
Mining Multidimensional Contextual Outliers
from Categorical Relational Data

Guanting Tang ∗1, Jian Pei1, James Bailey2, and Guozhu Dong3

1School of Computing Science, Simon Fraser University, Canada
2Department of Computing and Information Systems, The

University of Melbourne, Australia
3Department of Computer Science & Engineering, Wright State

University, USA

Abstract

A wide range of methods have been proposed for detecting different
types of outliers in both the full attribute space and its subspaces. How-
ever, the interpretability of outliers, that is, explaining in what ways and
to what extent an object is an outlier, remains a critical issue.

In this paper, we focus on improving the interpretability of outliers.
Particularly, we develop a notion of multidimensional contextual outliers
to model the context of an outlier, and propose a framework for contextual
outlier detection. Intuitively, a contextual outlier is a small group of
objects that share strong similarity with a significantly larger reference
group of objects on some attributes, but deviate dramatically on some
other attributes. In contextual outlier detection, we identify not only
the outliers, but also their associated contextual information including
(1) comparing to what reference group of objects the detected object(s)
is/are an outlier; (2) the attributes defining the unusual behavior of the
outlier(s) compared against the reference group; (3) the population of
similar outliers sharing the same context; and (4) the outlier degree, which
measures the population ratio between the reference group and the outlier
group. We present an algorithm and conduct extensive experiments to
evaluate our approach.

Keywords. Outlier detection, Context, Categorical data, Relational data

∗Corresponding Author: Guanting Tang, School of Computing Science - Simon Fraser
University, 8888 University Drive, Burnaby BC, V5A 1S6, Canada; Tel. no.: 1-778-782-6851;
Fax no.: 1-778-782-3045; E-mail: gta9@cs.sfu.ca

1

1 Introduction

Outlier detection is an important data mining task with broad applications, such
as business intelligence and security monitoring. As to be reviewed in Section 5,
a wide range of methods have been proposed to detect different types of outliers
on various kinds of data. Interpretability of outliers, however, remains a serious
concern. More often than not, an analyst may want to see not only the outliers
detected, but also insightful explanations about the outliers. Particularly, an
analyst may want to know, for an outlier, a reference group of objects which
the outlier deviates from in some aspects and shares similarity with in some
other aspects, and a set of features manifesting the outlier’s unusual/deviating
behavior, the outlier degree, and the other similar outliers sharing the same
context. Such contextual information can help an analyst to better understand
and investigate individual outliers and propose action plans suitable for such
outliers.

Example 1 (Motivation 1) Fig. 1 shows a contextual outlier found from a
data set containing all the 958 possible board configurations at the end of tic-
tac-toe games. (For details on this data set, see Section 6.) Here, “x” and “o”
mark positions occupied by the x and o players respectively, “b” marks positions
not occupied by any player, and “∗” is a wildcard matching any value among
“x”, “o”, and “b”.

Fig. 1(c) and Fig. 1(d) show two rare situations, where 3 of the 4 corners are
not occupied by any players at the end of the games. These two rare situations
can be summarized into an outlier group using wildcard symbol “∗”, as shown in
Fig. 1(a). To manifest the outlier, Fig. 1(b) shows a reference group where “x”
occupies the left-top corner and “o” the other three corners. The reference group
and the outlier group share the common feature that the right-bottom corner
is taken by “o”. The reference group, which is matched by 35 configurations,
is dramatically more popular than the outlier group, which is matched by only
two configurations.

The patterns of the outlier and reference groups suggest that it may be a
good strategy to occupy as many corners in the game, since 33 out of the 35
configurations matching Fig. 1(b) are won by “o”.

Example 2 (Motivation 2) In an insurance company, a fraud analyst may
not only want to find out all fraud suspects, but also the insightful reasons about
why the identified cases are suspicious. Particularly, for a small group of fraud
suspects, the analyst may want to know in what aspects they share similarity
with the normal patients and in what aspects they deviate dramatically from
the normal patients.

For example, a scenario interesting to the analyst may look like “Among
the patients who consume narcotic drugs in the region under investigation, a
small group of 10 patients purchasing narcotic drugs from more than 60 different
pharmacies is an outlier group, comparing to a reference group of 3000 patients
buying narcotic drugs from fewer than 5 different pharmacies.” Among the
patients who take narcotic drugs in the Greater Vancouver area, the small group

2

of 10 patients have a very different purchase pattern compared against the
majority. The 10 patients in the outlier group have a high probability to submit
fraud claims to the insurance company.

The outlier group and the reference group cannot be found by the existing
outlier detection methods. To the best of our knowledge, even though an ex-
isting outlier detection method can detect the outlier group, it cannot find the
reference group that clearly manifests the outliers.

We argue that the contextual information about outliers should be an in-
tegral component in the outlier detection process. Unfortunately, most of the
existing outlier detection methods do not provide rich and detailed contextual
information for outlier analysis.

In this paper, we tackle the problem of contextual outlier detection on cat-
egorical data, and we do so by making three main contributions. First, we
develop a notion of multidimensional contextual outliers to model the context
of an outlier. Intuitively, a contextual outlier is a small group of objects that
share similarity, on some attributes, with a significantly larger reference group
of objects, but deviate dramatically on some other attributes. An example is:
“Among the computer science senior undergraduate students at University X, a
small group of 3 students not enrolled in the data structure course is an outlier
against the reference group of 128 students enrolled in the course.”

In contextual outlier detection, we identify not only the outliers, but also
their associated contextual information including (1) comparing to what refer-
ence group of objects the detected object(s) is/are an outlier; (2) the attributes
defining the unusual behavior of the outlier(s) compared against the reference
group; (3) the population of similar outliers sharing the same context; and (4)
the outlier degree, which measures the population ratio between the reference
normal group and the outlier group.

Second, there may exist many contextual outliers in a data set, and some of
them can be very similar or even “equivalent” to each other. It is clearly impor-
tant to identify and reduce redundancy among outliers in order to assist users
to effectively analyze the outliers. We develop an approach to systematically
identify redundant contextual outliers and propose a concise representation of
contextual outliers.

Third, we design a simple, yet effective algorithm that leverages the state-
of-the-art data cube computation techniques. The focus of our method is to
find outliers together with their contextual information. We conduct extensive
experiments to evaluate the feasibility and usefulness of our approach.

The rest of the paper is organized as follows. We propose the notion of
contextual outliers in Section 2, and give a general analysis of the collection
of contextual outliers in Section 3. We develop a contextual outlier detection
algorithm in Section 4. In Section 5, we review related work and highlight the
differences between our work and existing methods. We evaluate our approach
in Section 6. We conclude the paper and discuss possible extensions in Section 7.

3

2 Contextual Outliers

In this paper, we consider outlier detection on multidimensional categorical
data. Specifically, we consider a base table T (A1, . . . , An), where A1, . . . , An

are categorical attributes with finite domains. We assume that each object is
represented by a tuple in the base table and is associated with an identifier
tid, which is used as a reference to the object only, and does not carry any
other meaning. For an object t ∈ T , let t.Ai and t.tid denote the value of t on
attribute Ai (1 ≤ i ≤ n) and the identifier of t respectively.

A subspace is a subset of attributes. In order to summarize a group of
objects, we add a wildcard meta-symbol ∗ to the domain of every attribute Ai

(1 ≤ i ≤ n). Symbol ∗ matches any possible values in the domain. A group-by
tuple (or group for short) is a tuple g = (g.A1, . . . , g.An) such that g.Ai takes
either a value in the domain of Ai or meta-symbol ∗. The cover of g is the set of
objects in T matching g, that is, cov(g) = {t ∈ T | t.Ai = g.Ai for all i such that
(1 ≤ i ≤ n&g.Ai 6= ∗)}. The set space(g) = {Ai | 1 ≤ i ≤ n, g.Ai 6= ∗} is called
the subspace of g. And the set avs(g) = {Ai = g.Ai | 1 ≤ i ≤ n, g.Ai 6= ∗}
is called the non-∗ attribute-value set (AVS for short) of group g. Please
note that in the definition of avs(g), “Ai =” is text and g.Ai is a value (of
Ai). Example 2 contains an example. For an AVS V ,we overload the operator
space(·) by defining space(V) = {Ai | Ai occurs in V }. Thus, space(avs(g)) =
space(g) always holds.

