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Abstract

Simulation-based training (SBT) is gaining popu-
larity as a low-cost and convenient training tech-
nique in a vast range of applications. However,
for a SBT platform to be fully utilized as an ef-
fective training tool, it is essential that feedback
on performance is provided automatically in real-
time during training. It is the aim of this paper to
develop an efficient and effective feedback genera-
tion method for the provision of real-time feedback
in SBT. Existing methods either have low effective-
ness in improving novice skills or suffer from low
efficiency, resulting in their inability to be used in
real-time. In this paper, we propose a neural net-
work based method to generate feedback using the
adversarial technique. The proposed method uti-
lizes a bounded adversarial update to minimize a
L1 regularized loss via back-propagation. We em-
pirically show that proposed method can be used
to generate simple, yet effective feedback. Also,
it was observed to have high effectiveness and ef-
ficiency when compared to existing methods, thus
making it a promising option for real-time feedback
generation in SBT.

1 Introduction
Supporting the learning process through interactive feedback
is important [Billings, 2012]. Appropriate and timely feed-
back intervention increases learning motivation, facilitates
skill acquisition/retention, and reduces the uncertainty of how
a student is performing [Davis, 2005]. With the develop-
ment of virtual reality techniques, simulation-based training
(SBT) has become an effective training platform in a range of
applications including surgery [Wijewickrema et al., 2017;
Ma et al., 2017], military training [Cosma and Stanic, 2011],
and driver/pilot training [de Groot et al., 2011]. However, it
still requires the presence of human experts so that real-time
feedback can be provided during training to ensure that rel-
evant skills are learned. This has been one of the obstacles
to the spread of SBT systems [Lateef and others, 2010]. As
such, it is important to automate the generation of real-time
feedback in SBT.

Feedback generation is a classical problem in artificial in-
telligence (AI) systems. Intelligent tutoring systems are one
such class of AI systems that aims to provide immediate in-
struction or feedback to learners [Billings, 2012]. Another ex-
ample is autonomous driving systems that take the surround-
ing environment as input and output feedback to the car to ad-
just the steering wheel [Chen et al., 2015]. In reinforcement
learning systems such as mobile robot navigation, the hard-
ware or software agent learns its behaviour based on reward
feedback from the environment [Sutton and Barto, 1998].

When compared to the above mentioned applications, SBT
focuses more on educational gains such as the acquisition of
proper skills [Steadman et al., 2006; Lateef and others, 2010].
As such, SBT requires a higher degree of “hands-on” experi-
ential interaction. Figure 1 shows an example of such a SBT
system: The University of Melbourne Virtual Reality Tem-
poral Bone Surgical Simulator [Wijewickrema et al., 2016].
Rule-based feedback tutoring methods that work in domains
such as algebra and physics are not flexible enough for SBT
that requires a high level of user interaction and complex user
behaviour. Autonomous driving systems and reinforcement
learning systems mainly focus on the outcomes and mostly
deal with cognitive tasks. Therefore, feedback generation
methods in these systems are not directly transferable to SBT,
especially for non-cognitive SBT scenarios. The aim of this
paper is to develop an automated feedback generation method
that can be used in SBT via supervised learning.

Feedback generation in SBT has three challenges. First,
feedback should be generated in a timely manner as delayed
feedback can lead to confusion or even cause fatal conse-
quences in reality. An acceptable time-limit is 1 second af-
ter inappropriate action is detected. This is because feedback
should be provided before the learner makes the next move
[Rojas et al., 2014]. Second, feedback should be actionable
instructions that can be followed by the trainee to improve
skills or correct mistakes. This is because SBT tasks often
consist of a series of delicate operations that require precise
instructions. Third, feedback should be simple, referring to
only a few aspects of the skill, as practically people cannot fo-
cus on many things at a time. Also, this reduces distractions
to the trainee and decreases cognitive load, thus increasing
the usefulness of the feedback [Sweller, 1988].

