
Utilizing Common Substructures to Speedup Tensor
Factorization for Mining Dynamic Graphs

Wei Liu, Jeffrey Chan, James Bailey, Christopher Leckie,
and Ramamohanarao Kotagiri

Dept of Computing and Information Systems, The University of Melbourne, Australia
{wei.liu, jeffrey.chan, baileyj, caleckie, kotagiri}@unimelb.edu.au

ABSTRACT
In large and complex graphs of social, chemical/biological, or
other relations, frequent substructures are commonly shared
by different graphs or by graphs evolving through different
time periods. Tensors are natural representations of these
complex time-evolving graph data. A factorization of a ten-
sor provides a high-quality low-rank compact basis for each
dimension of the tensor, which facilitates the interpretation
of frequent substructures of the original graphs. However,
the high computational cost of tensor factorization makes it
infeasible for conventional tensor factorization methods to
handle large graphs that evolve frequently with time.

To address this problem, in this paper we propose a novel
iterative tensor factorization (ITF) method whose time com-
plexity is linear in the cardinalities of all dimensions of a ten-
sor. This low time complexity means that when using ten-
sors to represent dynamic graphs, the computational cost of
ITF is linear in the size (number of edges/vertices) of graphs
and is also linear in the number of time periods over which
the graph evolves. More importantly, an error estimation of
ITF suggests that its factorization correctness is comparable
to that of the standard factorization method. We empirically
evaluate our method on publication networks and chemical
compound graphs, and demonstrate that ITF is an order of
magnitude faster than the conventional method and at the
same time preserves factorization quality. To the best of our
knowledge, this research is the first work that uses impor-
tant frequent substructures to speed up tensor factorizations
for mining dynamic graphs.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Keywords
Tensor factorization; dynamic graphs; scalability.

1. INTRODUCTION
Widely used statistical data mining methods that detect

dynamic patterns are usually based on matrix operations,
such as SVD [7] and PCA [14], which can only deal with
two “dimensions” of the original data (by the “row dimen-
sion” and the “column dimension” of matrices). When data
sets are multi-dimensional such as dynamic time-evolving
networks, tensor-based methods can more effectively and
naturally represent all dimensions of the data. However,
similar to performing SVD on matrices, the use of tensors
raises the problem of tensor factorizations, from which it is
possible to identify the principle low-rank factors of a ten-
sor (i.e., the linear combinations of original dimensions that
contribute the most to the overall variance of the tensor).
These low-rank factors are important since the new feature
space formed by these factors preserves the main variance
of the original tensor.

To successfully perform tensor factorization on dynamic
graphs, a major challenge that needs to be addressed is
how to handle scalability. Scalability is an issue not only
because tensors are composed of multiple dimensions, but
also because the cardinality of each dimension in itself can
be very large. For example, if we use a 3-mode tensor,
authors×journalNames×publicationT ime, to represent a
dynamic publication network, each of the three dimensions
can have thousands or more unique values. For another
example, when one uses a tensor to represent a collection
of chemical compounds (e.g., atoms× bonds× compounds)
where each compound is a graph of atoms [11], the cardi-
nality of the third dimension of this tensor is usually in the
tens of thousands. Moreover, with new bioassays constantly
being tested over time, the number of compounds that need
to be incorporated into the tensor will tend continue to grow
larger. This phenomenon makes the computational cost of
the standard tensor factorization extremely expensive and
infeasible for analyzing time-varying graphs/networks1.

Given the scalability challenge, a good tensor factoriza-
tion method should be able to (1) factorize large tensors ef-
ficiently using much less time than standard methods, while
at the same time (2) obtain low-rank factors that preserve
the main variance of the tensors. To achieve this goal, in this

1Due to the generic nature of the iterative tensor factoriza-
tion technique we propose, we use the two terms “network”
and “graph” interchangeably.

paper we propose to reduce the time complexity of tensor
factorization by updating the factor matrices in an iterative
manner. The rationale behind this design is based on the
observation that, in many practical domains, the most im-
portant substructures of graphs are commonly shared by all
graphs, or by graphs evolving in different time periods. In
other words, it is usually not the important substructures,
but the actual combinations of these substructures, which
are changing with time or changing across different graphs.
If one has discovered the most important substructures of
a set of graphs at an earlier time, then in many domains
the graphs at a later time can generally be well explained
by those earlier substructures using an efficient updating
procedure. From the perspective of tensor factorization on
graphs, if we have found low-rank factors of a subset of a
tensor, then after we iteratively update these factors at a
very low cost, the rest of the tensor data can also be well
represented by the updated factors. The notion of an im-
portant substructure is essentially a column vector from a
low-rank factor matrix, which comprises a linear combina-
tion of the original features (e.g., edges). Note that we do
not assume the structural changes of the graphs are smooth
– even if the graphs change frequently, the later graphs can
still be explained by the earlier factor matrices as long as
the later graphs are comprised of important substructures
(i.e., rather than being comprised of noisy or random sub-
structures).

In the preceding chemical compound example, although
there are a huge number of compounds that can be encoded
into a tensor, most of these compounds share many common
substructures, such as aromatic rings, hydroxyls and amines.
The major difference among chemical compounds, in terms
of preserving the main variance of the data, is in what for-
mulations of those substructures comprise each compound.
There might be some special substructures that only exist in
a few specific compounds, but we note that such substruc-
tures would contribute very little in representing the main
variance of a data set, and thus would have little influence
in the decomposed factor matrices. Similarly for publication
networks, the publication patterns of an author at different
times would vary in the concrete combinations of journals or
conferences in which the author has published. For example,
we expect authors in the number theory domain to continue
to publish in number theory journals, rather than change
their focus to marketing or finance journals. To this end,
the combination of number theory journals are the common
important factors that can be discovered early on from a
subset of a tensor.

Based on these observations, in this paper we propose a
novel factorization strategy that first factorizes a subset of
a tensor, and then iteratively refines its factor matrices by
efficient and effective updating operations on the remaining
data in the tensor. Moreover, we generalize the iterative fac-
torization process from one mode to all modes of a tensor,
which further reduces its overall time complexity. In sum-
mary, the major contributions of this paper are as follows:

1. We propose an iterative tensor factorization method
(ITF), which significantly reduces the time complexity
of standard tensor factorization.

2. We derive an analytical error estimation of the iter-
ative approximation made by ITF, and demonstrate
that ITF can theoretically preserve as much variance

as a standard method, when important substructures
are frequently shared among different graphs.

3. We apply the general ITF algorithm to practical prob-
lems of discovering emerging publication trends and
classifying chemical compounds, both of which demon-
strate that ITF is capable of significantly reducing com-
putation time while solving the two practical problems
with high accuracy in comparison to the standard fac-
torization method.

