
Mining, Ranking, and Using Acronym Patterns

Xiaonan Ji1?, Gu Xu2, James Bailey1, and Hang Li2

1 NICTA Victoria Laboratory, Department of CSSE, University of Melbourne,
Australia

{xji,jbailey}@csse.unimelb.edu.au
2 Microsoft Research Asia, 4F, Sigma Center, No. 49, Zhichun Road, Haidian

District, Beijing, 100080, China
{guxu,hangli}@microsoft.com

Abstract. Techniques for being able to automatically identify acronym
patterns are very important for enhancing a multitude of applications
that rely upon search. This task is challenging, due to the many ways
that acronyms and their expansions can be embedded in text. Methods
for ranking and exploiting acronym patterns are another related, yet
mostly untouched area. In this paper we present a new and extensible
approach to discover acronym patterns. Furthermore, we present a new
approach that can also be used for both ranking the patterns, as well
as utilizing them within search queries. In our pattern discovery system,
we are able to achieve a clear separation between higher and lower level
functionalities. This enables great flexibility and allows users to easily
configure and tune the system for different target domains. We evaluate
our system and show how it is able to offer new capabilities, compared
to existing work in the area.

1 Introduction

An acronym is a word formed from the parts of a full name and is used to
stand for that name. For example, CPU can be used to stand for “Central
Processing Unit”. Recognizing acronyms and their full names is useful in many
document processing applications. Alternatively, acronyms are often used by
users as terms within search queries. By being able to replace acronyms with
their most appropriate expansions, a search engine can potentially deliver better
search results.

Most of the previous work in this area concentrates on identifying acronym
patterns. The drawbacks are either a lack of extensibility (such as [10, 6, 9, 8])
or heavy reliance on the availability of a remarked training corpus (such as [12,
2]). In contrast, our new acronym mining system clearly separates higher-level
mapping strategies from lower-level mapping rules and is available to achieve a
high degree of flexibility. Users can easily add new rules or turn on/off existing
ones.

? Part of the work has been done at Microsoft Research Asia.

A new and interesting related problem is the ability to rank and deploy
acronym patterns for online search. The purpose of ranking method is to properly
appraise different patterns, by taking into account the popularity of acronym
patterns in conjunction with standard confidence measures in their correctness.
The ability to rank acronym patterns can be particularly attractive for online
search applications, where the ambiguity of acronyms can cause problems for
keyword-matching based IR systems. If the IR system can recognize acronyms
and their most popular expansions, the retrieved results can be ranked more
appropriately.
Related work. Some algorithms discover acronym patterns by finding a best
alignment from acronym letters to letters of words in the full name. Some of them
use predefined rules [10, 14, 11, 9], while others use machine learning methods [2,
12]. An interesting idea that aims to identify syntax-based relationships for word
phrases is studied in [1, 15]. These methods can be used to discover various types
of patterns such as acronyms and expansions or books and authors. Acrophile is
an online acronym dictionary based on work in [6]. It uses a very simple method
of acronym ranking, which is just based on counting acronym frequencies. We
are not aware of any research which has addressed the problems of how to rank
acronym patterns and how to use them for query extension.
Our contributions. In this paper, we introduce a new acronym pattern mining
framework called AcroMiner. AcroMiner uses an architecture built on mapping
rules, but allows users to flexibly configure predefined rules or add new ones. Ex-
periments show that AcroMiner is able to handle large data sets and can achieve
promising results. Furthermore, we also address the novel problems of how to
rank acronym patterns and extend acronym queries using their expansions.

2 Preliminary Definitions

The full name of an acronym is called its expansion. The way of coming up with
the acronym from the expansion is called the mapping from the former to the
latter. This mapping can be broken into lower-level mappings from individual
letters of the acronym to positions in the expansion. In this paper, letters of
acronyms and the corresponding positions of the expansions are underlined, in
order to show how acronyms are mapped to expansions. An acronym pattern is
the tuple of an acronym word (A) and its expansion (E), denoted as <A, E>.