In this paper, we make the following contributions:

• We demonstrate how the adversarial technique can be



Figure 1: The University of Melbourne Virtual Reality Tem-
poral Bone Surgery Simulator: it consists of a computer that
runs a 3D model of a human temporal (ear) bone and a haptic
device that provides tactile resistance to simulate drilling.

used to generate actionable knowledge or feedback with
neural networks.
• We propose a novel neural network based feedback gen-

eration method that works with a L1 regularized loss to
control the simplicity of feedback and a bounded update
to ensure the generated feedback has practical meaning.
• We show that the proposed method has high effective-

ness as well as high efficiency when compared to exist-
ing methods, making it possible to be used for real-time
feedback generation in SBT.

The structure of the paper is as follows. Section 2 intro-
duces related work in this field. Section 3 illustrates the real-
time feedback process and the formal definition of the prob-
lem. The proposed feedback generation method is described
in Section 4 and evaluated along with existing methods in
Section 5. Section 6 concludes the paper.

2 Related Work
The simplest way to provide feedback in SBT is the rule-
based approach. The “follow-me” approach (ghost drill)
[Rhienmora et al., 2011] and the “step-by-step” approach
[Wijewickrema et al., 2016] in surgical simulation are exam-
ples of this approach. However, it may be hard for a novice
who has limited experience to follow a ghost drill at his own
pace, and step-by-step feedback will not respond if the trainee
does not follow the suggested paths.

Other works utilize artificial intelligence techniques to gen-
erate feedback that can change adaptively in response to the
novice’s abilities and skills. One example is the use of Dy-
namic Time Warping (DTW) to classify a time series of sur-
gical data and support feedback provision in lumbar disk her-
niation surgery [Forestier et al., 2012]. However, this ap-
proach is less accurate at the beginning of a procedure when
not much data is available. A supervised pattern mining al-
gorithm was used in temporal bone surgery to identify sig-
nificant behavioural patterns, classified as novice or expert,
based on existing examples [Zhou et al., 2013b]. Here, when

a novice pattern is detected during drilling, the closest expert
pattern was delivered as feedback. However, it is very diffi-
cult to identify significant expert/novice patterns as novices
and experts often share a large proportion of similar patterns.

A similar attempt used a prediction model to discriminate
the expertise levels using random forests, and then generate
feedback directly from the prediction model itself [Zhou et
al., 2013a]. Here, the generated feedback was the optimal
change that would change a novice level to an expert, based
on votes of the random forest (Split Voting (SV)). Decision
trees and random forests were used in other research areas
as well to provide feedback. For example, a decision tree
based method was used in customer relationship management
to change disloyal customers to loyal ones [Yang et al., 2003;
2007]. Generating feedback from additive tree models such
as random forest and gradient boosted trees is NP-hard, but
the exact solution can be found by solving a transformed in-
teger linear programming (ILP) problem [Cui et al., 2015].

In this paper, we propose a neural network based method
to generate feedback using the adversarial technique. One in-
triguing property of neural networks is that the input can be
changed by maximizing the prediction error so that it moves
into a different class with high confidence [Szegedy et al.,
2013]. This property has been used to generate adversar-
ial examples from deep neural nets in image classification
[Goodfellow et al., 2014]. An adversarial example is formed
by applying small perturbations (imperceptible to the human
eye) to the original image, such that the neural network mis-
classifies it with high confidence. Although the adversarial
example has similarities to the feedback problem in that they
both change the input to a different class, they are not syn-
onymous. First, the adversarial example is formed by adding
intentionally-designed noise that may result in states that do
not exist or have practical meaning in a real-world dataset
such as that of the feedback problem. Second, only a few
changes to inputs are recommended for feedback, to make
it useful to follow. These considerations lead to the formal
problem definition below.

3 Problem Definition
In this section, we discuss the real-time feedback process,
and show how skill/behaviour level is defined in SBT applica-
tions. We then formally define the feedback generation prob-
lem as applied to SBT.