The rest of the paper is structured as follows. We review
related literature in Section 2. Section 3 defines the ten-
sor factorization problem, and introduces our ITF algorithm
with an error estimation. We explain how tensor decompo-
sition can be applied to dynamic graph mining in Section 4.
Details of the dataset we use and the empirical evaluations
are reported in Section 5. We conclude in Section 6 with
directions for future work.

2. LITERATURE REVIEW
In this section, we review existing methods that are closely

related to this research. A detailed survey on tensor factor-
ization methods can be found in [9].

Many factorization methods have been proposed for ten-
sor analysis based broadly on two approaches: Tucker de-
composition [19] and canonical polyadic decomposition (aka
PARAFAC/CANDECOMP decomposition) [3], both of which
can be considered as higher-order generalizations of matrix
SVD and PCA. Kroonenberg et al. [12] proposed to use
the method of alternating least squares (ALS) in solving
Tucker decomposition for three-way arrays, which was then
extended and popularized by Kapteyn et al. [8] for n-way ar-
rays. Sun et al. [16,17] have proposed methods for incremen-
tal tensor analysis, which are aimed at solving the decom-
position problem when there is a stream of many tensors:
in [16] they used sliding windows to track the changes of
covariance matrices, based on which their algorithms made
decisions on whether to update the projection matrices; and
in [17] they introduced the notion of a “forgetting factor”
which is added onto older covariance matrices. This forget-
ting factor controlled the amount of information that could
be considered in future updates. However, these methods
did not avoid the extremely expensive computational costs
of diagonalization/eigen-decomposition on any mode of a
tensor, which severely limits the efficiency of their methods.
Moreover, they did not provide any analysis of the error
estimation of their methods. Kolda et al. [10] designed al-
gorithms to improve memory efficiency for sparse tensors,
but when tensors are not highly sparse their method re-
quires much more CPU time than normal decompositions.
Recently, Schifanella et al. [15] proposed to use metadata,
which is a priori background knowledge in addition to the
original data, to design a domain hierarchy by which they
reduce the time of tensor decomposition. However, this
method cannot address more general scenarios where such
metadata is not available for the original data.

The major difference between our proposed iterative method
and the above existing methods is that the method proposed
in this paper avoids the full decomposition / diagonalization
on the covariance matrix in all modes of a tensor, which is
the main cause of the high computational complexities of
tensor factorization. Furthermore, we provide an error es-
timation of our method, which illustrates its suitability for

Table 1: Notation used in this paper

Notation Definition and Description
a lowercase normal font represents scalar values
a boldface lowercase represents vectors
U boldface uppercase represents matrices
Ui,j the scalar at the {i, j} position of U
X , Y, S calligraphic font represents tensors
Xi,j,k,... the scalar at the {i, j, k, ...} position of X

Ui the projection factor matrix on the ith dimen-
sion of X

U the set of projection matrices Ui on all dimen-
sions i; we also use Ud|jd=i to define the range
of i in U

ni the cardinality of the ith dimension of the orig-
inal tensor X ∈ R

n1×n2×...×nM

ri the desired rank of the ith dimension of the
original tensor X , which is also the cardinality
of the ith dimension of the core tensor Y

×d the tensor mode product of a tensor and a ma-
trix on the tensor’s dth dimension

mining graph data. A detailed analytical presentation of the
proposed method is provided in the next section.

3. TENSOR DECOMPOSITION
The dimensionality of a tensor is also called the tensor’s

modes. For example, matrices are tensors of 2 modes. Ta-
ble 1 lists the notation we use in the rest of the paper. We
denote scalars by letters in lowercase normal font, e.g., a;
vectors (tensors of 1 mode) by boldface lowercase letters,
e.g., a; matrices (tensors of 2 modes) by boldface uppercase
letters, e.g., U; and tensors with 3 or more modes by letters
of calligraphic font, e.g., X . A tensor can be represented
in general by a multi-dimensional array in R

n1×n2×...×nM ,
where ni (1 ≤ i ≤ M) is the cardinality of the ith mode,
and M is the total number of modes. Now we give the fol-
lowing essential definitions to introduce the overall tensor
factorization problem.

Definition 1. (Tensor mode product): The product
of the dth mode of a tensor X ∈ R

n1×n2×...×nM and a ma-
trix U ∈ R

nd×r, denoted by X×dU, is a new tensor of size
R

n1×...×nd−1×r×nd+1×...×nM defined element-wise as:

(X ×d U)i1,...,id−1,r,id+1,...,iM =

nd
∑

id=1

Xi1,i2,...,iMUid,r.

Definition 2. (Tensor mode unfolding): The unfold-
ing (i.e., matricization) on the dth mode of a tensor X ∈
R

n1×n2×...×nM , denoted by unfold(X , d), leads to a matrix

X ∈ R
nd×

∏
i6=d

ni by keeping the index d fixed and varying
the other indices of X .

Tucker Factorization
The overall problem we aim to solve in this paper is to ef-
ficiently factorize a tensor in the manner of Tucker factor-
ization [19], which approximates a large tensor by using a
small core tensor by changes of basis:

Definition 3. (Tucker tensor factorization): Given
a M -mode tensor X ∈ R

n1×n2×...×nM and desired low ranks

Algorithm 1 HOSVD(X , r1, r2, ..., rM): the standard method
for higher-order singular value decomposition.

Input: the original tensor X , and the desired ranks on each
mode r1, r2, ..., rM .
Output: a core tensor Y, and projection factor matrices
Ud(1 ≤ d ≤M).
——————————————–
1: for d = 1,2,...,M do
2: Xd ← unfold(X ,d) by Definition 2;
3: Compute the covariance matrix of the dth mode un-

folded matrix Cd = XdX
T
d ;

4: Ud ← the first rd eigenvectors of Cd;
5: end for
6: Y ← X ×1 (U

1)T ×2 (U
2)T ...×M (UM)T ;

7: return Y and Ud(1 ≤ d ≤M).

Algorithm 2 Tucker(ǫ,X , r1, r2, ..., rM): the standard al-
ternating least square method for Tucker tensor decomposi-
tion.
Input: convergence threshold ǫ, original tensor X , and the
desired ranks r1, r2, ..., rM .
Output: core tensor Y, and the projection matrices Ud(1 ≤
d ≤M).
——————————————–
1: Initialize Ud(1 ≤ d ≤M) by HOSVD(X , r1, r2, ..., rM);
2: repeat
3: for d = 1, 2, ..., M do

4: X ′ ← X ×i (U
i|Mi=1&i6=d)

T ;
5: X′

d ← unfold(X ′,d);
6: Covariance matrix of current mode C′

d ←X′
dX

′T
d ;

7: Ud ← the first rd eigenvectors of C′
d;

8: end for
9: Y ← X ×d (Ud|Md=1)

T .
10: until the increase of ||Y|| is less than ǫ.
11: return Y and Ud(1 ≤ d ≤M).

on each mode r1, r2, ..., rM , factorize X into a core ten-
sor Y ∈ R

r1×r2×...×rM and M projection matrices Ud ∈
R

nd×rd(1 ≤ d ≤M), such that the factorization error ‖X −
Y ×1 U

1 ×2 U
2.... ×M UM‖ is minimized.