An acronym may stand for multiple expansions. For example, WTO stands
for “World Trade Organization” as well as “World Tourism Organization” and
sometimes even “World Toilet Organization”. This property is called the ambi-
guity of acronyms. On the other hand, an expansion is usually abbreviated by
only one acronym. We call this property the unambiguity of expansions.

This paper discusses the following problems. The mining problem: identi-
fying acronym patterns from documents. The ranking problem: recognizing the
acronym patterns and then ordering them by a popularity measure. The acronym
query extension problem: using ranked acronym pattern set to improve the ca-
pability of an IR system to handle queries containing acronyms.

Given a set of documents D = {s1, s2, ..., sn}, the occurrence frequency (tf) of
an object (e.g. a word or an acronym pattern) p is the total number of occurrences
of p in documents of D , that is, tf (p) =

∑n
i=1 |{o ∈ si|o = p}|. The document

frequency (df) of p is the number of documents containing p, that is, df (p) =
|{si|o ∈ si and o = p}|.

Letters contained in documents3 are categorized as follows. Invisible let-
ters: tab (ASCII 09), line feed (ASCII 10), carriage return (ASCII 13) and
space (ASCII 32). Punctuation letters: exclamation mark (!), question mark (?),
brackets ((,), [,], <, >, {, }), hyphen (-), underscore (), colon (:), semi-
colon (;), comma (,), period (.), slash (/), apostrophe (’), quotation marks("",
‘’). Alphabetical letters: [A-Z] and [a-z]. Numerical letters: [0-9]. Symbolic letters:
@, ~, #, $, %, ^, \, &, *, +, =, |.

Letters that are not allowed to be contained in acronyms and expansions are
marked as delimiters. Delimiters indicate the boundaries of potential expansions.

3 The Framework of AcroMiner

AcroMiner consists of four components: document preprocessing, identification
of acronyms, identification of acronym patterns and postprocessing. The four
components operate sequentially: the outputs of earlier components are input
into the later ones.
Document Preprocessing. The input documents are reformatted in the first
component. The preprocessing removes meta data, marks some punctuation and
symbolic letters as delimiters and concatenates sentences from a document into
a single long sequence.
Identifying Acronym Words. The second component identifies acronyms
from input sequences. A regular expression R is used to identify acronyms. Dur-
ing the scan of word sequences, each word w is checked to see whether it satisfies
R or not. The regular expression currently used in AcroMiner is:

R={num}?((U{sep}?)+([{num}, L, {sym}])?)?(U{sep}?)+([{num}, S])?

In R, {num} stands for numerical letters; U means alphabetical letters writ-
ten in uppercase ([A-Z]); {sep} stands for period (.); L stands for alphabetical
letters written in lowercase ([a-z]); {sym} stands for ‘&’, ‘/’ or ‘-’; S stands for
lowercase letter ‘s’; (. . .) is used to group subexpressions; [. . .] is used to wrap al-
ternative subexpressions; ‘?’ means that the preceding subexpression may appear
at most once; ‘+’ means that the preceding subexpression appears at least once.
R covers the format of the majority of acronyms, such as “U.S.A.”, “SVMs”,
“3D”, “P2P”, “DoD”, “AT&T” and “TCP/IP”.

It could be the case that there are acronyms written in different ways to
that specified by R. For example, the acronym of “Tool Command Language”
is written as Tcl rather than TCL4. In order to discover these acronyms, two
3 In this paper we only consider documents written in English and encoded by ASCII.
4 According to Tcl Wikipedia: http://en.wikipedia.org/wiki/Tcl.

writing formats are additionally considered. The first writing format is: a single
word embedded in a pair of parentheses, following closely after a sequence of
words. It is denoted as . . . a sequence of words (w). . . . The other writing format
is: a sequence of words embedded in a pair of parentheses, preceded closely
by a word. It is denoted as . . . w (a sequence of words). . . . According to [15],
acronyms are usually written at the position w and the expansions are usually
contained in the sequence of words next to it.
Identifying Acronym Patterns. Once an acronym is found, the next task
is to identify the expansion it stands for. We make the assumption that an
acronym’s expansion lies close to the acronym. In other words, we only try to
identify expansions in regions appearing W words before or after the acronym
occurrence. We call these expansion regions context windows or CW s.