For two distinct groups g1 and g2, g1 is an ancestor of g2, and g2 a descen-
dant of g1, denoted by g1 � g2, if avs(g1) ⊂ avs(g2), that is, for every attribute
Ai (1 ≤ i ≤ n) such that g1.Ai 6= ∗, we have g1.Ai = g2.Ai. We write g1 � g2 if
g1 � g2 or g1 = g2.

Property 1 (Monotonicity) For two groups g1 and g2 such that g1 � g2,
cov(g1) ⊇ cov(g2).

Example 3 Consider the base table T in Table 1, which contains the cities,
customer-types, home-branches, and service packages of some investment service
customers. For group g = (L1, T1, ∗, ∗), cov(g) = {C1, C2, C3, C4}, space(g) =
{city, type}, and avs(g) = {city = L1, type = T1}.

Let g′ = (L1, T1, B1, ∗). Then, g is an ancestor of g′ and g′ a descendant of
g, that is, g � g′. Moreover, cov(g′) = {C1, C2, C3} ⊂ cov(g).

We are now ready to define contextual outliers. Intuitively, for a group
of outlier objects, the contextual information consists of a group of reference
objects that manifest the outlier group in a subspace. The comparison of the
two groups in population size is also included.

Definition 1 (Contextual outlier) Let T be a base table, and r, o be two
groups such that space(r) = space(o) 6= ∅. Given an outlier degree threshold
∆ > 1, the pair (r, o) is a contextual outlier if the outlier degree deg(r, o) =
|cov(r)|
|cov(o)| ≥ ∆. We call r the reference group, o the outlier group, out(r, o) =

space(r) − space(cond(r, o)) the outlier subspace, and cond(r, o) = avs(r) ∩
avs(o) the shared AVS. It is possible that cond(r, o) is empty.

4

The shared AVS cond(r, o) provides a context subspace for the outlier analy-
sis about o. The objects in groups o and r belong to the same context subspace,
that is, they take the same values on those attributes that occur in cond(r, o).
If cond(r, o) = ∅, r and o do not share any common features. In such a special
case, o is a global outlier that is small in population and different from a large
reference group r in space space(o) = space(r).

The reference group r indicates the normal or dominating objects to which o
is compared. The outlier group o and the outlier subspace out(r, o) indicate the
outlier objects cov(o) and the attributes that manifest the deviation of o from
r. The outlier degree measures how exceptional the group o is when compared
to r. The larger the outlier degree is, the more outlying o is.

Example 4 In T (Table 1), let the outlier degree threshold be ∆ = 2.
Then, (r, o) = ((L1, T1, B1, ∗), (L1, T1, B2, ∗)) is a contextual outlier, where
(L1, T1, B1, ∗) is the reference group, {city = L1, type = T1} is the shared AVS,
(L1, T1, B2, ∗) is the outlier group, {branch} is the outlier subspace, and the
outlier degree is deg(r, o) = 3.

One object may be an outlier in more than one context. For example, cus-
tomer C4 is an outlier in the above context and ((∗, T1, ∗,Gold), (∗, T1, ∗,None)).

Using only an outlier degree threshold may lead to many contextual outliers,
since many groups of very small cover size, such as 1, may be identified as
outliers. We will address this issue in Section 3.3.

The definitions and frequently used notations are summarized in Table 2.

3 Contextual Outlier Analysis

Enumerating all possible contextual outliers in a base table is ineffective due
to three reasons. First, some contextual outliers are highly similar and even
equivalent to each other. Outlier detection is often followed by business ac-
tions, which are expensive to perform. Including redundant outliers may lead
to unnecessary extra cost in the “analysis and actions” process and may also
overwhelm users. Second, it is informative and important to analyze the re-
lationships among outliers. The contextual outliers in a data set may not be
independent of each other. A systematic analysis of the relationships among
outliers may, for example, support business decisions based on the relationships
among a collection of outliers, instead of on individual outliers only. Third, as
mentioned at the end of Section 2, using an outlier degree threshold alone may
lead to many insignificant contextual outliers, which may overwhelm users in
practice. In this section, we conduct contextual outlier analysis to address the
above three aspects.

3.1 Redundancy Removal Using Closures

We immediately observe the following:

5

Lemma 1 (Non-closure attributes) For two contextual outliers (r1, o1) and
(r2, o2) in a base table T , if r1 � r2, o1 � o2, cov(r1) = cov(r2), and cov(o1) =
cov(o2), then deg(r1, o1) = deg(r2, o2).

In the two contextual outliers (r1, o1) and (r2, o2) in Lemma 1, the two
groups r1 and r2 capture the same set of objects. Hence (r1, o1) is redundant
given (r2, o2) or vice versa. Since r1 � r2, r2 contains some extra attributes in
addition to those in r1. Hence r2 is more informative and descriptive than r1

as a reference group. It is better to include (r2, o2) for outlier analysis.

Definition 2 (Closure group/outlier) Given a base table T , a group g is a
closure group if for any descendant group g′ ≺ g, cov(g′) ⊂ cov(g). (r, o) is
called a closure outlier if there does not exist another contextual outlier (r′, o′)
such that r′ ≺ r, o′ ≺ o, cov(r) = cov(r′), and cov(o) = cov(o′).

Example 5 (Closure group/outlier) In table T (Table 1), for
contextual outliers u1 = ((∗, T1, B1, ∗), (∗, T1, B2, ∗)) and u2 =
((L1, T1, B1, ∗), (L1, T1, B2, ∗)), since cov((∗, T1, B1, ∗)) = cov((L1, T1, B1, ∗))
and cov((∗, T1, B2, ∗)) = cov((L1, T1, B2, ∗)), u1 is redundant given u2. The
reference group in u2 is a closure one. It can be verified that u2 is a closure
outlier.

We now establish a relationship between closure groups and closure outliers.

Theorem 1 (Closure group/outlier) Contextual outlier (r, o) is a closure
outlier if and only if either r or o is a closure group.

Proof 1 (If) There are two cases. In the first case, r is a closure group. Then,
there does not exist (r′, o′) such that r′ ≺ r and cov(r) = cov(r′). In the second
case, o is a closure group. Then, there does not exist (r′, o′) such that o′ ≺ o and
cov(o) = cov(o′). In both cases, (r, o) satisfies the definition of closure outliers.

(Only-if) We prove by contradiction. Assume that (r, o) is a closure outlier,
but neither r nor o is a closure group. Then, there exist r′ and o′ such that
r′ ≺ r, o′ ≺ o, cov(r) = cov(r′) and cov(o) = cov(o′). This contradicts the
assumption that (r, o) is a closure outlier.

We can generalize the idea of closure outliers to reduce redundancy further.

Example 6 Consider T (Table 1) and the outlier degree threshold ∆ = 3. C4 is
in two contextual outliers, u1 = ((L1, ∗, B1, ∗), (L1, ∗, B2, ∗)) with deg(u1) = 4,
and u2 = ((L1, T1, B1, ∗), (L1, T1, B2, ∗)) with deg(u2) = 3. Comparing to u1,
the reference group in u2 is more specific and thus is closer to the outlier group
and more informative.

We generalize the observation in Example 6 and introduce the notion of tight
outlier, which is essentially an outlier and its most specific reference group.

Definition 3 (Tight outlier) Let T be a base table and (r, o) a contextual
outlier with respect to outlier degree threshold ∆. We call (r, o) a tight outlier
if there does not exist another outlier (r′, o′) with respect to threshold ∆ such
that r � r′ and cov(o) = cov(o′).

6

Corollary 1 A tight outlier is a closure outlier.

As shown in Example 6, not every closure outlier is tight.

3.2 Relationships among Outliers

An outlier group may have more than one reference group in the same out-
lier space. Consider two contextual outliers (r1, o) and (r2, o) such that
space(r1) = space(r2), cond(r1, o) = cond(r2, o). The two outliers have the
same outlier subspace, since out(r1, o) = space(r1) − space(cond(r1, o)) =
space(r2) − space(cond(r2, o)) = out(r2, o). If |cov(r1)| > |cov(r2)|, r1 is a
stronger reference group than r2 and o deviates more from r1 than from r2.
Thus, (r2, o) is redundant given (r1, o). In words, we only need to report the
reference group that an outlier deviates most. This is modeled in the following
notion of strong outliers.