In other words, the Tucker tensor factorization is equivalent
to solving the following minimization problem:

min f(Y,Ud) = min ‖X − Y ×1 U
1
....×M U

M‖ (1)

where 1 ≤ d ≤ M . The core tensor Y is an approxima-
tion of the original tensor X by changing its basis through
projecting all original data into Ud on each dimension. The
function f(Y,Ud) can be minimized to zero if rd = nd for all
modes d. How to solve Equation 1 scalably and effectively is
the main challenge we address in this paper. We start from
introducing the standard method of solving Equation 1 in
the next subsection.

3.1 Standard Method for Tensor Decomposi-
tion

Higher-order singular value decomposition (HOSVD) [4]
forms the basis of many tensor decomposition methods de-
veloped recently [5, 18]. Details of the HOSVD method are
shown in Algorithm 1.

In line 2 of Algorithm 1, the matrix Xd obtained from
unfolding on the dth mode of X is of size nd×

∏

i6=d
ni, and

hence the formulation of the covariance matrices has com-

Figure 1: Graphical representation of the main process of the one-mode ITF algorithm. For illustrative purposes, we use the
notion of two dimensional “slices” to represent the partitions of the original tensor. However we note that the ITF algorithm
is designed to deal with partitions of any number of dimensions.

plexity O(n2
d

∏

i6=d
ni). The covariance matrix C obtained

in line 3 is of size nd×nd, which means the time complexity
for computing the eigenvectors of C in line 4 is O(n3

d) [2].
Therefore the overall time complexity for Algorithm 1 is
O(

∑M

d=1
n3
d +

∑M

d=1
n2
d

∏

i6=d ni), which is in cubic time for
each mode.

In the standard Tucker tensor factorization, it is com-
mon to use alternating least squares (ALS) (shown in Al-
gorithm 2) to repeat the singular vector projection pro-
cess until the variance of the core tensor Y stops increas-
ing. Because the size of the projected matrix X′

d formed
in line 5 of Algorithm 2 is of size nd ×

∏

i6=d
ri, the com-

plexity of the covariance matrix formulation in line 6 is
O(n2

d

∏

i6=d
ri). The body of the for loop of the Tucker

method is very similar to HOSVD, which makes it easy to
show that the overall time complexity of the Tucker method
is O(C(

∑M

d=1
n3
d+

∑M

d=1
n2
d

∏

i6=d ri)), where the first term is
for the eigen-decomposition and the second is for computing
the covariance matrices (the factor C is the number of itera-
tions needed for convergence, which can be non-trivial). The
complexity of the standard Tucker method is also in cubic
time to each mode of a tensor, which is very expensive.

3.2 ITF Method for One-mode Iterative Fac-
torization

In this subsection, we explain how we solve the factoriza-
tion problem iteratively in one mode. The solution to the
problem in Equation 1 has the following property:

X ≈ Y ×1 U
1
....×M U

M (2)

For brevity, we use U to denote the product of projection
factor matrices Ud|Md=1, and use YU to denote the product of
the core tensor Y with all projection matrices. Then Equa-
tion 2 can be rewritten as X ≈ YU. From the orthogonality
of U we know that Y = YUUT ≈ XU

T , which means Y is X
projected on the subspace formed by U. Similarly we have

X ≈ YU ≈ (XU
T)U ≈ XU

T
U. (3)

Now we derive our one-mode ITF method which refines
the core tensor and projection matrices iteratively in one
mode. As illustrated in Figure 1, we first factorize a small
sub-tensor S from the original tensor X , and then update
the obtained factorization by gradually taking into account
the remaining data of X . Counting from the zero index
on the dth mode of X , we extract a sub-tensor whose dth
mode is the same size as the desired core tensor and whose
other modes are the same sizes as those of X , so we have a
sub-tensor S ∈ R

n1×n2×...nd−1×rd×nd+1...×nM .

Without loss of generality, we assume it is the 1st mode of
X where a sub-tensor S is extracted, so S ∈ R

r1×n2...×nM .
We denote the formulation of S by S ≡ X1:r1 where we use
the subscripts to represent the size of S on the 1st mode
and omit the fixed sizes nd (2 ≤ d ≤ M) on other modes.
By partitioning the first mode of X and extracting the sub-
tensor, the original tensor can be represented as:

X = {X1:r1 , Xr1+1, Xr1+2, ..., Xn1
},

where the size of Xr1+i (1 ≤ i ≤ n1 − r1) is 1× n2 × n3...×
nM , which we call a slice of X .

Suppose we have obtained the factorization of the sub-

tensor: S ≡ X1:r1 ≈ Ỹ ×1 Ũ
1
×2 Ũ

2
... ×M Ũ

M
, where Ỹ

is of the same size as the desired core tensor, Ũ
1
is of size

r1×r1, and Ũ
i
|Mi=2 is of size ni×ri. Then from Equation 3 we

know X1:r1 ≈ X1:r1Ũ
T
Ũ, where Ũ denotes Ũi|Mi=1. Since the

next slice after X1:r1 (e.g., Xr1+1) was not included in the
decomposition of S , it is possible that this next slice cannot
be recovered from the projection in the subspace formed by
Ũ. So we introduce the notion of “departure”, denoted by ∆,
with which the projection recovery in Equation 3 can hold
true for Xr1+1:

Xr1+1 = Xr1+1Ũ
T
Ũ +∆. (4)

We now explain the rationale of using the departure ∆
from a graph mining perspective. By using a tensor to
represent dynamic graphs, the columns of Ũ (i.e., the sin-
gular vectors) are necessarily the major substructures (lin-
ear combinations of original features) of previous graphs.
The information contained in ∆ denotes new formulations
of substructures from the current graph that cannot be rep-
resented by previously discovered substructures in Ũ. In-
tuitively, when important representative substructures are
shared among current and previous graphs, the value of ∆
would always be small.

After factorizing the sub-tensor, we form a new tensor
{Ỹ ,Xr1+1Ũ

T+∆Ũ
T }, where the second term of this new

tensor comprises the component of Xr1+1 that can be repre-

sented in the subspace formed by Ũ, and also the“departure”
of Xr1+1 (i.e., ∆) that cannot be recovered from the subspace
projection. We factorize this new tensor into

{Ỹ ,Xr1+1Ũ
T +∆Ũ

T } = Y ′ ×1 U
1′ ×2 U

2′
...×M U

M ′
(5)

where U1′ is of size (r1 + 1) × r1 and Ui′|Mi=2 are all of
size ri × ri. Then the new updated projection matrices for
{X1:r1 ,Xr1+1} are U

′
Ũ, where U

′ denotes the set of projec-

tion matrices Ui′|Mi=1.

