
Using Graph Partitioning to Discover Regions of

Correlated Spatio-Temporal Change in Evolving Graphs

Jeffrey Chan∗, James Bailey, Christopher Leckie

NICTA Victoria Research Laboratory

Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia

{jkcchan, jbailey, caleckie}@csse.unimelb.edu.au

Abstract

There is growing interest in studying dynamic graphs, or graphs that evolve with

time. In this work, we investigate a new type of dynamic graph analysis - finding

regions of a graph that are evolving in a similar manner and are topologically similar

over a period of time. For example, these regions can be used to group a set of changes

having a common cause in event detection and fault diagnosis. Prior work [6] has

proposed a greedy framework called cSTAG to find these regions. It was accurate in

datasets where the regions are temporally and spatially well separated. However, in

cases where the regions are not well separated, cSTAG produces incorrect groupings.

∗Corresponding author. Department of Computer Science and Software Engineering, University of Mel-
bourne, Victoria 3010, Australia. Telephone Number: (613) 8344 1267. Fax Number: (613) 9348 1184.

1

In this paper, we propose a new algorithm called regHunter. It treats the region discov-

ery problem as a multi-objective optimisation problem, and it uses a multi-level graph

partitioning algorithm to discover the regions of correlated change. In addition, we

propose an external clustering validation technique, and use several existing internal

measures to evaluate the accuracy of regHunter. Using synthetic datasets, we found

regHunter is significantly more accurate than cSTAG in dynamic graphs that have

regions with small separation. Using two real datasets - the access graph of the 1998

World Cup website, and the BGP connectivity graph during the landfall of Hurricane

Katrina - we found regHunter obtained more accurate results than cSTAG. Further-

more, regHunter was able to discover two interesting regions for the World Cup access

graph that cSTAG was not able to find.

Keywords: Dynamic graphs, graph mining, regions of correlated spatio-temporal

change, graph partitioning, BGP connectivity graph, Web access graph.

2

1 Introduction

Graphs are powerful abstractions of relational data, hence their popularity across many

fields [28][25]. In recent years, there has been growing interest in analysing how relational

data, represented as graphs, evolve with time. Some examples include analysing how global

properties of graphs change with time [21], detecting anomalous changes in an evolving graph

[25], and analysing community evolution in social networks [19].

In previous work [6], we introduced the novel and interesting problem of discovering re-

gions of correlated spatio-temporal change in dynamic graphs. This region discovery problem

involves grouping similar sequences of changes that occur over the same period of time (tem-

porally correlated), as well as within the same region of the graph (spatially correlated). The

subgraphs that are both temporally and spatially correlated over a period of time are referred

to as regions of correlated spatio-temporal change. The region discovery problem is

to find these regions of correlated change in order to summarise changes to dynamic graphs.

Changes to graphs can occur in various forms, e.g., the appearance or disappearance of

an edge between two snapshots of an evolving graph, changes to the weights of edges and

vertices, or even changes to designated subgraphs. In this paper, we focus on structural

changes to edges1, but the methodology can be easily extended to weight changes.

The problem of finding regions of correlated spatio-temporal change arises in a variety of

contexts, including fault diagnosis in communications networks [26], identifying flash crowd

events from web access graphs, and identifying active brain regions from functional Magnetic

Resonance Imaging [7]. As a fault diagnosis example, we might be interested in detecting

correlated connection failures at the IP layer to infer an underlying router failure. We wish

1We do not need to consider changes to vertices as well, since changes to vertices will induce changes on
their incident edges.

3

to group all IP connection failures that have the same root cause (i.e., router failure), to

help narrow down the possible root causes. A router failure will induce correlated failures

on all of its dependent IP connections. This will induce a region of correlated change in the

routing topology at the IP layer. Hence by finding such regions in the evolving network of

the IP layer, we can assist with the discovery of problems in the underlying routers.

Illustrative Example To further illustrate the concept of regions of correlated spatio-

temporal change, consider an example of five sequential snapshots from an evolving graph,

shown in Figure 1. Consider the set of edges in region A. Notice that for each of the five

snapshots, the edges are either all present, or all absent. This is an example of correlated

temporal behaviour. In addition, consider the shortest path distance between the edges in

region A - all the distances are very small. This is an example of spatial correlation. Hence,

the edges in region A form a region of correlated spatio-temporal change. The same type of

analysis can be performed for the other regions.

We presented a greedy algorithm to discover these regions of correlated change in [6].

