–14
Antunes C and Antunes AL(2003) Generalization of Pattern-Growth Methods for Sequential Pattern Mining

with Gap Constraints. In Proceedings of MLDM, pp 239–251
Ayres J, Flannick J, Gehrke J, Yiu T(2002) Sequential pattern mining using a bitmap representation. In Pro-

ceedings of KDD, pp 429–435
Bailey J, Manoukian T, Ramamohanarao K(2003) Classification using constrained emerging patterns. In Pro-

ceedings of WAIM, pp 226–237
Bay SD and Pazzani MJ(2001) Detecting group differences: Mining contrast sets. Data Mining and Knowl-

edge Discovery
Casas-Garriga G(2003) Discovering unbounded episodes in sequential data. In Proceedings of PKDD, pp 83–

94
Chan S, Kao B, Yip CL, Tang M(2003) Mining emerging substrings. In Proceedings of DASFAA, pp 119–126
Das G, Fleischer R, Gasieniec L, Gunopulos D, Kärkkäinen J(1997) Episode matching. In Proceedings of

CPM, pp 12–27
Dong G and Li J(1999) Efficient mining of emerging patterns: Discovering trends and differences. In Pro-

ceedings of KDD, pp 43–52
Dong G and Li J(2005) Mining Border Descriptions of Emerging Patterns from Dataset Pairs. In Knowledge

and Information Systems 8(2), 178–202.
Dong G, Zhang X, Wong L, Li J(1999) CAEP: Classification by Aggregating Emerging Patterns. In Proceed-

ings of Int’l Conf. on Discovery Science, pp 30–42
Fischer J and Raedt LD(2004) Towards Optimizing Conjunctive Inductive Queries. In Proceedings of

PAKDD, pp 625–637
Gusfield D(1997) Algorithms on strings, trees and sequences, computer science and computational biology.

Cambridge
Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu M(2000) Freespan: frequent pattern-projected sequen-

tial pattern mining. In Proceedings of KDD, pp 355–359
Hirao M, Hoshino H, Shinohara A, Takeda M, Arikawa S(2003) A practical algorithm to find the best subse-

quence patterns. Theor. Comput. Sci., 292(2):465–479
Ji X, Bailey J, Dong D(2005) Mining minimal distinguishing subsequence patterns with gap constraints. In

Proceedings of ICDM, pp 194–201
Lesh N, Zaki MJ, Ogihara M(2000) Scalable feature mining for sequential data. IEEE Intelligent Systems,

15(2):48–56
Li J, Dong G, Ramamohanarao K(2001) Making use of the most expressive jumping emerging patterns for

classification. Knowl. and Inf. Syst., 3(2):131–145
Maier D(1978) The complexity of some problems on subsequences and supersequences. Journal of ACM,

25(2):322–336
Mannila H, Toivonen H, Verkamo AI(1995) Discovering frequent episodes in sequences. In Proceedings of

KDD, pp 210–215
Méger N, Rigotti C(2004) Constraint-based mining of episode rules and optimal window sizes. In Proceedings

of PKDD, pp 313–324
Mitchell TM(1982) Generalization as Search. Journal of Atrifical Intelligence, 18(2):203–226
Narasimhan G, Bu C, Gao Y, Wang X, Xu N, Mathee K(2002) Mining protein sequences for motifs. Journal

of Computational Biology, 9(5):707–720
Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M(2001) Prefixspan: Mining sequential

patterns by prefix-projected growth. In Proceedings of ICDE, pp 215–224
Raedit LD, Kramer S(2001) The Levelwise Version Space Algorithm and its Application to Molecular Frag-

ment Finding. In Proceedings of IJCAI, pp 853–862
She R, Chen F, Wang K, Ester M, Gardy JL, Brinkman F(2003) Frequent-subsequence-based prediction of

outer membrane proteins. In Proceedings of KDD, pp 436–445
Tronı́cek Z(2001) Episode matching. In Proceedings of CPM, pp 143–146
Tzvetkov P, Yan X, Han J(2003) TSP: Mining Top-K Closed Sequential Patterns. In Proceedings of ICDM,

pp 347–354
Wang J, Han J(2004) BIDE: Efficient mining of frequent closed sequences. In Proceedings of ICDE, pp 79–90
Webb GI, Butler S, Newlands D(2003) On detecting differences between groups. In Proceedings of KDD,

pp 256–265
Yan X, Han J, Afshar R(2003) Clospan: Mining closed sequential patterns in large databases. In Proceedings

of SDM
Zhang M, Kao B, Cheung D, Yip K(2005) Mining Periodic Patterns with Gap Requirement from Sequences.

In Proceedings of SIGMOD

Mining Minimal Distinguishing Subsequence Patterns with Gap Constraints 25

Zaki MJ(2000) Sequence mining in categorical domains: Incorporating constraints. In Proceedings of CIKM,
pp 422–429

Zaki MJ(2001) Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42(1/2):31–
60

Author Biographies

Xiaonan Ji received a B.E. degree from San Yat-sun University, Guang Dong,
China, in 2003. He is currently a Phd student at the Department of Computer Sci-
ence and Software Engineering, University of Melbourne, Australia. His research
interests include data mining especially sequence data mining with application in
bioinformatics.

James Bailey received the Ph.D. degree from University of Melbourne in 1998.
He is currently a Senior Lecturer at the Department of Computer Science and
Software Engineering, University of Melbourne, Australia. He has also worked
at both Kings College and Birkbeck College, University of London. His main re-
search interests are in data mining, agent systems and XML technologies and he
has over 50 scientific publications. He has served on numerous international pro-
gram committees and was program co-chair of the Australasian Database Con-
ference in 2006 and 2007.

Guozhu Dong received the Ph.D. degree from the University of Southern Cali-
fornia in 1988. He is currently an associate professor at Wright State University.
He also taught at the University of Melbourne and Flinders University, and was
a visiting scientist at Lucent Bell Labs, KRDL (I2R) Singapore, RIKEN Japan,
UCSB, Simon Fraser U, U of Georgia, and UIUC. His main research interests are
in the areas of databases, knowledge bases, data mining, and bioinformatics. He
has over 90 scientific publications and 3 US patents. He is a senior member of
IEEE and a member of ACM. He has served on program committees of numer-
ous major database and data mining conferences, including IEEE ICDE, IEEE
ICDM, ICDT, ACM KDD, ACM PODS, VLDB, etc. He was a Program Com-
mittee co-chair of WAIM 2003. He has served on the international editorial board
of International Journal of Information Technology.

Correspondence and offprint requests to: James Bailey, Department of Computer Science and Software En-
gineering, University of Melbourne, Victoria 3053, Australia. Email: jbailey@csse.unimelb.edu.au