Algorithm 3 ITF_OneMode(X , r1, r2, ..., rM , l): iteratively
decomposing one mode of a tensor by using the 1st mode as
an illustration.
Input: original tensor X , the desired ranks r1, r2, ..., rM ,
and a mode index l on which the tensor is to iteratively
decomposed (we use l=1 as an example to explain this al-
gorithm in the paper’s texts).
Output: core tensor Y, and the set of all projection matri-
ces U.
——————————————–
1: Form a sub-tensor X1:rl from the first r1 slices of X ;

2: {Ỹ, Ũ} ← HOSVD(X1:rl , r1, r2, ..., rM);

3: Yold ← Ỹ;
4: Uold ← Ũ;
5: for i=1, 2, ..., n1 − r1 do

6: Obtain the “departure” ∆← Xr1+iU
T
U− Xr1+i;

7: Form a tensor Xnew ← {X1:rl ,Xr1+iUold +∆Uold}
8: {Ynew ,Unew} ← HOSVD(Xnew, r1, r2, ..., rM);
9: U = UnewUold;
10: end for
11: Y ← XU

T ;
12: return Y and U.

We then take {X1:r1 ,Xr1+1} as a new sub-tensor that re-
places S , and treat Xr1+2 as the new next slice from the
original X . This iterative process is repeated until we reach
the final slice of X (i.e., Xn1

). We call such an iterative
updating procedure the one-mode ITF method.

The complete procedure of ITF_OneMode is presented in
Algorithm 3, where lines 2 and 8 reuse HOSVD as a subrou-
tine. Line 1 has the time complexity of O(r31 +

∑M

d=2
n3
d +

r21
∏

i6=1
ni +

∑M

d=2
n2
d

∏

i6=d
ni), line 8 has the complexity of

O((r1+1)3+
∑M

d=2
r3d+(r1+1)2

∏

i6=1
ri+

∑M

d=2
r2d

∏

i6=d
ri),

so the overall time complexity of ITF_OneMode is
O(r31 +

∑M

d=2
n3
d + r21

∏

i6=1
ni +

∑M

d=2
n2
d

∏

i6=d ni + (n1 −

r1)
[

(r1+1)3+
∑M

d=2
r3d+(r1+1)2

∏

i6=1
ri+

∑M

d=2
r2d

∏

i6=d
ri
]

),
where among the five terms the first four terms are for de-
composing the first sub-tensor, and the last term is for up-
dating all successive n1−r1 slices of the original tensor. Note
that n1 only appears as a linear coefficient in the complexity
expression, and that is why it is possible to design a graph
mining technique based on ITF that is linear in the size of
the graphs. Moreover, as we explain in the next subsection,
this computational complexity can be further significantly
reduced by applying ITF onto all modes of a tensor.

Compared to the complexity of standard decomposition
methods, the reduced complexity of ITF_OneMode arises from
computations on the magnitude of r1 rather than n1 in
both the covariance matrices formulation and their eigen-
decompositions. We note that the standard Tucker method
becomes a special case of ITF_OneMode when r1 = n1.

3.3 ITF Method for All-mode Factorization
By applying the above iterative updating process to all

modes of a tensor, we obtain the final ITF method shown in
Algorithm 4. Starting from the first mode (line 2 to 4), this
algorithm constructs and factorizes a sub-tensor extracted
from all modes of the original tensor (line 21) before pro-
ceeding to the iterative refinement of factor matrices. We
use a recursion to formulate sub-tensors, so that after one
mode completes its updating procedure, the algorithm re-
cursively returns the decomposition of that mode to other
modes, until it reaches the last mode. This makes Algorithm

Algorithm 4 ITF(X , r1, r2, ..., rM ,l): a recursive algorithm
for iteratively decomposing all modes of a tensor.

Input: original tensor X , the desired ranks r1, r2, ..., rM ,
and a mode index l (for recursion purposes).
Output: core tensor Y, and the set of all projection matri-
ces U.
——————————————–
1: // l is uninitialized in the beginning of the algorithm.
2: if mode index l is uninitialized then
3: Initialize l ← 1;
4: end if
5: if l has not reached the last mode of X then
6: // A recursion for applying ITF to all modes.
7: l ← l + 1;
8: {Ỹ , Ũ} ← ITF(X , r1, r2, ..., rM ,l);

9: Yold ← Ỹ;
10: Uold ← Ũ;
11: // Iteratively update factor matrices on the lth mode
12: for i=1, 2, ..., nl − rl do

13: Obtain the “departure” ∆← Xrl+i − Xrl+iU
T
U;

14: Form a tensor Xnew ← {X1:rl ,Xrl+iUold +∆Uold}
15: {Ynew ,Unew} ← HOSVD(Xnew , r1, r2, ..., rM);
16: U = UnewUold;
17: end for
18: Y ← XU

T ;
19: else
20: // Factorize a sub-tensor extracted from all modes

21: {Ỹ , Ũ} ← HOSVD(X1:r1,1:r2,1:r3,...,1:rl , r1, r2, ..., rM);

22: Yold ← Ỹ ;
23: Uold ← Ũ;
24: // Iteratively update factor matrices on the last mode
25: for i=1, 2, ..., nl − rl do

26: Obtain the “departure” ∆← Xrl+i − Xrl+iU
T
U;

27: Xnew ← {X1:r1,1:r2,1:r3,...,1:rl ,Xrl+iUold +∆Uold}
28: {Ynew ,Unew} ← HOSVD(Xnew , r1, r2, ..., rM);
29: U = UnewUold;
30: end for
31: Y ← XU

T ;
32: end if
33: return Y and U.

4 different to Algorithm 3 in that any tensor being factorized
in Algorithm 4 is of size r1 × r2 × r3 × ...× rM , in contrast
to that of r1 × n2 × n3 × ...× nM in Algorithm 3.

For Algorithm 4, the complexity of line 21 (for decompos-

ing the first sub-tensor) is O(
∑M

d=1
r3d +

∑M

d=1
r2d

∏

i6=d ri),

and those of line 15 and line 28 on mode i (for decom-
posing a new sub-tensor containing a successive slice) are
O((ri+1)3+

∑

d 6=i
r3d+(ri+1)2

∏

d 6=i
rd+

∑

d 6=i
r2d

∏

i6=d
ri).

On each mode i, there exist ni − ri slices to be updated,
so the overall complexity of Algorithm 4 is O(

∑M

d=1
r3d +

∑M

d=1
r2d

∏

i6=d
ri+

∑M

i=1
(ni− ri)

[

(ri+1)3+
∑

d 6=i
r3d +(ri+

1)2
∏

d 6=i
rd+

∑

d 6=i
r2d

∏

i6=d
ri
]

). This complexity expression
explains that using one slice to update the decomposition is
cheaper than using multiple slices at a time. It also shows
that the complexity of ITF is linear in all modes of a tensor,
with all ni(1 ≤ d ≤ M) being linear coefficients only. We
can observe that the reduction in time complexity of ITF

compared to that of the standard Tucker method results
from the avoidance of computations on the magnitude of ni,
but on ri, for all modes.