This algorithm, called cSTAG, first found regions that are optimally correlated over a (set

length) subsequence of snapshots of the dynamic graph. Then it merges similar regions

that were discovered in adjacent subsequences. cSTAG can achieve high accuracy when the

regions are temporally or spatially well separated from each other. However, this is not the

case when the regions are not well separated, or when they have characteristics that confuse

a greedy approach. Consider the example of a two layered dynamic graph with 17 snapshots,

illustrated in Figure 2, with the associated change waveforms presented in Table 2. Figure 2a

represents the underlying physical link graph, while Figure 2b represents the IP connection

graph built over it. As explained earlier, we are trying to infer underlying router instability

events at the lower physical layer from changes in the upper layer. The edges of subgraph

4

A (solid dark edges), represent IP connections that transit through router A. Similarly for

edges in subgraph B (dashed dark edges) for router B, and subgraph C (dotted dark edges)

for router C. The gray edges in Figure 2 have not experienced any change over the sequence

of snapshots, hence we are not interested in grouping them into regions of correlated change.

In this example, router A experiences two independent periods of instability, cause by two

different instability events (see Table 2). Router B is an unstable, flapping router, forming

one instability event. Router C just experiences one period of instability, caused by an event

starting from snapshot 11. Each of these events at the physical layer causes one group of

correlated changes in the IP connection layer. Hence, we wish to group the changing edges

at the IP connection layer into four regions of correlated change (one per underlying event)

- corresponding to the first failure of router A (region A1), the second failure of A (region

A2), the flapping behaviour of router B (region B), and to the changes of router C (region

C).

If analysing correlation over a short period of time (e.g., window length ω1 in Table 2),

regions A1 and B, and regions A2, B and C, will be temporally and spatially similar over

snapshots 1–7, and 13–17. If analysing correlation over a longer period of time (e.g., window

length ω2 in Table 2), regions A1 and A2 will appear to be one event. Therefore, using a

greedy algorithm such as cSTAG, with both limited look ahead and a fixed window length,

will result in either regions A1 and B incorrectly associated over the snapshots 1-7, and

regions A2, C and B over the snapshots 11-17 (if a short window length ω1 is used), or

regions A1 and A2 being considered as one region (if a longer window length ω1 is used).

This example demonstrates that a more global approach is needed.

Therefore, to handle datasets like the previous example, we have developed a new al-

gorithm called regHunter. regHunter can lookahead an arbitrary number of snapshots to

5

find the regions, hence it is able to distinguish regions that are very close together, as well

as regions that exhibit correlation over time windows of different lengths. It represents the

evolving graph as two evolving dissimilarity graphs, and discovering regions of correlated

change is equivalent to finding the optimal partitions of the dissimilarity graphs. Although

regHunter can potentially be more computationally intensive than cSTAG, this is not an

issue for off-line analysis applications, where accuracy is of paramount importance. For ex-

ample, in an application such as fault diagnosis, the ability to accurately identify the root

cause of a problem can greatly assist and save time for network administrators [13][26].

Contributions:

• We introduce a new model to represent evolving graphs, that is particularly suitable

for finding regions of correlated change.

• We propose a new algorithm, called regHunter, that employs a graph partitioning

approach to discovering regions of correlated spatio-temporal change. We have found

that regHunter is substantially more accurate than the existing method (cSTAG [6]) for

regions that are temporally and spatially close to each other. In addition, regHunter re-

quires fewer parameters to be set than cSTAG (5 vs. 8), two of which are virtually

invariant to a change of dataset, making regHunter simpler to use.

• We thoroughly analyse the worst case time complexity of regHunter, finding it to be

polynomial in the number of changed edges.

• We introduce an external validation method to evaluate the accuracy of regHunter and

cSTAG.

6

• We provide a quantitative framework to evaluate two real datasets, that were only

qualitatively evaluated in previous work [6].

The rest of the paper is structured as follows. Section 2 surveys related work. In Section

3, we formally introduce the region discovery problem. Section 4 describes our new algo-

rithm regHunter, including a description of the model regHunter adopts to solve the region

discovery problem. In Section 5, we evaluate the accuracy and running time of regHunter on

synthetic and real datasets, and compare it with cSTAG. Finally, in Section 6 we conclude

and present possible directions for future work.

2 Related Work

We first summarise the cSTAG approach, and then outline relevant work in the related

problems of dynamic graph analysis and spatio-temporal mining.