3.1 Feedback Process Overview
Figure 2 illustrates the real-time feedback process in SBT.
It operates in two steps: 1) offline training and 2) real-time
feedback provision. In the offline stage, a feedback gener-
ation method is trained via supervised learning on labelled
(novice/expert) skill samples. In real-time, when a trainee is
practising on the simulator, novice skill will be captured and
input into the feedback generation method to obtain feedback
about where improvement is required. Technically, feedback
is the suggested action that can improve novice skill to expert
skill. Finally, the feedback will be delivered immediately to
the trainee to improve behaviour. The focus of this paper is
the feedback generation method as highlighted in grey.



Figure 2: The real-time feedback process in SBT.

3.2 Definition of User Skill
SBT often works with multivariate time series data. This is
because a SBT task often consists of a series of steps over a
period of time. The skill level is usually defined over a period
of time, based on the values of certain skill metrics.

In general, skill metrics are: 1) motion-based, 2) time-
based, 3) position-based, or 4) system settings. Motion-based
metrics are often signals captured from haptic devices or sen-
sors, for example, the speed and engine rpm in a driving simu-
lator. Time-based metrics measure quantities such as reaction
time in military training. Position-based metrics relate to the
location of the current procedure and include quantities such
as position coordinates and distance to landmarks. System
settings refer to measures that affect the environment such as
the magnification level in surgical simulation.

Definition 1. In simulation-based training, user skill is a fea-
ture vector summarizing user behaviour over an arbitrary pe-
riod of time and annotated with class labels.

For example, consider a SBT environment for surgery.
Here, the level of skill can be defined by the quality of
a stroke, a continuous motion of the drill with no abrupt
changes in direction. The period of time here, over which the
user behaviour is summarised, is the time interval of the com-
plete stroke. Metrics that define the quality of a stroke within
this time interval include measures such as stroke length,
speed, acceleration, duration, straightness, and force [Zhou
et al., 2015]. We denote such a skill metric as a feature. A
vector of feature values that defines user skill is an instance
and is associated with a class label that denotes the skill level
(expert or novice).

3.3 Feedback Generation Problem
Here, we define the feedback generation problem in an
expert-novice perspective. We acknowledge that there may
be more than 2 levels of expertise in some SBT applications.
However, this can be easily addressed using the one-vs-rest
approach.

In SBT, the feedback generation problem is to find the opti-
mal action that can be taken to change a novice instance to an
expert instance. Suppose the datasetD consists ofm features,
n instances defined by the feature vector x = (x1, ..., xm),
and associated with a class label y ∈ {0, 1} (1: expert, 0:
novice). H(x) is a prediction model learnt over D. The feed-
back generation problem can then be defined as follows.

Problem 1. Given a prediction model H(x) and a novice
instance x, the problem is to find the optimal action A : x→
xf that changes x to an instance xf under limited cost C
such that xf has the highest probability of being in the expert
class:

argmax
A: x→xf

H(xf )

subject to C (x,xf ) ≤ C,
where, feedback A : x → xf involves one or multiple fea-
ture changes (increase/decrease). For example, A : (force =
0.2, duration = 0.3) → (force = 0.5, duration = 0.3) is
“increase force to 0.5”. C (x,xf ) is the cost function mea-
suring the potential cost of feedback A. In SBT, C (x,xf ) =
‖x − xf‖0, i.e., the number of changed features. The cost
limit C is often a small integer such as 1 or 2 in SBT so as to
meet the requirements discussed in Section 1.

4 Proposed Method
To tackle the feedback generation problem, we propose the
use of a neural network as the prediction model H(x) and
introduce a method that directly generates feedback from the
neural network. Let Hθ(x), with parameters/weights θ, be
the neural network learnt with respect to the loss function
J(θ,x, y), where x is the input or feature vector, y the class
value associated with x, and y∗ the target class we want x to
be in.