This problem can be divided into two levels. (a) The lower-level subproblem
deals with how to map individual letters in the acronym to individual positions
in the CW. Several letter-to-word mapping rules are used as constraints to de-
fine such mappings. Mapping rules are weighted with different mapping scores
according to a confidence measure of correctness. (b) The higher-level subprob-
lem deals with the strategy of mapping multiple letters to multiple positions.
A backtracking algorithm is used to discover all letter-to-word mappings. The
quality of the mapping from acronym to an expansion is measured by the sum
of mapping scores of the applied rules. We next discuss these subproblems in
detail.
(a) Lower-level letter-to-word mapping rules. The letter-to-word mapping
rules are categorized into three types: fixed, shiftable and neglectable. These types
are considered in the higher-level mapping strategy and their meanings will be
explained later. We now list the mapping rules.

1. A letter can be mapped to the 1st position of a non-neglectable word5, if
it is the same as the letter in that position. This is a fixed mapping rule.
For example, in <CMU, “Carnegie Mellon University”>, each letter in the
acronym is mapped to the 1st position of each word.

2. A letter can be mapped to the 2nd or 3rd position of a non-neglectable word if
it is the same as the letter in that position and its preceding letter is mapped
to the preceding position. For example, in <DASFAA, “Database Systems
for Advanced Applications”>, the first ‘A’ in the acronym is mapped to the
2nd position of the first word in the expansion. This is a shiftable mapping
rule.

3. A letter can be mapped to the leading position of a neglectable word if it is
the same as the initial letter of this word. For example, in <WOW, “World
of Warcraft”>, the letter ‘O’ in the acronym is mapped to the 1st position
of the neglectable word “of”. This is a shiftable mapping rule.

4. A letter can be mapped to a hyphen-connected word if it is the same as the
first letter of that word. A hyphen-connected word is a non-leading word in a
hyphenated phrase. For example, in the hyphenated phrase “Peer-to-Peer”,

5 Neglectable words currently used are: &, after, an, and, are, as, at, de, en, for, from,
in, is, la, of, on, or, the, to, up, with. New neglectable words can be added easily.

“to” and the second “peer” are hyphen-connected words. By applying this
rule to <XWC, “X-Windows Commander”>, the letter ‘W’ in the acronym is
mapped to the 1st position of “Windows”. This is a shiftable mapping rule.

5. For words containing English prefixes6, it is common to map two letters from
the acronym to the prefix and suffix separately. A letter can be mapped to
the first letter of the suffix by applying rule 1 given that its preceding letter is
mapped to the first letter of the prefix. For example, in <MSDN, “Microsoft
Developer Network”>, ‘S’ is mapped to the first letter of “-soft” given its
preceding letter ‘M’ is mapped to the first letter of “micro-”. This is a shiftable
rule.

6. Letters of acronyms can be mapped to sub-words of some compound words7.
A letter can be mapped to the first letter of the latter sub-word according
to rule 1 given that its preceding letter is mapped to the initial letter of the
former word. For example, in <DBA, “Database Administrator”>, ‘B’ can
be mapped to the sub-word of “database” given that its preceding letter ‘D’
is mapped to the first letter of the former sub-word. The compound word
list can be extended by users. This is a shiftable rule.

7. A letter from the acronym can be mapped to the 4th, 5th or 6th position of
a word if that word contains at least 8, 9 or 10 letters and its preceding letter
is mapped to the first letter of this word by applying rule 1. It is shiftable.

8. ‘X’ can be mapped to any word initialized with prefix “ex”. This is a fixed
rule.

9. The ending letter ‘S’ (or ‘s’) of the acronym can be neglected if no proper
mapping can be found. The reason is that the ending ‘S’ (or ‘s’) can represent
the plural format of the acronym thus have no position to be mapped to.
For example, in <SVMS, “Support Vector Machine(s)”>, the ending ‘S’ is
mapped to nothing. This is a neglectable mapping rule.