The cSTAG framework [6] converts the problem of finding regions of correlated region in a

dynamic graph to one of clustering the set of edges that experienced change, using a temporal

and topological dissimilarity measure defined over the edges. To discover regions of different

correlation lengths, cSTAG partitions the initial sequence of snapshots into overlapping

windows of snapshots. For each window of snapshots, (local) regions are discovered, using

a variety of single-objective clustering algorithms. Then similar regions are merged across

windows, to form regions whose correlation length are longer than a single window. In

this greedy approach of cSTAG, if a mistake was made in the discovery of local regions, it

is not possible for cSTAG to correctly identify that two regions discovered in consecutive

windows actually describe a single region of longer correlation. The clustering methods used

include single and average linkage hierarchical clustering, and an incremental method called

7

leaderFollower (see [6] for details).

The problem of analysing evolving graphs has also been studied from a number of other

different perspectives.

Leskovec et al. [21] investigated how global properties of graphs, like node degree and

the diameter of a graph, evolve with time. Based on an analysis of four large, real dynamic

graphs, they proposed two probabilistic graph models to explain and generate the observed

distributions. This example of global graph analysis is different from the more localised

region discovery problem.

Recently, Borgwardt et al. [2] defined the novel problem of finding frequent subgraphs

in dynamic graphs. In addition to the traditional definition of being topologically frequent,

these subgraphs must also exhibit similar temporal evolution over a period of time. Although

very similar to our work, the frequent subgraphs sought by Borgwardt do not have any topo-

logical/spatial constraints, while in our work, we require changed edges to be topologically

close.

In [19], Kumar et al. explored the evolution of community structure and behaviour

in several collections of weblogs. They introduced the notion of a time graph to model

the evolution of a collection of weblogs and the links between them. Edges in the time

graph are labeled with their creation time. Using these time graphs, they extracted weblog

communities and analysed the degree distribution, the evolution of node distributions in

communities, and the burstiness of communities. In [20], they performed a similar analysis

on the structure and evolution of two online social networks, namely Flickr and Yahoo! 360.

Similar to Leskovec et al. [21], their focus is on how local structures evolve with time, rather

than finding correlation among changes.

In [27], Sun et al. proposed an information theoretic based algorithm called GraphScope

8

to discover communities in evolving, relational, bipartite graphs. Communities are defined

as groups of objects (vertices) that have the same connections among them over a period

of time. Using lossless encoding schemes, groups of objects are encoded, and those with

the smallest entropy are chosen as communities. The main difference between the problem

of finding communities and the problem of finding regions of correlated change is that the

communities problem is restricted to bipartite graphs. They do not have a notation of

topological proximity. Hence, GraphScope cannot be used to find regions of correlated

changes on graphs that are not bipartite.

In spatio-temporal clustering and pattern mining, the main objective is to find objects or

incidents that are in close geographical proximity, and occur frequently together. An example

of spatio-temporal pattern mining is given in [5], where Celik et al. define the problem of

mining mixed-drove spatio-temporal co-occurrence patterns. These patterns are objects

in spatio-temporal databases that are spatially near each other for many time instances.

Although spatio-temporal mining is similar to our work, it is concerned with clusters of

incidents that co-occur frequently, while our work is concerned with groups of entities that

report strong temporal correlation over a window of time, which may or may not co-occur

frequently.

In summary, the related work either focuses on discovering patterns that co-occur at

the same time, which is different from finding regions of correlated change, or target non-

relational datasets. These problems and solutions cannot be extended to finding regions of

correlated change, for the reasons outlined previously. In contrast, the cSTAG framework

introduces a local approach to finding regions of correlated spatio-temporal change. For less

well separated regions, cSTAG has difficulty in finding them. regHunter is designed to find

these regions.

9

3 Problem Statement

In this section, we formally define what is a region of correlated spatio-temporal change and

the problem of discovering these regions. For ease of reference, Table 3 provides a summary

of the main symbols used in this paper.

A graph G(VG, EG) consists of a set of vertices VG, and a set of edges EG, EG : VG × VG,

representing the pairwise relationships over VG.

Definition 1 A dynamic graph is represented as a sequence of snapshots < G1, G2, . . . , GS >

of the graph G, 1 ≤ t ≤ S. We denote the subsequence (or window) < Gts, . . . , Gte > by

W ts,te, 1 ≤ ts ≤ te ≤ S. Let wn be the number of windows. Then, where it is unambiguous

to do so, we denote a window by Wk, 1 ≤ k ≤ wn, and if the first snapshot of Wk1 is later

than the first snapshot of Wk2, then k1 > k2.

For example, the windowW 1,2 for the graph illustrated in Figure 1 represents the sequence

< G1, G2 >. If wn = 4, and the set of windows is {W 1,2,W 2,3,W 3,4,W 4,5}, then W1 is W 1,2,

W2 is W 2,3, and so on.