Definition 4 (Strong outlier) A contextual outlier (r, o) is a strong outlier
if there does not exist another outlier (r′, o′) such that space(r) = space(r′),
cond(r, o) = cond(r′, o′), cov(o) = cov(o′), and |cov(r′)| > |cov(r)|.

Example 7 (Strong outlier) For T (Table 1) and the outlier degree threshold
∆ = 2, consider contextual outliers u1 = ((∗, ∗, ∗,Gold), (∗, ∗, ∗,None)) with
deg(u1) = 3, and u2 = ((∗, ∗, ∗,Silver), (∗, ∗, ∗,None)) with deg(u2) = 2. u1 is
stronger than u2 in outlier degree, and they have the same shared AVS. u2 is
redundant given u1. In fact, u1 is a strong outlier.

A group of objects may appear in multiple strong and tight contextual out-
liers, such as C4 in T (Table 1). To comprehensively understand an outlier
group, we can group all contextual outliers together with respect to the same
set of outlier objects.

Definition 5 (Contextual outlier group) Given an outlier degree threshold
∆ > 1, a set of contextual outliers {(r1, o1), . . . , (rl, ol)} is called a contex-
tual outlier group if (1) (r1, o1), . . . , (rl, ol) are all strong and tight contextual
outliers; (2) cov(o1) = · · · = cov(ol); and (3) there does not exist a proper
superset of contextual outliers satisfying the above two requirements. We de-
note by Context∆(o) the contextual outlier group {(r1, o1), . . . , (rl, ol)} such that
cov(o1) = · · · = cov(ol) = o.

The (geometric) average degree of a contextual outlier group

Context∆(o) = {(r1, o1), . . . , (rl, ol)} is deg(o,∆) = l

√∏l
i=1 deg(ri, oi). In par-

ticular, when l = 0, we have deg(o,∆) = 1.

We use the geometric average degree instead of the arithmetic average to
aggregate the outlierness of an outlier group in multiple contexts because the
contexts in general may not be completely independent. The geometric aver-
age prefers outlier groups whose outlier degrees in multiple contexts are more
balanced against those that are extremely outlying in only a small number of
contexts, but not the others. Of course other aggregate functions might also be
adopted.

7

3.3 Finding Significant Outliers

As mentioned earlier, using only an outlier degree threshold may lead to many
contextual outliers, since many groups of very small cover size and with a small
difference from large reference groups, such as on one attribute, may be identified
as outliers. To tackle the problem and avoid overwhelming users by many
insignificant outliers, we need to test the statistical significance of contextual
outliers. In other words, we use statistical test to avoid reporting groups that
are caused by random noise.

Intuitively, we use the global distribution in the base table as the background
distribution by ignoring the tuples taking the same values with the reference
group, and measure the statistical significance of the outlier group. For global
outliers, we assume the uniform distribution as the background.

Definition 6 (Outlier significance) Let (r, o) be a contextual outlier in a
base table T . The background distribution of (r, o) in subspace out(r, o) is the
distribution of tuples in T−{t ∈ T | t.A = r.A, ∀A ∈ out(r, o)}, if cond(r, o) 6= ∅,
and the uniform distribution, otherwise.

The significance of a contextual outlier (r, o), denoted by α(r, o), is the
p-value of the null hypothesis H0: o has been generated from the tuples
in cov(cond(r, o)) − cov(r) according to the background distribution in space
out(r, o).

In the above definition, cov(cond(r, o))− cov(r) is the set of tuples matching
reference group r in subspace cond(r, o) but not in subspace out(r, o). The
smaller the p-value α(r, o) is, the more significant the outlier is. The following
shows the details of significance calculation.

Consider a contextual outlier (r, o). Let po be the probability of AVS avs(o)−
avs(r) in the background distribution. If the background distribution is uniform,
then

po =
1∏

A∈space(out(r,o))(|A| − 1)
.

Let m = |T − {t ∈ T | t.A = r.A, ∀A ∈ out(r, o)}| be the number of tuples
matching r in subspace cond(r, o), but not in subspace out(r, o). Then, we have

α(r, o) =

m∑
i=|cov(o)|

pio(1− po)m−i

Example 8 (Outlier significance) Given T (Table 1), an outlier degree
threshold ∆ = 3, and a significance threshold s = 0.01. We per-
form the outlier significance test on a strong and tight contextual outlier,
u1 = ((L1, ∗, B1, Gold), (L1, ∗, B2, None)) with deg(u1) = 3 and out(r, o) =
{Branch, Package}.

According to the previous discussion, we have po =
1

(|Branch|−1)(|Package|−1) = 1
(2−1)(3−1) = 1

2 , m = 6 − 3 = 3, i = 1, and

thus α(r, o) = (1
2)1(1

2)2 + (1
2)2(1

2)1 + (1
2)3(1

2)0 = 3
8 = 0.375. Since α(r, o) > s,

u1 is not a significant contextual outlier here.

8

Based on the above discussion, we can define the problem of contextual
outlier detection as, given a base table T , an outlier degree threshold ∆ > 1,
and a significance threshold s > 0, find all strong and tight context outliers
(r, o) such that α(r, o) < s.

4 Detection Algorithms

In this section, we develop an algorithm for contextual outlier detection. We
observe that group-bys are essential units in both data cube computation and
contextual outlier analysis, so we can exploit state-of-the-art data cube tech-
niques in detecting contextual outliers.

Our method is inspired by Theorem 1. Since every closure contextual outlier
must have either the reference group or the outlier group as a closure group,
we can find all closure groups in the base table first, and then use the closure
groups to assemble contextual outliers.

Finding closure groups and closure patterns has been well studied in frequent
pattern mining [28, 33] and data cube computation [21]. Given a base table T ,
we can adopt a state-of-the-art algorithm, such as the DFS algorithm in [21],
to find all closure groups. Therefore, hereafter, we focus on how to use closure
groups to assemble contextual outliers.

We define the following assembly operation to extract the common attributes
in two closure groups.

Definition 7 (Assembly) Given two closure groups g1 and g2 on a base table
T , the assembly of the ordered pair (g1, g2), denoted by Φ(g1, g2) = (g′1, g

′
2), is

the ordered pair of groups such that for every attribute A ∈ space(g1)∩space(g2),
g′1.A = g1.A and g′2.A = g2.A; for any other attribute B ∈ (T − space(g1) ∩
space(g2)), g′1.B = g′2.B = ∗. We call g′1 and g′2 the reference group and the
outlier group of the assembly, respectively.

Example 9 (Assembly) In T in Table 1, for closure groups g1 =
(L1, T1, B1, ∗) and g2 = (∗, T2, B1, ∗), the assembly of the ordered pair
Φ(g1, g2) = ((∗, T1, B1, ∗), (∗, T2, B1, ∗)).

It is easy to verify the following, which shows that contextual outliers are
fixpoints for Φ.

Corollary 2 For any contextual outlier (r, o), Φ(r, o) = (r, o).

Since the assembly operator takes an ordered pair of closure groups as the in-
put and produces an ordered pair as the output, in general, Φ(g1, g2) 6= Φ(g2, g1).
Instead, the reference (outlier) group of the assembly Φ(g1, g2) is the outlier
(reference) group of Φ(g2, g1). The assembly operation has the following nice
property.

Corollary 3 For every tight and strong contextual outlier (r, o), there exists a
unique ordered pair of closure groups (r′, o′) such that Φ(r′, o′) = (r, o), cov(r) =
cov(r′), and cov(o) = cov(o′).

9

Algorithm 1 COD: the contextual outlier detection algorithm.