Recall that during the training process, the weights θ are
updated so that the loss J(θ,x, y) is minimized. Therefore, if
we keep θ fixed while the input x is updated so that J(θ,x, y)
is maximized, we can get a new instance that has high con-
fidence of being in the opposite class to its original class y
[Szegedy et al., 2013]. To maximize J(θ,x, y), the input can
be updated in the positive direction of the gradient following
Equation (1), where ε is the learning rate.

x = x+ ε∇xJ(θ,x, y) (1)

This is the property that has been used to generate adversar-
ial examples in image classification. Since adversarial exam-
ples require small perturbations in the input image, [Goodfel-
low et al., 2014] applied a sign function to linearize the loss
function around the current value of θ , as shown in Equation
(2). This method updates all the pixels of the input image
once to get small perturbations.

x = x+ ε sign(∇xJ(θ,x, y)) (2)

Equation (1) works well for two-class tasks. However, for
multi-class tasks, there are more than one opposite classes
to y. This means using Equation (1) cannot guarantee the
new instance has high confidence in the target class y∗. The
alternative is minimizing the loss J(θ,x, y∗) with respect to
the specific target class y∗ as defined in Equation (3).

x = x− ε∇xJ(θ,x, y
∗) (3)

Although Equation (3) works for both two-class and multi-
class tasks, it still has two potential problems that limit its use
for feedback generation in SBT. First, it may change all input



features, thus violating the constraint (e.g., ‖x − xf‖0 ≤ C)
of Problem 1. Second, the update may explode the values of
inputs to extremely small or large values, similar to the ex-
ploding gradient problem [Pascanu et al., 2012]. However, in
practice, some features may have a certain value range out-
side of which the feature is meaningless.

To solve the first problem, we introduce aL1 regularization
term to J(θ,x, y∗) to control the sparsity of the change so as
to generate simple feedback. The new loss function is defined
in Equation (4), where λ is the regularization parameter and
x0 is the original input that needs to be changed.

J
′
(θ,x, y∗) = J(θ,x, y∗) + λ||x− x0||1 (4)

To solve the second problem, we propose a bounded update
approach (see Equations (5) and(6)) as an alternative to Equa-
tion (3). It incorporates the value range (defined by lower and
upper bounds) of a feature into the update to ensure the up-
dated feature value is still within range.

x = x− εSx
(
xSx −

a

2

(
1 + Sx

)
+

b

2

(
1− Sx

))
(5)

Sx = sign(∇xJ
′
(θ,x, y∗)) (6)

Sx is the sign of the partial derivative of J
′
(θ,x, y∗) with

respect to x. The upper and lower bounds of x are a and b
respectively, i.e. xi ∈ [ai, bi].

According to Equation (5), if the gradient ∇xi
J

′
(θ,x, y∗)

is positive (i.e., Sxi
= 1), the update will become xi =

xi − ε(xi − ai) which means xi moves a small step to-
wards its lower bound ai. Similarly, a negative gradient gives
xi = xi + ε(bi − xi), a move towards its upper bound b. No
update will be applied if the gradient is zero, as in this case,
Sxi = 0. This bounded update not only guarantees the cor-
rect update direction to minimize the loss, but also ensures
that xi ∈ [ai, bi] always holds true (see Lemma 1 and proof).

Lemma 1. If ai ≤ xi ≤ bi, 0 < ε � 1, and x
′

i = xi −
εSxi

(
xiSxi− ai

2 (1+Sxi)+
bi
2 (1−Sxi)

)
, then ai ≤ x

′

i ≤ bi.

Proof. The sign function Sxi only has 3 outputs: 1,0 or -1.

Case 1. If Sxi
= 0, then x

′

i = xi.

In this case, ai ≤ x
′

i = xi ≤ bi holds true.

Case 2. If Sxi
= 1, then x

′

i = xi − ε(xi − ai).