10. Numerical letters [0-9] can be mapped to their English names, e.g. in <3D,
“Three Dimension”>, ‘3’ is mapped to “three”. This is a fixed mapping rule.

11. Some special letters can be mapped to English words. In the current imple-
mentation, ‘&’ is mapped to “and”, ‘2’ is mapped to “to” and ‘4’ is mapped
to “for”. For example, in <AT&T, “American Telephone and Telegraph”>,
‘&’ is mapped to “and”. It is a fixed mapping rule.

12. If the acronym contains numerical letters, its preceding letter (if there is any)
or its following letter is repeated that many times to create a new acronym.
This newly-created acronym is also used to find possible expansions by using
other rules. For example, “W3C” can be changed to “WWWC” in order to
discover <W3C, “World Wide Web Consortium”>.

(b) Higher-level mapping strategy. The higher-level mapping strategy tells
how to map multiple letters to multiple positions. When more than one map-
6 The English prefix currently used are: anti-, auto-, bi-, bio-, cent-, centi-, chem-,

circum-, contra-, counter-, deci-, dis-, euro-, ex-, extra-, fore-, inter-, kilo-, mega-,
micro-, mini-, multi-, out-, over-, post-, pre-, pro-, quad-, semi-, sub-, super-, tele-,
trans-, tri-, manu-, ultra-. New prefixes can be added easily.

7 Compound words currently used are: data-base, play-station, on-line, world-wide,
north-west. New compound words can be added easily.

ping way is found from the acronym to a substring in the CW, the higher-level
mapping strategy picks one expansion with the highest mapping score.

We use a backtracking algorithm to explore all possible ways of mapping.
During the backtracking, the types of mapping rules decide which mappings are
not able to be changed and which ones are able to be shifted after they are
created.

If a letter is mapped to some position by a fixed mapping rule, it cannot
be changed to map to other positions. If a fixed mapping cannot be applied,
backtracking is required until a previous mapping established by a shiftable
mapping rule is found. If a letter is mapped to some position by a shiftable
mapping rule, this mapping can be removed and the letter can be mapped to
some other position to the right. The neglectable mapping rules allow a letter
to be neglected.

Each mapping rule is assigned a mapping score. These mapping scores are
used to measure the quality (the confidence of correctness) of an acronym-to-
expansion mapping. The general principles of the score setting are: longer ex-
pansions are preferred to shorter ones and regular mappings are preferred to less
regular ones. Writing formats can also give hints about correct mappings, such
as letters written in uppercase. Mapping scores can be set approximately and
still achieve good performance, as long as they reflect these principles.

Algorithm 1 AcroMiner(A, CW)
Require: A: the acronym word. CW : the context window.
Ensure: P: the set of mined acronym patterns whose acronym is A.
1: j = 1;
2: P′ = ∅;
3: while j < |CW | do
4: FindAE(A, CW, 1, j); /* P′ is used to store discovered acronym patterns whose expansions

start from the j-th position in CW. */
5: <A, E> = arg maxms(<A,Ei>){<A, Ei> ∈ P′}; /* ms(<A, E>) is the mapping score from

the acronym A to the expansion E. */
6: add <A, E> to P;
7: j = 1st position of the word following the last word of E;
8: P′ = ∅;
9: end while

Given the acronym word and a CW, the mapping strategy works according to
Algorithm 1. AcroMiner was designed to explicitly separate lower-level mapping
rules (the mapping constraints) from higher-level mapping strategy. Line 1 of
Algorithm 2 deals with choosing the applicable lower-level mapping rule for
the specific letter and the rest of the code deals with the higher-level mapping
strategy. If this line is treated as a black box, the higher-level mapping strategy
is clearly separated from lower-level mapping rules.
Acronym Pattern Postprocessing. A postprocessing step is necessary for
better acronym pattern ranking, as well as better acronym query extension. This
component merges acronym patterns containing duplicate expansions that have
the same meaning, but are written in different expressions. Once a duplication