Similar to the standard method, we apply the ALS method
to ITF by replacing line 1 and line 7 of Algorithm 2 with our

iterative decompositions. We omit the details of ALS for
ITF due to page limits.

3.4 Error Estimation of ITF
Our ITF method uses the notion of departure (“∆”) in the

tensor approximations. By deriving the following theorem,
we show that in ITF the update of slice Xr1+1 on the factor-
ization of sub-tensor X1:r1 is an effective approximation of
a standard direct decomposition on {X1:r1 ,Xr1+1}.

Theorem 1. Given the factorization of all previously ob-
served slices X1:r1+1 = ỸŨ and a new data slice Xr1+1, de-

note the information loss of projecting Xr1+1 onto Ũ by ∆

= Xr1+1 − Xr1+1Ũ
T
Ũ, then the approximation error of us-

ing ITF compared to using the standard method is no higher
than ||∆ −∆Ũ

T
Ũ||F , where || · ||F represents the Frobenius

norm.

Proof. From Equation 5 we have:

{Y,Xr1+1Ũ
T +∆Ũ

T } = Y ′
U

′
.

By multiplying both sides of the above equation by Ũ, we
obtain:

{Y, Xr1+1Ũ
T +∆Ũ

T }Ũ = (Y ′
U

′)Ũ

⇒ {YŨ, Xr1+1Ũ
T
Ũ+∆Ũ

T
Ũ} = (Y ′

U
′)Ũ

⇒ {X1:r1 , Xr1+1Ũ
T
Ũ+∆Ũ

T
Ũ} = (Y ′

U
′)Ũ

⇒ {X1:r1 , Xr1+1 −∆+∆Ũ
T
Ũ} = (Y ′

U
′)Ũ

(6)

The tensor {X1:r1 , Xr1+1 − ∆ + ∆Ũ
T
Ũ} is in the size of

(r1+1)×n2×n3×...×nM and the slice {Xr1+1−∆+∆Ũ
T
Ũ}

is in n2 × n3 × ...× nM .
By contrast, a direct decomposition on the new tensor
{X1:r1 , Xr1+1} is

{X1:r1 ,Xr1+1} = ŶÛ. (7)

Then by incorporating the definition of the Frobenius norm2,
the approximation error of using ITF compared to using the
standard method is

|| ŶÛ− (Y ′
U

′)Ũ ||F

= || {X1:r1 ,Xr1+1} − {Y, Xr1+1Ũ
T +∆Ũ

T }Ũ ||F

= || {X1:r1 ,Xr1+1} − {YŨ, Xr1+1Ũ
T
Ũ+∆Ũ

T
Ũ} ||F

= || {X1:r1 ,Xr1+1} − {X1:r1 , Xr1+1 + (∆Ũ
T
Ũ−∆)} ||F

=

√

√

√

√

min{r1+1,n2,n3,...,nM}
∑

i=1

σi

≤

√

√

√

√

min{n2,n3,...,nM}
∑

i=1

σ′
i

= ||∆−∆Ũ
T
Ũ||F

where σ and σ′ denote the singular values of tensor {X1:r1 ,

Xr1+1} − {X1:r1 , Xr1+1 + (∆Ũ
T
Ũ − ∆)} and {∆ − ∆Ũ

T }
respectively.

2Given a tensor A and its smallest cardinality minA, the
Frobenius norm can be derived as ||A||F =

√

tr(AA∗) =
√

∑minA

i=1
σA
i , where tr() is the trace function, σA

i are A’s

singular values, and A∗ is the conjugate transpose of A.

This theorem demonstrates that, compared to the stan-
dard method, the approximation error of ITF in the worst
case is upper bounded by a linear expression of the departure
∆ and the projection matrices Ũ, where the columns of Ũ
indicate previously discovered major frequent substructures.
This result can be used to estimate the effects of the iter-
ative updating operations on graph mining. As discussed
in Section 3.2, when important frequent substructures are
commonly shared across different graphs, the value of the
departure ∆ would typically be small, which suggests low
factorization errors of ITF. This expectation is further con-
firmed by the empirical results in Section 5.

4. APPLYING ITF TO GRAPH MINING
In the previous section we introduced different ways of

decomposing tensors. Now we explain how we use these
tensor decomposition methods to (1) weight emerging edges
(word pairs) in publication networks, and (2) classify graphs.

4.1 Weighting Emerging Edges
By using the example of publication networks, we define

an edge in a graph as a pair of key words extracted from
paper titles. We treat the mode of word pairs in a tensor as
a feature of the network, and use tensor factorization to per-
form feature selection (i.e., dimensionality reduction) on this
mode. Given the original data tensor X , both the standard
Tucker factorization (Algorithm 2) and our ITF method (Al-
gorithm 4) produce two outputs, the core tensor Y, and the
projection matrices Ud (1 ≤ d ≤ M). Moreover, the matri-
ces in all dimensions of Y are arranged in decreasing order
of the magnitudes of their variances (i.e., the ordered singu-
lar values for the case of matrix decomposition), which is an
indication of the significance of the corresponding column
vector in Ud. In this regard, to analyze the original tensor
X , we only need to keep a small number of column vectors
in each projection matrix Ud, the variances of whose cor-
responding matrices in Y can preserve the major variances
of X . Thus, suppose word pairs are in the first mode of
the tensors, in order to reduce the number of features in the
word pair mode (assume it is the first mode of X), we only
have to look at the r1 columns contained in U1. The r1
columns of U1 are linear combinations of the original fea-
tures, so if we take the Frobenius norm of each of the n1

rows of U1, these norms can be used as indications of the
significance (weights) of the original n1 features. To this
end, all original n1 word pairs have the obtained weights as-
sociated with them. These weights suggest the significance
of word pairs in each time period, which we use to weight
emerging research topics.

4.2 Classifying Graphs
We apply ITF to classification problems by utilizing the

new data points that lie in the new low-dimension feature
space formed by factor matrices. Given a set of graphs, each
of which is associated with a class, the task is to predict the
class of a new graph. For many type of graphs, one can gen-
eralize their adjacency matrices and extend them to a tensor
of 5 modes: vertices × vertices × verticesLabels × edgeLa-
bels(or weights) × observations(graph instances). One can
think of the 5-mode tensors as standard features × obser-
vations data sheets where the features are represented by
4-mode tensors. Suppose it is the first vertex dimension on
which we want to obtain low-dimension new features, then

the new feature spaces are defined by the columns of fac-
tor matrix U1. Given the original data points Doriginal, we
obtain new data points Dnew which lie in the new spaces
by projecting the original data onto the first factor matrix:
Dnew = DoriginalU1. When Dnew is of multi-mode, we un-
fold Dnew (c.f. Definition 2) on its instance dimension so
that it can be learned by standard classifiers. These new
data points Dnew produced by ITF are what we use in the
classification process in comparison with data points pro-
duced by the standard Tucker method.