Require: G: the complete set of closure groups; ∆: the outlier degree threshold;
and s: the significance threshold

Ensure: the set of tight and strong contextual outliers
1: let l = maxg∈G{|cov(g)|};
2: let O be the set of contextual outliers; set O = ∅;
3: for each closure group o such that |cov(o)| ≤ l

∆ do
4: create a set L of tight and strong contextual outliers, set L = ∅;
5: for each closure group r such that (1) |cov(r)| ≥ ∆|cov(o)|; (2)
space(r) ⊆ space(o) or space(r) ⊇ space(o); and (3) α(r, o) ≤ s do

6: let (r′, o′) = Φ(r, o);
7: if cov(r) = cov(r′) and cov(o) = cov(o′) and there is no outlier in L

that is stronger or tighter than Φ(r, o) and α(Φ(r, o)) ≤ s then
8: insert Φ(r, o) into L;
9: remove from L any outliers that Φ(r, o) is stronger or tighter than;

10: end if
11: end for
12: O = O ∪ L;
13: end for
14: return O;

Proof 2 According to Theorem 1, either r or o must be a closure group. With-
out loss of generality, let us assume r is a closure group, and thus let r′ = r.
If o is not a closure group, there exists a unique closure group o′ such that
cov(o) = cov(o′) and space(o) ⊆ space(o′). Therefore, Φ(r′, o′) = Φ(r, o′) =
Φ(r, o). Using Corollary 2, we have Φ(r′, o′) = Φ(r, o) = (r, o).

Corollary 3 enables us to assemble closure groups into contextual outliers.
Algorithm 1 presents the pseudocode of our detection method, COD (for Con-
textual Outlier Detection), which is explained in detail as follows.

For each closure group o, we consider all the other closure groups r such
that Φ(r, o) is a contextual outlier. Obviously, |cov(o)| cannot be larger than l

∆ ,
where l is the largest cover size among all closure groups (calculated in Line 1).
For each of such closure groups o, we iterate over all the other closure groups r
such that |cov(r)| ≥ ∆|cov(o)| and α(r, o) passes the significance threshold (the
inner loop, Lines 5-11). To facilitate the access of closure groups according to
their cover size, we sort all the closure groups in cover size ascending order.

For a pair of closure groups (r, o), we compute the assembly Φ(r, o) = (r′, o′).
We only consider the contextual outliers Φ(r, o) = (r′, o′) such that cov(r) =
cov(r′) and cov(o) = cov(o′). Otherwise, the outlier will be considered by some
other closure groups according to Corollary 3 (the first two conditions in Line 7).
If Φ(r, o) is strong and tight given the other contextual outliers using o as the
outlier group (the second last condition in Line 7), and is statistically significant
(that is, the significance is less than or equal to the significance threshold) (the
last condition in Line 7), then we keep Φ(r, o) (Line 8), and use it to remove
those contextual outliers found before that are not as strong or tight as Φ(r, o)

10

(Line 9).
After the inner loop, all contextual outliers using o as the outlier group are

computed, and the tight and strong ones are kept in L. Those tight and strong
outliers are moved to O for outputting later. The iteration continues until all
closure groups that may be outlier groups are examined.

COD checks every pair of closure groups (r, o) such that |cov(r)|
|cov(o)| ≥ ∆. The

correctness follows with Corollary 3. Moreover, the algorithm is cubic in time
with respect to the number of closure groups in T , that is, |G| in the algorithm.
The problem of computing closure groups in a base table is #P-complete by
a polynomial reduction from the #P-complete problem of frequent maximal
pattern mining [37]. Our method is overall pseudo-polynomial.

5 Related Work

Outlier detection has been extensively studied in literature from a number of
different angles, such as statistical methods, proximity based methods, cluster-
ing based methods, supervised methods, semi-supervised methods, unsupervised
methods, and so on.

Some of these studies are dedicated to identifying outliers from categorical
data sets. Frequent pattern mining based methods [35, 4], proximity based
methods [2] and probabilistic model based methods [10, 11] are commonly used
methods in outlier detection tasks for categorical data. Other methods, such
as statistical methods and density based methods can be effectively adopted in
categorical data by using proper data transformation approaches.

A survey of the existing methods is far beyond the capacity of this paper. We
refer readers to some recent excellent surveys on the topic [8, 19, 1, 24, 25, 29].

Given a set of data objects, most of the existing outlier detection studies
focus on finding outlier objects that are significantly different from the rest of
the data set. The context of outliers, which provides insightful and critical
information for outlier analysis, is often missed. We address this issue in this
study. Our method not only detects outliers, but also automatically identifies
the corresponding contextual information that manifests the outliers at the same
time.

To the best of our knowledge, only very few existing studies consider context
in outlier detection. Song et al. [31] proposed the notion of conditional outliers
to model the outliers manifested by a set of behavioral attributes (e.g. temper-
ature) conditionally depending on a set of contextual attributes (e.g. longitude
and latitude). The behavioral attributes and the contextual attributes are pre-
defined. Our contextual outlier model does not need pre-defined behavioral and
contextual attributes. Instead, it automatically identifies shared AVSs. More-
over, reference groups are not modeled in [31]. A mixture model is used in [31]
to mine conditional outliers, which is infeasible in our model since here the sub-
spaces are not pre-defined and change from one outlier to another. Valko et
al. [32] detected conditional anomalies using a training set of labeled examples
with possible label noise, which is different from our work here that no labeled
data is assumed.

11

Li et al. [35] introduced a hypergraph-based outlier detection test (HOT)
to identify outliers and explanation. Given a dataset and a minimum support
threshold, a hypergraph is built based on the frequent itemsets in the dataset.
Particularly, a vertex is a data object, and a hyperedge denotes a group of
objects containing a frequent itemset. A deviation score has been designed to
calculate the outlyingness of a data object in a certain attribute with respect
to a hyperedge. Given a deviation threshold θ, a data object o is an outlier
in attribute A with respect to a hyperedge he, if the deviation score of o in A
with respect to he is lower than θ. This study is different from ours. First,
the detected ouliers are very different. Outliers detected by HOT [35] are single
data objects (vertexes). Outliers detected by our methods are group-by tuples
(hyperedges). Second, the explanations concerning the outlyingness are differ-
ent. HOT [35] uses just one attribute to characterize the outlyingness of an
outlier, while our method uses a set of attributes. Thus, the problem and the
framework proposed by our work are more general than the ones proposed by
HOT.

Wang and Davidson [34] used random walks to find context and outliers.
Their problem settings and solution are fundamentally different from ours. First,
a similarity function is needed in [34] to transform data to a similarity matrix
and thus a graph on which random walks can be conducted. Second, due to the
use of a similarity measure, the context and the outliers cannot be summarized
by attributes and subspaces. Overall, due to the different problem settings
and objectives, the random walk method in [34] and ours in this paper are
orthogonal.

Kriegel et al. [20] proposed a method that detects an outlier with reference to
the axis parallel subspace spanned by its neighbors. Müler et al. [26] proposed
a technique for ranking outliers based on their degree of deviation in different
subspace projections. While these studies also focus on subspace context for
outliers, there are two key differences from our work. First, these studies focus
on continuous datasets, while our focus is on categorical relational data. Second,
our work proposes techniques for concise descriptions of sets of outliers. We also
provide contextual descriptions for the outliers that are detected.

Recently, Smet and Vreeken [30] developed an outlier detection method OC3,
which assumes that outliers are generated by a distribution different from that
generates the normal objects, and uses minimum description length (MDL) to
detect outliers. Again, the notions of context, reference groups and outlier
groups are not modeled simultaneously in OC3. Angiulli et al. [4] studied a
related by orthogonal problem. Given a multidimensional database and a query
object in the database, find the top-k subset of attributes (i.e., subspaces) that
the query object receives the highest outlier score. Their method does not find
outliers directly. Moreover, it finds subspaces but does not find reference groups
in outlier explanation.

A contextual outlier (r, o) identified in our method can be written as a
pair of rules: cond(r, o) ⇒ avs(r) − cond(r, o) for the reference group, and
cond(r, o) ⇒ avs(o) − cond(r, o) for the outlier group. There are a number of
methods using rules in outlier detection [14, 7, 23, 27, 36]. Our method differs

12

from the existing methods in several important aspects. First, most of the ex-
isting rule-based methods focus on detecting individual outliers, and may not
be able to identify outlier groups and measure the outlyingness accordingly.
Second, many existing rule-based methods use rules to model only the normal
objects or strong associations. Outliers are individual objects that do not follow
those rules. Those methods do not model and analyze context explicitly. Lastly,
many existing methods, such as [10, 22, 36], set strict constraints on the size of
the rules or the aggregate groups to be considered, such as a very small number
of items/attributes allowed in a rule or only the parents and their sibling groups.