Algorithm 2 FindAE(A, CW, i, j)
Require: i: the starting position of A. j: the starting position of CW. P′: store patterns whose

expansions start from position j in CW. ‘#’: the delimiter.
Ensure: Map letters A[i. . . |A|] to CW [j. . . k] according to certain k. If new pattern is found, add

it to P.
1: k = arg minj≤k≤|CW |{k|∃r related to the position of k}; /* r is lower-level mapping rule */

2: if k == ∅ then
3: return
4: end if
5: if ‘#’∈ CW [j. . . k] then
6: return /* Expansions containing delimiters are illegal. */
7: end if
8: if r can be applied to the mapping from A[i] to CW [k] then
9: if i==|A| then
10: add the newly discovered acronym pattern to P′;
11: else
12: FindAE(A, CW, i+1, k+1);
13: if i==1 then
14: return /* The mapping from A[1] to other positions than j is handled in AcroMiner()

*/
15: else if r is shiftable then
16: FindAE(A, CW, i, k+1); /* Try to find all the possible mappings */
17: end if
18: end if
19: else
20: if r is shiftable then
21: FindAE(A, CW, i, k+1); /* On failure, shift the letter to the next applicable position */
22: else
23: return /* If r is fixed, the failure is not shiftable, backtrack to earlier shiftable mappings

*/
24: end if
25: end if

is detected between two acronym patterns, the one having smaller document
frequency is removed and its document frequency is added to the one retained.

4 Ranking Acronym Patterns

Acronym patterns are not all equally useful. Some patterns are not popular and
used by few people. AcroMiner may mistakenly discover false patterns, where
the acronyms do not stand for mapped expansions. It is not desirable to treat the
less popular or false acronym patterns in an equal fashion to the more popular
or correct ones. A method for ranking, based on scores for the acronym patterns,
is described next.

The qualities of acronym patterns can be quantitatively measured by rank-
ing scores. The ranking score is controlled by three factors: (I) pattern popular-
ity, (II) gap between the acronym and its expansion for every occurrence of the
pattern and (III) mapping score from the acronym to the expansion for every
occurrence of the pattern.

Acronym pattern popularity is measured by document frequency. The gap
between the acronym and the expansion is measured by the number of words
in-between the acronym and the expansion. The larger the gap is, the weaker
the relevance is between the acronym and the expansion and thus there is less
confidence to say the mapping is correct. The mapping score of an acronym

pattern (more accurately, from the acronym to the expansion) is the sum of the
scores of the mapping rules that were applied to map letters of the acronym to
positions of the expansion.

The rating score (rs) of an occurrence of an acronym pattern is measured by
combining the gap and the mapping score and is given by:

rs(o) =
∑|A|

i ms(A[i])
f × |A| × g

. (1)

There, o is an occurrence of the acronym pattern <A, E>. |A| is the length of
the acronym. ms(A[i]) is the score of the mapping rule applied to map the i-th
letter of A to certain position of E.

∑|A|
i ms(A[i]) is the mapping score from

A to E. f is the maximum score among all the mapping rules. f × |A| can be
thought as the “highest achievable” mapping score obtainable for A.

The ranking score is calculated by multiplying the average rating score among
all occurrences of the acronym pattern with the popularity (df) of the pattern:

rank(p) =

∑
o∈si,o=p rs(o)

tf (p)
×df (p). (2)

As we can see, an acronym pattern is ranked by considering the “fitness” of
mapping the acronym word to the expansion and the frequency of seeing this
pattern in the data set. Patterns with higher ranking scores should be placed at
higher positions in the result list.

5 Acronym Query Extension Using Acronym Patterns

We now discuss the following questions about using acronym patterns (more
precisely, the expansions) for query extension. If a user query is submitted that
contains a word not found in a dictionary, should the system consider it as an
acronym? Should every acronym be extended by its expansions for the retrieval
task? Should the system consider all of the acronym’s possible expansions, or
only a subset of them?