5. EXPERIMENTS AND ANALYSIS
The objectives of our experiments are to (1) evaluate the

computation time costs and preservation of variances of the
ITF algorithms for different settings of the desired ranks, and
to (2) test the practical usefulness of the variance preserved
by ITF in terms of weighting emerging edges and classifying
graphs. We implement3 ITF by using the Matlab Tensor
Toolbox [1]. We use the DBLP bibliography [13] to obtain
the publication networks, and use chemical compound data
to perform graph classification. The convergence threshold ǫ

of ALS (c.f. Algorithm 2) is set to 10−4 for both the standard
Tucker and the ITF method. Experiments are conducted on
a PC with a 3.0GHz CPU and 4GB memory.

5.1 Weighting Publication Networks
From the DBLP repository, we select journals and confer-

ences whose full book/proceeding titles contain the phrases
“data mining” or “knowledge discovery” over a 20 year pe-
riod from 1991 to 2010. Four properties (i.e., dimensions)
are extracted: (i) pairs of words that appeared in paper
titles; (ii) (co-)authors; (iii) booktitles (names of journals
and conferences/workshops proceedings); (iv) time of pub-
lication. To avoid using trivial features, we only include
word pairs that appeared at least 5 times and authors who
have at least 5 publication records in DBLP through the 20
years. After removing stop words, we obtain 11917 word
pairs (with 1897 unique words), 6399 authors and 171 book-
titles, which form 20 tensors (one for each year) in the space
of R11917×6399×171 . For tracking the changes of patterns over
time, we calculate the difference of all consecutive two years
of tensors and use the resulting “difference tensors” as the
input of the decomposition algorithms.

In the settings of the following experiments, we evaluate
ITF on the first dimension (i.e., word pairs) of the tensors,
and set the desired number of singular vectors of other di-
mensions (r2 and r3) consistently to 50. We note that the
focus of this paper is not to determine the best number of
singular vectors in approximating the original tensors, but
to investigate the improvements of ITF over the standard
Tucker method on a consistent number of singular vectors.
Hence we do not evaluate the effects of different r2 and r3
values, but study the performance of different factorization
methods using constant values of r2 and r3.

5.1.1 Factorizing Tensors
Comparisons between the Tucker method and ITFmethod

in factorizing the 20 years of tensors are shown in Figure 2.
Figure 2(a) demonstrates that compared to the standard
Tucker method, ITF uses significantly less time to factor-

3We provide our implementation of ITF at http://people.
eng.unimelb.edu.au/liuw/ITF.html.

0 5 10 15 20
10

1

10
2

10
3

Indices of Twenty Years from 1991 to 2010

T
im

e
(m

in
ut

es
)

ITF
10

ITF
50

ITF
100 Tucker

(a) Computation time in log-scale.

0 5 10 15 20
0

20

40

60

80

Indices of Twenty Years from 1991 to 2010

P
re

se
rv

ed
 V

ar
ia

nc
e

(%
)

Tucker
10

ITF
10

(b) Preserved variance when r1 = 10.

0 5 10 15 20
0

20

40

60

80

Indices of Twenty Years from 1991 to 2010
P

re
se

rv
ed

 V
ar

ia
nc

e
(%

)

Tucker
50

ITF
50

(c) Preserved variance when r1 = 50.

0 5 10 15 20
0

20

40

60

80

Indices of Twenty Years from 1991 to 2010

P
re

se
rv

ed
 V

ar
ia

nc
e

(%
)

Tucker
100

ITF
100

(d) Preserved variance when r1 = 100.

Figure 2: Comparisons between Tucker and ITF on compu-
tation time and preserved variance when factorizing tensors
of DBLP data. We can observe that ITF is able to pre-
serve almost the same amount of variance compared to the
standard method while using significantly less computation
time. The notations Tucker{10,50,100} and ITF{10,50,100} in
the sub-figures’ legends represent the standard method and
the ITF method for r1 = {10, 50, 100}. Note that the time
complexity of standard method is a function of n1 (besides
other dimensions) and is independent of r1.

ize the same tensor on the same number of desired singular
vectors. This advantage of ITF is more apparent when r1 is
small – for example when r1 = 10, ITF is able to finish the
decomposition process in less than 50 minutes for all the 20
years. By contrast, the standard method whose time com-
plexity is independent of the value of r1 takes a much longer
time to finish (e.g., about 10 times longer than ITF). More-

Table 2: Comparisons of ITF and Tucker on paper weight assignments. The weight of a paper is the sum of the weights of
word pairs that can be matched with the paper’s title, where word pairs are the edges of emerging subgraphs weighted by
the ITF or the Tucker method. In this table, columns 2 to 5 show examples of paper weight formulations, while in the last
column the p-values are obtained from paired t-tests of two groups of weights on 50 papers in each year: one group contains
weights assigned by ITF, and the other group contains weights assigned by the Tucker method.

Year Paper title examples Matched edges (word pairs of paper titles) from subgraphs
weighted by ITF

ITF

weights
Tucker
weights

t-tests
from top
50 papers

1996 A density-based algorithm for dis-
covering clusters in large spatial
databases with noise.

algorithm&density (0.5571), cluster&database (0.6496),
large&spatial (0.9252), algorithm&database (0.1757),
algorithm&noise (0.6544), density&spatial (0.7119), algo-
rithm&spatial (0.1785), algorithm&cluster (0.2078)

3.9664 3.9015 0.7365

1997 New algorithms for fast discovery of
association rules.

algorithm&discovery (0.974), algorithm&association (0.97),
fast&rule (0.7516), algorithm&rule (0.9681), fast&discovery
(0.1134)

3.7771 3.6983 0.8744

1998 An efficient approach to clustering
in large multimedia databases with
noise.

clustering&noise (0.8097), clustering&database (0.2281), ef-
ficient&multimedia (0.1027), clustering&large (0.1495), effi-
cient&large (0.7172), clustering&time (0.1464), efficient&time
(0.1713), clustering&database (0.9997), large&time (0.1282),
approach&large (0.0937), large&multimedia (0.9548)

4.5013 4.3550 0.6893

1999 Fast and effective text mining using
linear-time document clustering.

fast&linear (0.1022), effective&time (0.6865), effective&text
(0.7618), mining&text (0.0545), document&time (0.7505),
fast&mining (0.4674), clustering&document (0.7231),
fast&text (0.7005)