Our study is also related to previous work on emerging pattern mining ([13]
and various subsequent publications) and contrast mining (see [12] and the
references there). Conceptually, mining contextual outliers can be regarded as
mining the non-redundant set of emerging patterns in all possible subspaces and
under all possible shared AVSs as the constraints. Chen and Dong [9] provided
an emerging pattern length based outlier detection method, but it is limited to
global outliers. To the best of our knowledge the contextual outlier detection
problem has not been systematically explored in the emerging/contrast pattern
mining area.

More broadly, our study uses related concepts and techniques in data cube
computation [17, 5] and formal concept analysis [16]. However, to the best of
our knowledge, no previous study systematically integrates the techniques to
tackle the contextual outlier detection problem.

6 Experimental Results

In this section, we report our empirical evaluation of COD using both real data
sets and synthetic data sets. All experiments were conducted on a PC computer
with an Intel Core Duo E8400 3.0 GHz CPU and 4 GB main memory, running
the Microsoft Windows 7 operating system. The algorithms were implemented
in C++ using Microsoft Visual Studio 2010.

We cannot identify any existing method that solves the exact same problem.
The focus of our method is to find outliers with contextual information. Conse-
quently, this paper does not intend to compete with the existing methods with
respect to outlier detection accuracy or recall. We do compare our method with
LOF [6] in Section 6.2.

6.1 Results on Real Data Sets

We use several categorical data sets from the UCI repository [15]. We report
our results on six data sets: adult, mushroom-sc, solar-flare, tic-tac-toe, credit-
approval, and hayes-roth. Some statistics of the data sets are summarized in
Table 3. Note that the mushroom-sc data set is made from the mushroom
data set, by selecting all attributes related to mushrooms’ shape and color.
For the credit-approval and adult data sets, we keep the categorical attributes,
and remove the numerical attributes. We also remove the records that having
missing values in the selected data sets.

13

COD takes two parameters, the outlier degree threshold ∆ and the significance
threshold s. We report the results with respect to different combinations of ∆
and s values for each data set. We evaluate COD in five aspects: outlier case
studies, outlier analysis effectiveness (redundancy reduction and significance
filtering), efficiency, scalability on dimensionality, and scalability on number of
tuples.

6.1.1 Case Studies

We demonstrate the effectiveness of contextual outlier detection using case stud-
ies on the tic-tac-toe, hayes-roth and mushroom-sc data sets. These three data
sets are well known, and there is very little if any difference between these data
sets and their original counterparts. Results on these data sets are hence easy
to understand to the general audience.

An Example on Tic-tac-toe: The tic-tac-toe data set is composed of all the
958 possible board configurations at the end of tic-tac-toe games. It is assumed
that “x” plays first and then “o” plays. There are 9 attributes, each correspond-
ing to one tic-tac-toe square. An attribute takes “x” if the corresponding square
is occupied by x, “o” if occupied by o, and “b” if blank.

Fig. 1(a) and Fig. 1(b) show a contextual outlier group and a reference
group, respectively. The outlier degree of this contextual outlier is 17.5 and the
significance is 2.76 × 10−12. This outlier corresponds to an end-of-game board
where most of the corners (3 out of 4) are not occupied by any players. This is
a rare occurrence, since occupying corner squares is a common winning strategy
in tic-tac-toe games. The only two such configurations are c1 and c2, shown in
Fig. 1(c) and Fig. 1(d), respectively.

An Example on Hayes-roth: The hayes-roth data set records the informa-
tion about 160 people on four attributes [3, 15]. The first attribute, hobby,
takes values uniformly at random [15] and we thus ignore it in our analysis,
that is, all groups take value ∗ on the attribute. The description for the other
three attributes are adopted from [3]: the second attribute, age, takes values in
{30, 40, 50, r > 0} (the meaning of value “r > 0” is unspecified in [3]); attribute
education takes values in {junior-high, high-school, trade-school, college}; and
the last attribute, marital-status, takes values in {single, married, divorced,
widowed}. Table 4 shows some interesting contextual outliers with respect to
∆ = 5 and s = 10−8.

In Table 4, outliers c1 and c2 share the same reference group. The reference
group consists of 34 people whose marital-status is “single” and who have high-
school degrees. Outlier group c1 is a collection of 6 “divorced” college graduates
and outlier group c2 is a collection of 6 “single” trade school graduates. Outlier
c5 is interesting: among people who are divorced, those who are college grad-
uates are outliers compared to those with high school degrees. c9 shows that,
among people who are 50-years old, the 2 with college degrees are outliers com-
pared to the 16 with high school degrees. Another interesting outlier is c10: in

14

the age group of 30, the 4 people widowed are outliers compared to the 34 people
married. Please note that, in the whole data set, there are 59 of high-school, 59
of junior-school, 29 of trade-school and 13 of college graduates. Given ∆ = 5,
those of trade-school and college graduates are not outliers comparing to those
of high-school and junior-school. The outliers can only be explained well using
the contextual information.

An Example on Mushroom-sc: The mushroom-sc data set is made from
data set mushroom [15]. We select all attributes that related to mushrooms’
shape and color in our experiment. The mushroom-sc data set contains 8, 124 in-
dividual mushroom records on 8 attributes. The attributes that we selected are
(cap-shape, stalk-shape, cap-color, gill-color, stalk-color-above-ring, stalk-color-
below-ring, veil-color, spore-print-color). Please refer to [15] for the detailed
value description of each attribute. Table 5 shows some interesting contextual
outliers with respect to ∆ = 50 and s = 10−3.

Fig. 2 shows the popular names used for different parts of a mushroom. In
Table 5, outlier c1 shows that, among the mushrooms that are white in the stalk
above ring and the veil, the 64 mushrooms that are brown in the stalk below
ring are outliers, compared to the 3,520 mushrooms that are white in the stalk
below ring. Outlier c2 tells us that, among the mushrooms that are white in
the veil, brown in the spore print, and have convex caps, a small group of 32
mushrooms that are red in the stalk below ring are outliers, compared to a large
group of 2,204 mushroom that are white in the stalk below ring. Outlier c4 is
interesting: among the mushrooms that are white in both the stalk below ring
and the veil, and have tapering stalks, the 16 mushrooms that are brown in the
gill and purple in the spore print are outliers, compared to the 864 mushrooms
that are buff in the gill and white in the spore print.

6.1.2 Effectiveness of Redundancy Reduction and Significance Fil-
tering

To evaluate the effectiveness of the outlier analysis techniques developed in
Section 3, in addition to COD, we consider two simplified versions, COD− and
BOD. Both of them work the same as COD except for the following changes. COD−

does not apply the significance test for contextual outliers. BOD does not apply
either the redundancy removal techniques or the significance test.

Fig. 3 plots the number of contextual outliers and the number of outlier
objects with respect to different ∆ values. An object is called an outlier if it is
contained in the outlier group of a context outlier. We set s = 10−4 and s = 10−5

respectively in COD. No contextual outliers exist when ∆ ≥ 50 in the tic-tac-
toe data set and when ∆ ≥ 20 in the hayes-roth data set. COD outputs much
less contextual outliers than COD− and BOD in all cases. The number of outlier
objects is small, and decreases roughly linearly as ∆ increases. One object
may be contained in multiple contextual outliers. Multiple contextual outliers
containing the same outlier object identify how the outlier object deviates from
the majority in different subspaces.

15

Table 6 shows the number of outlier objects, outlier groups and contextual
outliers with respect to different significance threshold s in COD. As expected,
the lower the significance threshold, the less outliers are reported. Moreover, the
number of outlier groups is much smaller than that of contextual outliers. This
shows that outlier groups are a concise summarization of contextual outliers.

6.1.3 Efficiency

Fig. 4 compares the runtime of COD, COD− and BOD on the four real data sets
with respect to various ∆ thresholds. The closure group computation time is
reported in Table 3, and is not included in Fig. 4.