In this case, x
′

i − ai = (1 − ε)(xi − ai) and x
′

i − bi =
ε(ai − xi) + (xi − bi). Then, ai ≤ xi ≤ bi and 0 < ε � 1
gives xi − ai ≥ 0, xi − bi ≤ 0 and 1 − ε > 0. Therefore,
x

′

i − ai ≥ 0 and x
′

i − bi ≤ 0, that is, ai ≤ x
′

i ≤ bi.

Case 3. If Sxi = −1, then x
′

i = xi + ε(bi − xi).

And in this case, x
′

i − ai = ε(bi − xi) + (xi − ai) and
x

′

i−bi = (1−ε)(xi−bi). Similarly, bi−xi ≥ 0, xi−ai ≥ 0

and 1 − ε > 0 gives x
′

i − ai ≥ 0 and x
′

i − bi ≤ 0, that is,
ai ≤ x

′

i ≤ bi.

To conclude, in all cases, ai ≤ x
′

i ≤ bi holds true.

Equations (4), (5) and (6) give the definition of the pro-
posed “neural network-based feedback (NNFB) method”.
NNFB takes a novice instance x as input, iteratively updates
x (different from the one-time-update in generating adversar-
ial examples) until it converges or meets the terminating cri-
teria. Let the generated new instance be xf , the feedback is
then the action A : x→ xf (see the example in Problem 1).

When feedback is delivered, we need to ensure that it con-
tains only C features. Although, the L1 regularization re-
duces the number of feature changes in general, in the ab-
sence of valid feedback with a low number of feature changes,
it may still result in ones with higher numbers of feature
changes. To overcome this issue, we suggest a post-selection
process that iteratively tests all feature changes and select the
ones with C or less changes that result in the best improve-
ments.

The proposed method (NNFB) is easily generalizable to
different SBT applications. First, the regularization term in
J

′
(θ,x, y∗) can be adjusted accordingly for different appli-

cations (for example, L2 norm for applications that prefer
small changes). Furthermore, NNFB offers flexible control
over feature changes as the lower and upper bounds are ad-
justable for different features and even for different input in-
stances. For example, we can set ai = bi = xi for a categor-
ical feature that cannot be changed, such as prior simulation
experience. This flexibility also benefits those applications
that have discrete cost functions as some explicit cost limits
can be easily incorporated into the bounds.

5 Experimental Validation
In this section, we first describe the two real-world datasets
that were used in the experiments. Then, we briefly introduce
the existing methods that the proposed method was compared
against, followed by the experimental setup. Finally, we dis-
cuss the experiment results.

5.1 Datasets
We tested our method on two real-world SBT datasets. These
datasets were collected from a temporal bone surgical sim-
ulator designed to train surgeons in ear-related surgeries. 7
expert and 12 novice surgeons performed two different surg-
eries that require very different surgical skills: cortical mas-
toidectomy - dataset 1 (D1) and posterior tympanotomy -
dataset 2 (D2). Surgical skill is defined by 6 numeric skill
metrics: stroke length, drill speed, acceleration, time elapsed,
the straightness of the trajectory and drill force (see exam-
ple in Section 3.2 for more details). The skill metrics were
recorded by the simulator at a rate of approximately 15 Hz.
Overall, D1 includes 60K skill instances (28K expert and
32K novice) while D2 includes 14K skill instances (9K ex-
pert and 5K novice). Both datasets were normalized to the
range of [0, 1] using feature scaling as follows.

x
′
=

x− xmin

xmax − xmin
(7)



where, x and x
′

are the original and scaled feature vectors
respectively and xmin and xmax are the minimum and maxi-
mum feature values of x respectively.

5.2 Compared Methods
Existing feedback generation methods compared with NNFB
are as follows.

• Split Voting (SV): This is the random forest based state-
of-the-art generation method for providing real-time
feedback [Zhou et al., 2013a] as discussed in Section
2.