4.2465 4.4001 0.8541

2000 FreeSpan: frequent pattern-
projected sequential pattern mining.

mining&pattern (0.9605), mining&project (1.0), min-
ing&sequential (0.7944), frequent&sequential (0.6906),
frequent&pattern (0.746)

4.1915 4.0825 0.7976

2001 Co-clustering documents and words
using bipartite spectral graph parti-
tioning.

graph&partition (0.6302), clustering&word (0.8961), cluster-
ing&graph (0.6363), bipartite&graph (0.978)

3.1407 3.2672 0.9368

2002 Privacy preserving association rule
mining in vertically partitioned data.

data&rule (0.6316), association&rule (0.9663), data&mining
(0.4072), privacy&rule (0.6591), privacy&vertically (0.5433),
preserving&vertically (0.6749)

3.8824 4.1041 0.5831

2003 Mining distance-based outliers in
near linear time with randomization
and a simple pruning rule.

mining&pruning (0.834), distance&outlier (0.8845), min-
ing&outlier (0.775), base&rule (1.0), mining&rule (0.4337)

3.9273 3.7618 0.6498

2004 Systematic data selection to mine
concept-drifting data streams.

data&selection (0.4054), data&mine (0.5996), data&stream
(0.9991), concept&drift (0.8912), concept&stream (0.1294),
selection&system (0.9889)

4.0256 4.1218 0.8519

2005 Discovering evolutionary theme pat-
terns from text: an exploration of
temporal text mining.

discovering&temporal (0.352), discovering&mining (0.5347),
mining&text (0.7071), discovering&pattern (0.7155), pat-
tern&text (0.5704), pattern&temporal (0.746), evolution-
ary&mining (0.7072)

4.3329 4.5085 0.7176

500 2000 3500 5000
0

50

100

150

200

250

Number of edges (i.e., the value of n
1
)

T
im

e
(m

in
ut

es
)

Tucker
ITF

Figure 3: Computation time of the standard Tucker method
and the ITF method on a controlled number of graph edges
when r1 is fixed at 100.

over, the variances preserved by ITF are highly comparable
to the standard decomposition method. The values shown
in Figures 2(b), 2(c) and 2(d) illustrate that the core tensors
obtained from ITF can represent almost as much variance as
those obtained from the standard method.

We are also interested in the computation time of the
standard and ITFmethods when the size of the tensor grows.
This scenario is closely related to the dynamic graph mining
problem in an online setting, since the number of edges (e.g.,
word pairs) in practical networks and graphs are usually very
likely to increase with time. We control the number of word
pairs in the original graphs (which is also the cardinality of

the first dimension of the original tensor), and vary it from
500 to more than 5000. The computation time needed in
the decompositions by the standard Tucker method and the
ITF method is shown in Figure 3. The trends in the figure
demonstrate that the computational cost of ITF is not only
linear to the value of n1 but also much lower than that of the
standard decomposition method. Moreover, it also can be
observed that the larger the size of the graph (i.e., the value
of n1), the larger the difference between the computation
time needed for ITF and for the standard Tucker method.

5.1.2 Weighting Emerging Topics
In Section 4 we explained how the outputs of tensor factor-

ization can be applied in weighting the original word pairs,
and in this experiment we use that theory to evaluate the
correctness of ITF against the Tucker method. After we
decomposed twenty years of tensors, from each year we ob-
tained a list of weights for the original word pairs. To dis-
card trivial word pairs, we only consider those whose weights
are higher than the threshold 0.0001 (note that the column
vectors in the projection matrices are unit vectors, which
means the weight of a word pair is typically between 0 and
1). After deleting those word pairs that do not pass this
threshold, we obtain subgraphs of the original graphs. To
find how popular a research topic is, we weight paper titles
by using the edges of these subgraphs. We calculate the sum

of the weights of the word pairs that a paper title contains
as the weight of that paper title. Thus, paper titles that
have higher weights are the ones whose words occupy more
variance in the original tensor.

To test whether the weights of paper titles assigned by ITF

are similar to those from the standard Tucker method, in
each year we select 50 papers that are the highest weighted
by ITF, and compare them with the weights produced by
the Tucker method. Since the weights suggest the variance
in their corresponding tensors, we conduct these compar-
isons to check whether the weights found by ITF agree with
those found by the Tucker method on the same set of word
pairs. We apply paired t-tests on the two groups of weights,
one from ITF and the other from the Tucker method, un-
der the null hypothesis that the weights are not significantly
different between the two groups. The last column4 of Ta-
ble 2 shows the p-values returned from the t-tests, which
are mostly very large. This does not reject the null hypoth-
esis, suggesting that ITF and Tucker assign insignificantly
different weights to the same set of word pairs. This result
validates the correctness of the factorization produced by
ITF, in that the main variance of key word pairs preserved
by ITF is as good as that preserved by the computationally
expensive Tucker method.

5.2 Classifying Chemical Compounds
In this experiment, we compare the IFT and the Tucker

method on graph classification problems, where we clas-
sify the points that are projected into the row-rank feature
spaces defined by the factor matrices. We use chemical com-
pound data sets from anti-cancer bioassays5, where each
compound is treated as a graph of atoms. The task is to
predict whether a compound is positive or negative in anti-
cancer activities. Although there are limited types of atoms
and bonds in the data, the total number of compounds is
very large (Table 3).

Table 3: Statistics of chemical compound data sets. “pos%”
represents the proportion of compounds that are positive.

Index #graphs pos% Description
1 27784 8.2 Breast Cancer
2 40700 5.9 Colon Cancer
3 40152 7.8 Leukemia
4 40460 5.1 Lung Cancer
5 40209 4.1 Melanoma
6 40691 5.1 Ovarian Cancer
7 27585 5.7 Prostate Cancer
8 40164 4.9 Renal Cancer

5.2.1 Factorizing Tensors
Similar to the graph formulations discussed in Section 4.2,

for each chemical compound data set we construct a tensor
of 5 modes, where the types of atoms in a compound are
converted to labels of vertices, and the lengths of bonds be-
tween atoms are treated as weights of edges. Figure 4 shows
comparisons of the ITF and the Tucker method in their fac-
torization time and preserved variance of each data set. It
is easy to observe that ITF factorizes each data set by using
much less time than the Tucker method, while preserving

4Due to space limit, in this table we only present compar-
isons in nine years time from 1996 to 2005.
5http://pubchem.ncbi.nlm.nih.gov

1 2 3 4 5 6 7 8

10
1

10
2

Data set index

T
im

e
(m

in
ut

es
)

Tucker ITF
100

ITF
50

(a) Log-scale computation time.

1 2 3 4 5 6 7 8
0

20

40

60

80

Data set index

P
re

se
rv

ed
 v

ar
ia

nc
e

(%
)

Tucker
50

ITF
50

(b) Preserved variance when r1 = 50.