Addressing these questions requires us to estimate the probability that a
query term T is an acronym corresponding to an expansion E, i.e. P (T is A,E).
Now P (T is A,E) = P (E|T is A)×P (T is A), where on the right hand side, the
former term is the probability that T stands for E, if T is definitely an acronym.
The latter term is the probability that T is used as acronym. P (E|T is A) can
be computed by:

P (E|T is A) =
rank(<A,E>)∑

Ei,<A,Ei>∈P rank(<A,Ei>)
. (3)

Equation (3) says that the probability for acronym A to stand for E, is the ratio
of the ranking score of acronym pattern <A, E>, to the sum of the ranking
scores of all patterns having acronyms as A. P (T is A) can be computed by:

P (T is A) =
df (T is A)

df (T)
, (4)

Table 1. Statistical information about misidentified patterns from V.E.R.A. data set.

Acronym length # ground truth # misidentified percentage(%)

2 700 207 30

3 5537 153 3

4 3255 11 0.3

5 and above 1709 0 0

where df (T is A) is the number of documents containing acronym pattern <A,
E> and df (T) is the number of documents containing the word T . If T is used
without any associated expansion (i.e. no expansion is discovered) in many doc-
uments, it is likely that T is not an acronym and is instead just a normal English
word.

Finally, P (T is A, E) is derived by combining equations (3) and (4):

P (T is A, E) =
rank(<A, E>)∑

Ei,<A,Ei>∈P rank(<A, Ei>)
× df (T is A)

df (T)
. (5)

For a query term T , all expansions whose probabilities (as calculated by
Equation (5)) are larger than a predefined threshold, will be selected and sub-
mitted along with T for the IR system to process with the query.

6 Experiments

Our experiments have been designed to evaluate the accuracy of AcroMiner, the
efficiency of the ranking method and the usefulness of using acronym patterns
to extend acronym queries.
Experiments on AcroMiner. The V.E.R.A8 acronym dictionary was used to
evaluate the performance of AcroMiner. This data set contains 11201 computer
and IT related acronyms and their intended expansions. AcroMiner discovered
9134 acronym patterns, of which 8763 ones were correct. The recall is 78.2%
and the precision is 95.9%. Statistics for the misidentified 371 patterns are given
in Table 1. The table shows that it is more difficult to identify acronyms with
shorter lengths. The fewer letters are in the acronym, the easier it is to mismatch
them.

The performance of the online acronym extraction system Acrophile9 can be
compared with AcroMiner on the same data set. It discovered 8570 acronym
patterns, among which 8058 ones were correct. The recall is 72% and the pre-
cision is 94%. This is not a precise comparison, because there is no means to
adjust parameters, such as the window size W , for Acrophile. A large number
of mistakes made by Acrophile were because it rigidly tried to map a letter to
the 4th, 5th or 6th position in a word.
8 Virtual Entity of Relevant Acronyms: http://cgi.snafu.de/ohei/user-cgi-bin/
veramain-e.cgi.

9 Acrophile demo: http://ciir.cs.umass.edu/irdemo/acronym/getacros.html.

AcroMiner was run on two real-world data sets in order to generate com-
prehensive acronym dictionaries for querying and other applications. The Web
database is a collection of around 20 million crawled web pages. The Wiki data
set10 contains around 4 million Wikipedia articles written in XML. Only the
plain text content was used for pattern mining and lower-level mapping rules 2
and 7 were switched off. It took roughly 12 hours to discover 563440 acronym
patterns from the Web database and 2.5 hours to discover 118028 acronym pat-
terns from the Wiki database. This time includes both the mining and ranking
processes. On average, almost three new acronym patterns were discovered from
every 100 Wikipedia articles or web pages. For the Web database, each acronym
was mapped to 4.2 expansions on average. Interestingly, the acronym “ACE”
was mapped to 493 expansions (not all of which may be valid).