• Integer Linear Programming (ILP): This method solves
the random forest feedback generation problem by trans-
forming it to an integer linear programming problem
[Cui et al., 2015] as discussed in Section 2.

• Random Iterative (RI): This method randomly selects a
feature and iteratively selects the best value among the
feature’s value partitions in the random forest [Cui et al.,
2015].

• Random Random (RR): This method randomly picks
a feature from a novice instance and selects a random
change to that feature as the suggested feedback.

5.3 Experimental Setup
For testing, we randomly chose one novice participant, then
took all instances performed by this novice as the test set. The
remaining instances were used for training. This simulates
the real-world scenario of an unknown novice using the sim-
ulator. Parameter tuning was performed on the training data
based on a 11-fold leave-one-novice-out cross-validation. In
each fold, we took all instances from one randomly chosen
novice as the validation set.

All methods were restricted to generate feedback with only
one feature change, which is a typical requirement in SBT.
This is a binary task as there are only 2 skill levels (expert and
novice). All methods were then evaluated using 2 measures:
1) efficiency and 2) effectiveness. Overall, a good feedback
generation method should have high effectiveness and high
efficiency (low time-cost).

Efficiency was measured using the time-cost (in seconds)
spent on average to generate feedback for one novice in-
stance. The novice instance x will be changed to the target
instance xf by the feedback A : x → xf (see Section 3.3).
Thus, we use the quality of the target instances (i.e., {xf})
to measure the effectiveness of the feedback. As defined in
Equation (8), effectiveness E is the percentage of expert in-
stances in {xf}.

E =
|{ xf |xf is an expert instance}|

|{xf}|
(8)

However, how instances are classified is dependent on the
classifier used. To obtain more convincing results, we used
6 classifiers of different types for evaluation. The evaluation
classifiers are: neural network (NN), random forest (RF), lo-
gistic regression (LR), SVM (RBF kernal), naive Bayes (NB)
and KNN (K = 10). A generation method that scores consis-
tently high levels of E across classifiers is deemed effective.

Experiments were carried out on a typical PC with
2.40GHz CPU. The ILP solver used for the ILP method
was CPLEX1 as suggested by the authors, and the neural
network/random forest implementations we used were from
scikit-learn. Default settings in scikit-learn were used for pa-
rameters not specifically mentioned here.

5.4 Parameter Tuning
Parameter tuning was performed on the training data with a
11-fold leave-one-novice-out cross-validation as mentioned
above in Section 5.3. A two-layer neural network architec-
ture was used for NNFB. For D1, a neural network with 250
hidden neurons was selected for NNFB while a random for-
est with 120 trees was selected for SV, RI and ILP. For D2,
NNFB used a neural network with 120 hidden neurons while
SV, RI and ILP used a random forest with 100 trees. These
parameters were selected based on the turning point of the
number of hidden neurons or the number of trees with re-
spect to the mean squared error (MSE) of the neural network
and random forest respectively.

Figure 3: With the increases of λ, the number of feature
changes in the feedback decreases but the confidence of xf

being in the expert class (H(xf )) remains high.

In terms of the regularization parameter λ in NNFB, Fig-
ure 3 indicates that larger λ results in simple feedback with a
fewer number of feature changes. When λ = 1, a feedback
on average consists of only one feature change, but remains
highly confident (H(xf ) > 0.7) to change a novice instance
to an expert instance. Therefore, we chose λ = 1 for NNFB.
Since datasets have been normalised, the upper bounds for all
features are 1 and the lower bounds are 0. Other settings for
NNFB include Rectified Linear Unit (ReLU) activation func-
tion [Glorot et al., 2011], cross entropy loss and learning rate
ε = 1× 10−4.

5.5 Results
We first demonstrate the overall performance considering
both effectiveness and efficiency. Figure 4 illustrates the
effectiveness of each method as evaluated using 6 different

1https://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer



Table 1: The effectiveness (mean±std) tested by 6 evaluation classifiers. The best results are highlighted in bold.