1 2 3 4 5 6 7 8
0

20

40

60

80

Data set index
P

re
se

rv
ed

 V
ar

ia
nc

e
(%

)

Tucker
100

ITF
100

(c) Preserved variance when r1 = 100.

Figure 4: Comparisons between the Tucker and the ITF

methods on factoring tensors of chemical compound data
sets.

similar amounts of variance. Such results indicate that ITF
is able to capture the most important substructures that are
shared across different compounds.

5.2.2 Classification on Compounds
In addition to the evaluation of preserved variances, we

test the correctness of the factor matrices produced by ITF

by examining the new data points that lie in the new spaces
defined by the factor matrices. A linear logistic regression is
used to learn and classify these data points by 5-fold cross
validation with 10 repeated runs. The results of classifica-
tion on different factorization methods is reported in Table 4.
Note that due to the class imbalance, we use the area under
the ROC curve (AUC) as the evaluation metric, which is
more appropriate than using overall accuracy as the metric.

While there are various ways to compare classifiers across
multiple data sets, we adopt the strategy proposed in [6]
which evaluates classifiers by performing Friedman tests.
We compare the ITF and the Tucker methods on the same
ranks (r1 = 50 and r1 = 100), where p–values that are lower
than 0.05 reject the hypothesis with 95% confidence that
the classifiers in the comparison are not statistically differ-
ent. As we can see from the high p-values in the bottom
of table Table 4, the data points projected onto subspaces
formed by ITF are insignificantly different to those by the

Table 4: Comparisons of ITF and Tucker on classifying the
data points located in their corresponding subspaces, using
linear logistic regression. “F. test” represents the Friedman
significance test.

Data
AUC from logistic regression

Tucker50 ITF50 Tucker100 ITF100
Breast .583±.09 .593±.08 .740±.05 .722±.05
Colon .670±.06 .678±.04 .754±.06 .713±.02

Leukemia .602±.04 .607±.06 .699±.07 .683±.04
Lung .608±.05 .645±.06 .652±.03 .633±.05

Melanoma .687±.06 .703±.05 .693±.06 .710±.04
Ovarian .699±.04 .711±.04 .740±.04 .731±.02
Prostate .641±.04 .635±.03 .686±.04 .689±.05
Renal .568±.02 .589±.04 .661±.06 .653±.08
F. test 0.2573 0.5236

Tucker method from the perspective of distinguishing class
labels. This suggests that the factor matrices generated by
ITF capture as much intrinsic variance as those by the Tucker
method in both class labels, and that the new features (e.g.,
columns of a factor matrix) from ITF are competent repre-
sentatives of the row-rank basis of the compound data sets.
Moreover, the setting of cross validation also indicates that
ITF is insensitive to the orderings of graphs.

6. CONCLUSIONS AND FUTURE WORK
The main focus of this paper is on scalably factorizing

tensors that represent dynamic graphs. A good tensor fac-
torization method should be able to decompose tensors in a
computationally cheap manner and also be able to preserve
the main variance of the data. We have shown that the
proposed ITF method is able to significantly reduce compu-
tation time compared to the standard factorization method,
while the variance preserved by ITF is comparably effective.
The superiority of ITF arises from the fact that important
substructures are usually shared among different graphs, or
graphs across different time periods. We have applied ITF to
the weighting of emerging research topics in dynamic publi-
cation networks/graphs, and have shown that the time com-
plexity of ITF is linear in the size of the networks or graphs,
which makes ITF feasible to be applied in an online setting.
We have also applied ITF to graph classification problems
using chemical compound data sets, showing that ITF is
not only a significant speed up of the Tucker method but
also captures the intrinsic variance of the original data with
respect to different class labels. Moreover, the results from
cross validations on graph classification experiments demon-
strate that the iterative algorithm ITF is insensitive to the
orderings of graphs.

The advantage of ITF is not limited to Tucker decomposi-
tion. Other tensor factorization methods such as canonical
polyadic decomposition and non-negative tensor factoriza-
tion can also benefit from the iterative procedure of ITF.
These are the future research directions of ITF we are plan-
ning to investigate.

Acknowledgements
This research was supported under Australian Research Coun-
cil’s Discovery Projects funding scheme (DP110102621).

7. REFERENCES
[1] B. Bader and T. Kolda. Efficient Matlab computations

with sparse and factored tensors. SIAM Journal on
Scientific Computing, 30(1):205–231, 2007.

[2] J. Bunch and J. Hopcroft. Triangular factorization
and inversion by fast matrix multiplication.
Mathematics of Computation, pages 231–236, 1974.

[3] J. Carroll and J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “Eckart-Young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[4] L. De Lathauwer, B. De Moor, and J. Vandewalle. A
multilinear singular value decomposition. SIAM
Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[5] L. De Lathauwer and D. Nion. Decompositions of a
higher-order tensor in block terms. SIAM J. Matrix
Analysis and Applications, 30(3):1067–1083, 2008.

[6] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[7] G. Golub and C. Van Loan. Matrix computations,
volume 3. Johns Hopkins Univ Pr, 1996.

[8] A. Kapteyn, H. Neudecker, and T. Wansbeek. An
approach to n-mode components analysis.
Psychometrika, 51(2):269–275, 1986.

[9] T. Kolda and B. Bader. Tensor decompositions and
applications. SIAM review, 51(3):455, 2009.

[10] T. Kolda and J. Sun. Scalable tensor decompositions
for multi-aspect data mining. In Proc of ICDM, pages
363–372, 2008.

[11] X. Kong and P. Yu. Semi-supervised feature selection
for graph classification. In Proc of KDD, pages
793–802, 2010.

[12] P. Kroonenberg and J. De Leeuw. Principal
component analysis of three-mode data by means of
alternating least squares algorithms. Psychometrika,
45(1):69–97, 1980.

[13] M. Ley. The DBLP computer science
bibliography: evolution, research issues, perspectives.
In String Processing and Information Retrieval, pages
481–486. Springer, 2002.

[14] K. Ravi Kanth, D. Agrawal, and A. Singh.
Dimensionality reduction for similarity searching in
dynamic databases. ACM SIGMOD Record,
27(2):166–176, 1998.

[15] C. Schifanella, K. Candan, and M. Sapino. Fast
metadata-driven multiresolution tensor decomposition.
In Proc of CIKM, pages 1275–1284, 2011.

[16] J. Sun, S. Papadimitriou, and P. Yu. Window-based
tensor analysis on high-dimensional and multi-aspect
streams. In Proc of ICDM, pages 1076–1080, 2006.

[17] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In Proc of KDD,
pages 374–383, 2006.

[18] J. Sun, D. Tao, S. Papadimitriou, P. Yu, and
C. Faloutsos. Incremental tensor analysis: theory and
applications. ACM Transactions on Knowledge
Discovery from Data, 2(3):11, 2008.

[19] L. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