The runtime of BOD is the least among the three methods. COD− takes a very
small amount of extra time on top of BOD to identify tight and strong outliers.
COD uses extra time on top of COD− to test the statistical significance. When
∆ is small, the number of contextual outliers is large, and thus COD and COD−

need more extra runtime. When ∆ increases, the runtime difference between
these three methods decreases quickly. In practice, ∆ should not be set to a
small value, since one often likes to find outliers that deviate from significantly
larger trends. We notice that different setting of significance threshold s does
not affect the runtime of COD in a noticeable way.

6.1.4 Scalability on Dimensionality

We test the scalability of COD with respect to dimensionality on the real data
sets. We keep the first k attributes and vary k from 2 to the dimensionality
of the data sets. We report the results on two data sets, adult and solar-flare,
which have the largest number of tuples and the highest dimensionality, respec-
tively, among the six real data sets. Fig. 5 shows the number of outlier objects
with respect to dimensionality; and Fig. 6 shows the runtime with respect to
dimensionality. Both the number of outlier objects and runtime increase when
the dimensionality increases, since spaces of higher dimensionality can accom-
modate more outliers.

6.1.5 Scalability on Number of Tuples

We also test the scalability of COD with respect to the number of tuples on real
data sets. Similar to Section 6.1.4, we report the results on two real data sets,
adult and solar-flare. In the adult data set, we use the first k tuples and vary k
from 7500 to the number of tuples of the data set. Similarly, in the solar-flare
data set, we use the first k tuples as well and vary k from 350 to the number of
tuples of the data set. Fig. 7 shows the number of outlier objects with respect
to number of tuples; and Fig. 8 shows the runtime with respect to number
of tuples. Both the number of outlier objects and runtime increase when the
number of tuples increases, since more tuples can accommodate more outliers.
In all these cases, the runtime increases linearly with respect to the database
sizes. In other words, our method is approximately linear with respect to the
number of tuples empirically.

16

6.2 Results on Synthetic Data Sets

In order to test the accuracy of COD, we use synthetic data sets, since most
real data sets do not have the complete ground-truth information. We also use
synthetic data sets to test the scalability of COD.

Given the outlier degree threshold ∆ > 0, the number of subspace outliers
ms, the number of global outlier mg, the dimensionality d, the cardinality c, and
the number of tuples in the data set, we generate a synthetic data set in three
steps. First, we generate ms subspace outliers (including the reference groups
and the outlier groups) satisfying the outlier degree threshold requirement. For
an outlier, the shared AVS and the outlier subspace are chosen randomly. Sec-
ond, we generate mg global outliers (including the reference groups and the
outlier groups) in the same manner. Again, the outlier subspaces are chosen
randomly. Last, we inject independent and uniformly distributed data to ful-
fill the requirement on number of tuples. A synthetic data set generated as
such carries the ground truth on contextual outliers. In our experiments, we
fix ∆ = 50, ms = 850, mg = 150, d = 10, c = 100. By default, the number of
tuples is set to 1 million.

Table 7 shows the precision of COD. We repeat the experiments 10 times on
10 synthetic data sets generated independently using the same parameters, and
report the average and the standard deviation of the precision and recall. The
results show that our method always detects all outliers in the ground-truth
(100% recall). At the same time, COD has a good precision. Please note that,
although we implant the seed outliers in the synthetic data set as the ground-
truth, the noise injected in the synthetic data set may lead to some outliers that
are not included in the ground-truth.

In Table 7, we also compare our method COD with LOF [6] using the imple-
mentation in Weka [18] and Hamming distance as the distance measure. The
parameters MinPtsLB and MinPtsUB are set according to the suggestions
in [6]. COD outperforms LOF on the synthetic data sets in both accuracy and
recall. Please note that LOF cannot provide contextual information for out-
liers, and is not designed specifically for contextual outlier detection. In fact,
we cannot identify any existing method that solves the exact same problem.

Fig. 9 tests the scalability of COD with respect to the number of tuples in the
database. We generate data sets of different sizes, from 100 thousand to 1 million
tuples. We keep the other parameters the same. Again, for each configuration,
we repeat the experiment 10 times, and report results in the figure. The results
clearly shows that COD is scalable with respect to database size.

7 Conclusions and Future Work

In this paper, we proposed a framework for contextual outlier detection. Our
focus was to improve the interpretability of outliers. In particular, we argued
that the context of an outlier should include a shared set of attribute-value pairs,
a reference group, an outlier group, and an outlier degree measure. Moreover,
we developed a concise representation for contextual outliers and presented a

17

detection algorithm leveraging the state-of-the-art data cube computation tech-
niques.

This paper only represents the first step in an ambitious journey towards
contextual outlier detection and analysis. There are several important and in-
teresting problems for future work. For example, we mentioned the concept of
outlier groups (Definition 5). From the user’s point of view, it would be in-
teresting to develop efficient and pay-as-you-go methods to compute a ranked
list of outlier groups. This would also help to eliminate the need for setting an
outlier degree threshold. As another example, it would be interesting to explore
the correlation among outlier groups, reference groups and contexts more gener-
ally. This may lead to valuable insights into the inherent characteristics of high
dimensional data. Last but not least, developing more efficient and scalable
algorithms for contextual outlier detection is another challenge for future study.

Acknowledgements

This work is supported in part by an NSERC Discovery grant and a BCIC
NRAS Team Project. James Bailey is supported by ARC Grants DP140101969
and FT110100112. Part of the work by Guozhu Dong was performed when
he was visiting Simon Fraser University under the support of an Ebco/Eppich
visiting professorship. All opinions, findings, conclusions and recommendations
in this paper are those of the authors and do not necessarily reflect the views
of the funding agencies.

References

[1] M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of nu-
meric and symbolic outlier mining techniques. Intell. Data Anal., 10:521–
538, December 2006.

[2] L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast and reliable anomaly
detection in categorical data. In CIKM, pages 415–424, 2012.

[3] J. R. Anderson and P. I. Kline. A learning system and its psychological
implications. In Proceedings of the Sixth International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI ’79, pages 16–21, 1979.

[4] F. Angiulli, F. Fassetti, and L. Palopoli. Detecting outlying properties of
exceptional objects. ACM Trans. Database Syst., 34(1):7:1–7:62, Apr. 2009.

[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and
iceberg cube. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’99, pages 359–370, New
York, NY, USA, 1999. ACM.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD

18

international conference on Management of data, SIGMOD ’00, pages 93–
104, New York, NY, USA, 2000. ACM.

[7] P. K. Chan, M. V. Mahoney, and M. H. Arshad. A machine learning ap-
proach to anomaly detection. Technical report, Florida Institute of Tech-
nology, Melbourne, Florida, USA, 2003.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41:15:1–15:58, July 2009.

[9] L. Chen and G. Dong. Masquerader detection using OCLEP: One class
classification using length statistics of emerging patterns. In Proceedings
of WAIM Workshops: International Workshop on Information Processing
over Evolving Networks, WINPEN ’06, pages 5–, Washington, DC, USA,
2006. IEEE Computer Society.

[10] K. Das and J. Schneider. Detecting anomalous records in categorical
datasets. In Proceedings of the 13th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’07, pages 220–229,
New York, NY, USA, 2007. ACM.

[11] K. Das, J. G. Schneider, and D. B. Neill. Anomaly pattern detection in
categorical datasets. In KDD, pages 169–176, 2008.

[12] G. Dong and J. Bailey. Overview of contrast data mining as a field and pre-
view of an upcoming book. In Proceedings of ICDM Workshops: Workshop
on Contrast Data Mining and Applications, pages 1141–1146, Washington,
DC, USA, 2011. IEEE Computer Society.

[13] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends
and differences. In Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’99, pages
43–52, New York, NY, USA, 1999. ACM.

[14] T. Fawcett and F. Provost. Adaptive fraud detection. Data Min. Knowl.
Discov., 1:291–316, January 1997.

[15] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[16] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition,
1997.

[17] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation op-
erator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl.
Discov., 1:29–53, 1997.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11(1):10–18, Nov. 2009.