It is difficult to evaluate the performance on these databases since no ground
truth is available, but precision based on random sampling can be computed in
the following way: 200 acronym patterns were randomly selected at a time and
checked in Google for their correctness. This process was repeated for four times
and the average precision measured in this way was 81%. If only the acronym
patterns that ranked among the top five were selected, the precision was 91%
and for only the top one, the precision was 98%.
Experiments on Ranking Acronym Patterns. Table 2 lists the top ranked
acronym patterns for (I) AcroMiner using the Web database, (II) AcroMiner
using the Wiki database and (III) The Acrophile [6] system. The Acrophile
online acronym dictionary was mined using military and government docu-
ments. Many of its top ranked patterns are less well-known. For the ranking
result for AcroMiner using the Web database, we compared with the ranks from
AcronymFinder11. This web site is used for human assisted collection and rank-
ing of acronym patterns using 5 levels, based on the popularity of use. The num-
ber next to each expansion indicates the ranking level given by that web site. As
shown, most of the acronym patterns were ranked similarly by both AcroMiner
and AcronymFinder, but in AcroMiner the ranking was done automatically, to
a smaller level of granularity.
Experiments on Acronym Query Extension. 161 acronym queries were
picked out from a query set12 used as the benchmark data to evaluate algorithms
of query extension.

The normalized discounted cumulative gain scoring measure (NDCG), for
each of the first-page search results from a Web search engine was used to
compare the qualities of the query results before and after being extended by
acronym patterns. We use a special operation13 to embed acronyms and ex-
pansions. The operation tells the search engine that phrases embedded should

10 Hyperlink to download Wikipedia database: http://en.wikipedia.org/wiki/

Wikipedia:Database download.
11 AcronymFinder online dictionary: http://www.acronymfinder.com.
12 This data set is product-related and its information is hidden due to privacy issues.
13 The operation is product-related and is hidden due to privacy issues. We denote it

as OP.

Table 2. Ranking results of some acronym patterns returned from AcroMiner and
Acrophile.

AcroMiner using Web database
CS AI CSU ACA
1.Counter Strike(1) 1.Artificial Intelli-

gence(1)
1.Channel Service
Unit(1)

1.American Correctional Asso-
ciation(1)

2.Computer Sci-
ence(1)

2.Amnesty Interna-
tional(1)

2.California State Uni-
versity(1)

2.American Camp Associa-
tion(1)

3.Customer Ser-
vice(1)

3.American Idol(1) 3.Colorado State Univer-
sity(1)

3.Australian Communications
Authority(1)

4.Creative Suite(1) 4.Adobe Illustra-
tor(1)

4.Charles Sturt Univer-
sity(1)

4.American Chiropractic Asso-
ciation(1)

5.Community
Server(-)

5.All Inclusive(1) 5.Christian Social
Union(1)

5.American Counseling Associa-
tion(1)

AcroMiner using Wiki database
CS AI CSU ACA
1.Counter Strike 1.Artificial Intelli-

gence
1.Colorado State Univer-
sity

1.American Camp Association

2.Club Sport 2.Amnesty Interna-
tional

2.Christian Social Union 2.American Chiropractic Asso-
ciation

3.Computer Science 3.Artificial Insemi-
nation

3.California State Uni-
versity

3.American Counseling Associa-
tion

4.Credit Suisse 4.Appenzell In-
nerrhoden

4.Cleveland State Uni-
versity

4.Amputee Coalition of America

5.Chief of Staff 5.Air India 5.Charles Sturt Univer-
sity

5.Agile Combat Aircraft

Acrophile
CS AI CSU ACA
1.Combat Support 1.Artifical Intelli-

gence
1.California State Uni-
versity

1.Associate Contractor Agree-
ments

2.Containment Spray 2.Amnesty Interna-
tional

2.Colorado State Univer-
sity

2.American Counseling Associa-
tion

3.Congenital Syphilis 3.Active Ingredient 3.Computer Software
Unit

3.Airspace Control Authority

4.Computer Science 4.Assignment In-
struction

4.Computer Software
Units

4.Airspace Coordination Area

5.Core Spray 5.Action Items 5.Conservation System
Units

5.Administrative Cost Al-
lowance

be treated equally and interchangeably but documents containing more of the
phrases are not necessarily ranked higher than the ones containing fewer of the
phrases. The results of using and not using this operation are compared.