NN RF LR SVM NB KNN

D1

RR 0.19±0.06 0.23±0.10 0.35±0.07 0.27±0.06 0.32±0.12 0.30±0.05

RI 0.44±0.07 0.39±0.04 0.50±0.08 0.46±0.06 0.42±0.12 0.40±0.08

SV 0.63±0.07 0.59±0.06 0.60±0.07 0.62±0.06 0.50±0.11 0.53±0.07

ILP 0.72±0.04 0.87±0.00 0.71±0.05 0.76±0.04 0.70±0.11 0.76±0.04

NNFB 0.86±0.01 0.82±0.08 0.78±0.05 0.82±0.04 0.68±0.14 0.73±0.08

D2

RR 0.21±0.04 0.22±0.07 0.29±0.04 0.37±0.02 0.32±0.11 0.32±0.06

RI 0.48±0.04 0.49±0.04 0.47±0.09 0.52±0.05 0.47±0.12 0.43±0.10

SV 0.61±0.08 0.69±0.04 0.62±0.05 0.61±0.07 0.56±0.11 0.59±0.04

ILP 0.88±0.04 0.90±0.02 0.79±0.07 0.77±0.03 0.78±0.12 0.84±0.09

NNFB 0.92±0.02 0.82±0.06 0.81±0.07 0.72±0.05 0.79±0.11 0.81±0.07

evaluation classifiers with respect to the time-cost (inverses
to efficiency) for each dataset. As seen in the figure, the
proposed method shows the desired performance of highest
effectiveness at an acceptably low time-cost (within the real-
time time-limit) when compared to the other methods. This
proves that the adversarial technique can be used to generate
effective and timely feedback for SBT. Note that the slightly
higher variance of the NNFB method indicates the varying
resistance of test classifiers to adversarial generation.

Figure 4: Box plot representing the performance of the 6 eval-
uation classifiers with respect to effectiveness and time-cost.
Each method has two boxes that represent the 2 datasets D1
and D2. Colored view is recommended.

Detailed results for effectiveness of the feedback genera-
tion methods across the 6 evaluation classifiers is shown in
Table 1 for the datatsetsD1 andD2. On both datasets, NNFB
achieved comparable performance to ILP and outperformed
all others methods across all classifiers. However, as shown
in Table 2, ILP violates the real-time time-limit as discussed
in Section 2, and as such, will not be suitable for most SBT
applications. Although both RR and SV are more efficient

than the proposed method in feedback generation, they show
significantly lower levels of effectiveness when compared to
NNFB. Thus, it can be concluded that in terms of both effec-
tiveness and efficiency, the proposed method is the best suited
for providing real-time feedback in SBT applications.

Table 2: The time-cost (mean±std in seconds) for generating
one feedback, tested on datasets D1 and D2.

D1 D2
RR 0.013±0.004 0.014±0.001

RI 0.504±0.098 0.401±0.020

SV 0.023±0.003 0.017±0.003

ILP 31.738±2.439 27.760±3.107

NNFB 0.142±0.029 0.121±0.016

6 Conclusion and Discussion
In this paper, we introduced a technique for the adversarial
generation of real-time feedback with neural networks for
SBT. The proposed method (NNFB) applies a bounded adver-
sarial update on the novice skill vector to generate an optimal
expert skill vector in order to be used in the provision of feed-
back. To ensure that the suggested action is simple enough
to practically undertake, we adopted L1 regularization to ob-
tain feedback with a fewer number of feature changes. We
explored theoretically the validity of NNFB, and showed em-
pirically that it outperforms existing methods in providing ef-
fective real-time feedback.

Improving human performance in practice is a very chal-
lenging task. It involves many aspects of the learning process
such as the learning environment, the task complexity, the
knowledge level of the leaner, and the feedback intervention.
In the future, we will deploy the proposed method to SBT
environments and conduct user studies with human experts to
further validate the method and investigate its effectiveness in
teaching skills in practical applications.
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