19

[19] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artif.
Intell. Rev., 22:85–126, October 2004.

[20] H. P. Kriegel, E. Schubert, A. Zimek, and P. Kroger. Outlier detection
in axis-parallel subspaces of high dimensional data. In Proc. of PAKDD,
pages 831–838, 2009.

[21] L. V. S. Lakshmanan, J. Pei, and J. Han. Quotient cube: how to summarize
the semantics of a data cube. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages 778–789. VLDB
Endowment, 2002.

[22] S. Lin and D. E. Brown. An outlier-based data association method for
linking criminal incidents. Decis. Support Syst., 41:604–615, March 2006.

[23] M. V. Mahoney and P. K. Chan. Learning rules for anomaly detection of
hostile network traffic. In Proc. of the 3rd IEEE International Conference
on Data Mining, ICDM ’03, pages 601–604, 2003.

[24] M. Markou and S. Singh. Novelty detection: a review – part 1: statistical
approaches. Signal Process., 83:2481–2497, December 2003.

[25] M. Markou and S. Singh. Novelty detection: a review – part 2: neural
network based approaches. Signal Process., 83:2499–2521, December 2003.

[26] E. Muller, M. Schiffer, and T. Seidl. Statistical selection of relevant sub-
space projections for outlier ranking. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering, ICDE ’11, pages 434–445,
Washington, DC, USA, 2011. IEEE Computer Society.

[27] K. Narita and H. Kitagawa. Detecting outliers in categorical record
databases based on attribute associations. In Proceedings of the Tenth Asia-
Pacific Web Conference on Progress in WWW Research and Development,
APWeb ’08, pages 111–123, Berlin, Heidelberg, 2008. Springer-Verlag.

[28] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proceedings of the Seventh Interna-
tional Conference on Database Theory, ICDT ’99, pages 398–416, London,
UK, 1999. Springer-Verlag.

[29] A. Patcha and J.-M. Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Comput. Netw., 51:3448–
3470, 2007.

[30] K. Smets and J. Vreeken. The odd one out: Identifying and characterising
anomalies. In Proceedings of the SIAM International Conference on Data
Mining, SDM ’11, pages 804–815. SIAM, 2011.

[31] X. Song, M. Wu, C. Jermaine, and S. Ranka. Conditional anomaly detec-
tion. IEEE Trans. on Knowl. and Data Eng., 19:631–645, May 2007.

20

[32] M. Valko, B. Kveton, H. Valizadegan, G. F. Cooper, and M. Hauskrecht.
Conditional anomaly detection with soft harmonic functions. In Proceedings
of the 2011 IEEE 11th International Conference on Data Mining, ICDM
’11, pages 735–743, Washington, DC, USA, 2011. IEEE Computer Society.

[33] J. Wang, J. Han, and J. Pei. Closet+: searching for the best strategies for
mining frequent closed itemsets. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’03, pages 236–245, New York, NY, USA, 2003. ACM.

[34] X. Wang and I. Davidson. Discovering contexts and contextual outliers
using random walks in graphs. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09, pages 1034–1039,
2009.

[35] L. Wei, W. Qian, A. Zhou, W. Jin, and J. X. Yu. Hot: hypergraph-based
outlier test for categorical data. In Proceedings of the 7th Pacific-Asia con-
ference on Advances in knowledge discovery and data mining, PAKDD’03,
pages 399–410, Berlin, Heidelberg, 2003. Springer-Verlag.

[36] W. K. Wong, A. Moore, G. Cooper, and M. Wagner. Rule-based anomaly
pattern detection for detecting disease outbreaks. In Proceedings of the 18th
National Conference on Artificial Intelligence, ENAI ’02, pages 217–223,
Menlo Park, CA, USA, 2002. American Association for Artificial Intelli-
gence.

[37] G. Yang. The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’04, pages
344–353, New York, NY, USA, 2004. ACM.

21

c-id City Type Branch Package
C1 L1 T1 B1 Gold
C2 L1 T1 B1 Silver
C3 L1 T1 B1 Gold
C4 L1 T1 B2 None
C5 L2 T2 B1 Silver
C6 L1 T2 B1 Gold

Table 1: A table T of a set of customers.

22

Notation Description
T (A1, . . . , An) A base table, where A1, . . . , An are categorical at-

tributes with finite domains.
∗ A widecard meta-symbol, matches any possible values

in a domain.
g(= (g.A1, . . . , g.An)) A group-by tuple (or group for short), g.Ai takes either

a value in the domain of Ai or meta-symbol ∗.
cov(g) The cover of g, the set of objects in T matching g,

that is, cov(g) = {t ∈ T | t.Ai = g.Ai for all i such
that (1 ≤ i ≤ n&g.Ai 6= ∗)}.

space(g) The subspace of g, space(g) = {Ai | 1 ≤ i ≤ n, g.Ai 6=
∗}.

avs(g) The non-∗ attribute-value set (AVS for short) of g,
avs(g) = {Ai = g.Ai | 1 ≤ i ≤ n, g.Ai 6= ∗}.

g1 � g2 g1 is an ancestor of g2, and g2 a descendant of g1, if
avs(g1) ⊂ avs(g2).

(r, o) A contextual outlier, where r is the reference group
and o is the outlier group.

deg(r, o) The outlier degree of contextual outlier (r, o),

deg(r, o) = |cov(r)|
|cov(o)| .

∆ The outlier degree threshold.
cond(r, o) The shared AVS of contextual outlier (r, o),

cond(r, o) = avs(r) ∩ avs(o).
out(r, o) The outlier subspace of contextual outlier (r, o),

out(r, o) = space(r)− space(cond(r, o)).
α(r, o) The significance of a contextual outlier (r, o) (Defini-

tion 6).
Φ(g1, g2) The assembly of an ordered pair (g1, g2) (Definition 7).

Table 2: Summary of definitions and frequently used notations.

23

Data Set # of objects # of attributes # of closure groups QC time (s)
Adult 30,162 8 73,282 28.678

Mushroom-sc 8,124 8 6,265 1.879
Solar-flare 1,389 10 7,770 2.136
Tic-tac-toe 958 9 42,711 12.903

Credit-approval 690 8 5,707 1.446
Hayes-roth 160 4 277 0.047

Note: QC time refers to the time used to find all closure groups, that is, |G| in algorithm 1.

Table 3: The statistics of the data sets.

24

Outlier-id Reference group r Outlier group o deg(r, o) = |cov(r)|
|cov(o)| Significance

c1 (∗, ∗, high-school, single) (∗, ∗, high-school, divorced) 5.7 = 34/6 1.02× 10−17

c2 (∗, ∗, high-school, single) (∗, ∗, trade-school, single) 5.7 = 34/6 1.02× 10−17

c3 (∗, ∗, high-school, single) (∗, ∗, high-school, widowed) 8.5 = 34/4 5.05× 10−10

c4 (∗, ∗, trade-school, married) (∗, ∗, trade-school, widowed) 8.0 = 16/2 2.32× 10−8

c5 (∗, ∗, junior-high, divorced) (∗, ∗, college, divorced) 8.0 = 16/2 2.32× 10−8

c6 (∗, 40, junior-high, ∗) (∗, 40, college, ∗) 8.5 = 34/4 5.05× 10−10

c7 (∗, 40, junior-high, ∗) (∗, 40, trade-school, ∗) 5.7 = 34/6 1.02× 10−17

c8 (∗, 40, junior-high, ∗) (∗, 50, junior-high, ∗) 5.7 = 34/6 1.02× 10−17

c9 (∗, 50, high-school, ∗) (∗, 50, college, ∗) 8.0 = 16/2 2.32× 10−8

c10 (∗, 30, ∗, married) (∗, 30, ∗, widowed) 8.5 = 34/4 5.05× 10−10

Table 4: Some contextual outliers on data set hayes-roth (∆ = 5, s = 10−8).
The underlined attributes indicate the shared AVSs.