45 acronym queries, after being extended to include their expansions, had
improvements of their NDCG scores. 86 extended queries had no NDCG score
change, while another 30 extensions led to decreases of NDCG scores. While these
results indicate that acronym extension is indeed promising, it is hard to explain
the 86 unchanged cases. The search engine we used considers many factors,
which give alternative clues about how to properly rank results, regardless of any
use of acronym patterns. It is therefore perhaps not surprising if the operation
does little to affect the overall results. Also, the data sets we used for mining
by AcroMiner to create its acronym dictionaries are still small compared to
the entire Web. So this data limitation may cause AcroMiner to miss some
popular acronym patterns. Acronym patterns are likely to provide more obvious
improvements for other types of IR systems, where keyword-matching plays a
more important role in overall ranking function.

7 Conclusion

In this paper we have studied the problem of mining acronym patterns from un-
structured documents. We have developed AcroMiner, a highly open and flexible
mining system that can handle large-scale data sets with high accuracy. We also
presented a study on how to rank acronym patterns and use them for acronym
query extension, a new problem in the area.

Acknowledgement. This work was partially supported by Microsoft Research Asia

and National ICT Australia. We thanks Jiafeng Guo and Zhichao Zhou for their helpful

suggestion.

References

1. Sergey Brin: Extracting Patterns and Relations from the World Wide Web. WebDB
(1998) 172–183

2. Jeffrey T. Chang, Hinrich Schütze, Russ B. Altman: Creating an Online Dictionary
of Abbreviations from MEDLINE. Journal of the American Medical Informatics
Association 9 (2003) 612–620

3. David Hawking, Nick Craswell, Peter Bailey, Kathleen Griffihs: Measuring Search
Engine Quality. Information Retrieval 4(1) (2001) 33–59

4. James Pustejovsky, Jose Castano, Maciej Kotecki, Michael Morrell: Automatic Ex-
traction of Acronym-Meaning Pairs from Medline Databases. Medinfo 10 (2001)
371–375

5. Kalervo Järvelin, Jaana Kekäläinen: IR evaluation methods for retrieving highly
relevant documents. SIGIR (2000) 41–48

6. Leah S. Larkey, Paul Ogilvie, M. Andrew Price, Brenden Tamilio: Acrophile: An
Automated Acronym Extractor and Server. ACM DL (2000) 205–214

7. Vladimir I. Levenshtein: Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Doklady Akademii Nauk SSSR 163(4) (1965) 845–848

8. Mendell Rimer, Michael O’Connell: BioABACUS: A Database of Abbreviations and
Acronyms in Biotechnology and Computer Science. Bioinformatics 14(10) (1998)
888–889

9. Ariel S. Schwartz, Marti A. Hearst: A Simple Algorithm for Identifying Abbreviation
Definitions in Biomedical Texts. Pacific Symposium on Biocomputing (2003)

10. Kazen Taghva, Jeff Gilbreth: Recognizing Acronyms and Their Definitions. IJDAR
1(4) (1999) 191–198

11. Jonathan D. Wren, Harold R. Garner: Heuristics for Identification of Acronym-
Definition Patterns Within Text: Toward an Automated Construction of Compre-
hensive Acronym-Definition Dictionaries. Methods of Information in Medicine 41(5)
(2002) 426–434

12. Jun Xu, Yalou Huang: Using SVM to Extract Acronyms from Text. Soft Comput.
11(4) (2007) 369–373

13. Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto: Modern Information Retrieval.
ACM Press/Addison-Wesley (1999) 0-201-39829-X

14. Stuart Yeates: Automatic Extraction of Acronyms from Text. New Zealand Com-
puter Science Research Students’ Conference (1999) 117–124

15. Jeonghee Yi, Neel Sundaresan: Mining the Web for Acronyms Using the Duality
of Patterns and Relations. Workshop on Web Information and Data Management
(1999) 48–52