25

Outlier-id Contextual Outlier deg(r, o) = |cov(r)|
|cov(o)| Significance

c1
r: (∗, ∗, ∗, ∗, White, White, White, ∗)

55.0 = 3520
64

1.17× 10−21

o: (∗, Enlarging, ∗, White, White, Brown, White, White)

c2
r: (Convex, ∗, ∗, ∗, ∗, White, White, ∗)

63.3 = 2024
32

1.29× 10−18

o: (Convex, Enlarging, ∗, ∗, ∗, Red, White, White)

c3
r: (Convex, ∗, ∗, ∗, ∗, ∗, White, Brown)

62.5 = 1000
16

1.69× 10−29

o: (Sunken, Enlarging, ∗, ∗, White, White, White, Brown)

c4
r: (∗, Tapering, ∗, Buff , ∗, White, White, White)

54.0 = 864
16

1.39× 10−12

o: (∗, Tapering, ∗, Brown, White, White, White, Purple)

c5
r: (Convex, Tapering, ∗, ∗, White, White, White, ∗)

54.0 = 816
16

5.31× 10−31

o: (Convex, Enlarging, ∗, ∗, red, White, White, White)

Table 5: Some contextual outliers on data set mushroom-sc
(∆ = 50, s = 10−3). The underlined attributes indicate the shared AVSs.

26

Adult Mushroom-sc Solar-flare Tic-tac-toe Credit-approval Hayes-roth

s ∆ = 2000 ∆ = 60 ∆ = 150 ∆ = 30 ∆ = 70 ∆ = 15

10−3
of out. obj. 1,831 346 161 222 72 12
of out. grp. 2,429 676 212 222 98 6
of cont. out. 5,823 6,659 896 664 488 6

10−5
of out. obj. 1,807 346 124 55 34 12
of out. grp. 2,399 676 170 55 48 6
of cont. out. 5,686 6,658 487 104 167 6

10−7
of out. obj. 1,388 346 113 46 27 12
of out. grp. 1,745 676 134 46 27 6
of cont. out. 2,882 6,571 304 84 62 6

10−9
of out. obj. 1,314 346 107 42 22 12
of out. grp. 1,506 672 118 42 14 6
of cont. out. 2,213 5,872 255 76 24 6

Table 6: The number of contextual outliers w.r.t. significance threshold.

27

Methods & Precision Recall
threshold setting Avg. Std. Avg. Std.

COD(∆ = 50, s = 10−7) 78.63% 10.77% 100% 0
LOF (MinPtsLB = 10,MinPtsUB = 100) 68.59% 11.59% 73% 13.04%

Table 7: The precision & recall of COD, and comparison with LOF.

28

Figure captions

• Fig. 1: A contextual outlier in the tic-tac-toe data set.

• Fig. 2: Names for the parts of a mushroom.

• Fig. 3: The number of contextual outliers / outlier objects w.r.t different
∆. The y-axis (# of contextual outliers / outlier objects) is in logarithmic
scale.

• Fig. 4: The runtime of COD, COD− and BOD on the six real data sets (s =
10−3 in COD).

• Fig. 5: The number of outliers of COD with respect to dimensionality.

• Fig. 6: The runtime of COD with respect to dimensionality (s = 10−3).

• Fig. 7: The number of outliers of COD with respect to number of tuples.

• Fig. 8: The runtime of COD with respect to number of tuples (s = 10−3).

• Fig. 9: The scalability of COD on synthetic data sets w.r.t. number of
tuples.

29

(a) An outlier group
cover: 2

b ∗ b

∗ x ∗

b ∗ o

(b) A reference group
cover: 35

x ∗ o

∗ ∗ ∗

o ∗ o

(c) Outlier instance c1

b x b

o x x

b o o

(d) Outlier instance c2

b o b

x x b

b x o

Fig. 1: A contextual outlier in the tic-tac-toe data set.

30

Fig. 2: Names for the parts of a mushroom.

31

2000 2500 3000 3500 4000 4500 5000

2.5

3

3.5

4

4.5

5

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)
BOD(# cont. out.)

COD(s=10−5)(# cont. obj.)

COD(s=10−4)(# cont. obj.)

(a) Adult

80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)
BOD(# cont. out.)

COD(s=10−5)(# cont. obj.)

COD(s=10−4)(# cont. obj.)

(b) Mushroom-sc

10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)
BOD(# cont. out.)

COD(s=10−5)(# out. obj.)

COD(s=10−4)(# out. obj.)

(c) Solar-flare

10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)

BOD(# cont. out.)

COD(s=10−5)(# out. obj.)

COD(s=10−4)(# out. obj.)

(d) Tic-tac-toe

10 15 20 25 30 35 40 45 50
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)

BOD(# cont. out.)

COD(s=10−5)(# out. obj.)

COD(s=10−4)(# out. obj.)

(e) Credit-approval

5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

∆

of

 c
on

te
xt

ua
l o

ut
lie

rs
 /

ou
tli

er
 o

bj
ec

ts

COD(s=10−5)(# cont. out.)

COD(s=10−4)(# cont. out.)

COD−(# cont. out.)

BOD(# cont. out.)

COD(s=10−5)(# out. obj.)

COD(s=10−4)(# out. obj.)

(f) Hayes-roth

Fig. 3: The number of contextual outliers / outlier objects w.r.t different ∆.
The y-axis (# of contextual outliers / outlier objects) is in logarithmic scale.

32

2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(a) Adult

100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(b) Mushroom-sc

10 20 30 50 70 100
0

100

200

300

400

500

600

700

800

900

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(c) Solar-flare

10 20 30 50 70 100
0

100

200

300

400

500

600

700

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(d) Tic-tac-toe

10 20 30 50 70 100
0

20

40

60

80

100

120

140

160

180

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(e) Credit-approval

10 20 30 50 70 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

∆

ru
nt

im
e

(s
)

COD

COD−

BOD

(f) Hayes-roth

Fig. 4: The runtime of COD, COD− and BOD on the six real data sets (s = 10−3

in COD).
33

2 4 6 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Number of attributes

N
um

be
r

of
 o

ut
lie

r
ob

je
ct

s

∆ = 1500, s = 10−3

∆ = 1500, s = 10−5

∆ = 2000, s = 10−3

∆ = 2000, s = 10−5

(a) Adult

4 6 8 10
0

50

100

150

200

250

300

350

Number of attributes

N
um

be
r

of
 o

ut
lie

r
ob

je
ct

s

∆ = 30, s = 10−3

∆ = 30, s = 10−5

∆ = 50, s = 10−3

∆ = 50, s = 10−5

(b) Solar-flare

Fig. 5: The number of outliers of COD with respect to dimensionality.

34

2 4 6 8
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of attributes

R
un

tim
e

(s
)

∆ = 2000
∆ = 2500
∆ = 3000

(a) Adult

4 6 8 10
0

50

100

150

200

250

300

Number of attributes

R
un

tim
e

(s
)

∆=30
∆=50
∆=70

(b) Solar-flare

Fig. 6: The runtime of COD with respect to dimensionality (s = 10−3).

35

7500 15000 22500 30162
0

500

1000

1500

2000

2500

3000

Number of tuples

N
um

be
r

of
 o

ut
lie

r
ob

je
ct

s

∆ = 1500, s= 10−3

∆ = 1500, s= 10−5

∆ = 2000, s= 10−3

∆ = 2000, s= 10−5

(a) Adult

350 700 1050 1389
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Number of tuples

N
um

be
r

of
 o

ut
lie

r
ob

je
ct

s
∆ = 30, s = 10−3

∆ = 30, s = 10−5

∆ = 50, s = 10−3

∆ = 50, s = 10−5

(b) Solar-flare

Fig. 7: The number of outliers of COD with respect to number of tuples.

36

7500 15000 22500 30162
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of tuples

R
un

tim
e

(s
)

∆ = 2000
∆ = 2500
∆ = 3000

(a) Adult

350 700 1050 1389
0

300

600

900

1200

1500

1800

2100

Number of tuples

R
un

tim
e

(s
)

∆ = 30
∆ = 50
∆ = 70

(b) Solar-flare

Fig. 8: The runtime of COD with respect to number of tuples (s = 10−3).

37

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Number of tuples (1,000)

R
un

tim
e

(1
,0

00
 s

)

∆ = 7000, s = 10−7

Fig. 9: The scalability of COD on synthetic data sets w.r.t. number of tuples.

38