Definition 2 A structural change of an edge e, e ∈
⋃S

t=1EGt
, is defined as the appearance

or disappearance of e between any two consecutive snapshots. We call an edge that has

experienced structural change a changed edge, and Ets,te
C (Ek

C) the set of changed edges

over subsequence W ts,te (Wk).

For example, the edge e1−7 for the graph shown in Figure 1 is a changed edge over W 1,2.

The set of changed edges forW 1,2, E1,2
C , is {e1−7, e1−6, e1−2, e1−3, e13−14, e15−16, e8−9, e9−10, e12−13, e9−11}.

Next, we introduce the notation of change waveforms, which represent the temporal

change behaviour of edges over a particular subsequence of snapshots.

10

Definition 3 For structural changes to edge ei, over the subsequence W ts,te, we represent

these changes by a binary valued change waveform qts,te(ei) = q(ei)[1]q(ei)[2] . . . q(ei)[te−

ts+ 1], where

q(ei)[k] =















0 ei /∈ Gts+k−1

1 ei ∈ Gts+k−1

, 1 ≤ k ≤ te− ts+ 1

As an example, the change waveforms for each changed edge in Figure 1 are shown in Table

1.

A region of correlated spatio-temporal change Rts,te
r , Rts,te

r ⊆ E1,S
C , is a set of

changed edges that have the following characteristics:

• Over the snapshots spanning ts to te, all edges are highly correlated in their change

behaviour, as well as being topologically close.

• The temporal and spatial distances between different regions are maximised.

Intuitively, the edges within a region should have minimal temporal and spatial distances

between them, while edges in different regions should have maximal temporal and spatial

distances between them. Hence, a set of regions discovered for a dynamic graph should

maximise the temporal inter-region/intra-region distance and the spatial inter-region/intra-

region distance ratio simultaneously.

Definition 4 The temporal relation dtem : E × E × Wk → [0, 1] measures the difference

between the temporal change behaviour of pairs of edges over the subsequence Wk. The

spatial relation dspa : E ×E ×Wk → [0, 1] measures the topological distance between pairs of

edges over the subsequence Wk.

As both temporal and spatial objective functions have a similar form, we shall just define

the temporal one for brevity.

11

Definition 5 Let R be the set of regions of correlated change. The temporal (spatial) ob-

jective function, ftem(R, dtem) (fspa(R, dspa)) measures how temporally correlated (spatially

close) the regions R are, under the temporal (spatial) distance relation dtem (dspa). It is

formally defined as

ftem(R, dtem) =
∑

Rr∈R

tem inter(Rr, E
1,S
C −Rr)

tem intra(Rr)

where tem inter (spa inter) and tem intra (spa intra) are the total temporal (spatial) inter-

region distance and the total temporal (spatial) intra-region distance respectively.

Definition 6 The problem of discovering regions of correlated spatio-temporal

change involves partitioning E1,S
C into a set of regions of correlated spatio-temporal

change R = {Rts1,te1
1 , . . . , RtsL,teL

L }, such that the objective functions ftem(R, dtem) and

fspa(R, dspa) are simultaneously maximised, and Rts,te
r ⊆ E1,S

C , Rtsg,teg
g ∩ Rtsh,teh

h = ∅, g 6= h,

1 ≤ g, h ≤ L.

The region discovery problem is a bi-objective optimisation problem. In fact, finding

the optimal partition for either ftem or fspa is NP-Complete, as optimising either objective

can be easily decomposed to the NP-Complete maximum k-cut problem [4]. Hence, we seek

approximate solutions for the region discovery problem.

4 regHunter: Discovering Regions of Correlated Spatio-

Temporal Change

In this section, we describe how regHunter solves the region discovery optimisation problem.

We first describe how regHunter models an evolving graph as two evolving dissimilarity

12

graphs. Then we describe the two temporal and spatial distance measures used, and how

they are used to build the model. Then we present the graph partitioning approach used to

discover the optimal partitions/regions. Finally, we present the worst case time complexity

of regHunter. A summary of the regHunter algorithm is provided in Algorithm 1. We shall

refer back to it in the following subsections, as we explain each of the steps in regHunter.

Algorithm 1 Outline of regHunter.
1: Inputs:
2: < G1, G2, . . . , GS > - sequence of snapshots;
3: ω - window length;
4: η - lookahead length;
5: ψ - maximum time between changes;
6: stoptem - temporal stopping threshold;
7: stopspa - spatial stopping threshold.
8: Outputs:
9: R - set of regions of correlated spatio-temporal change.

10:
11: Segment the sequence into a number of overlapping subsequences (each of length ω), W1,W2, . . .Wwn.
12: for 1 ≤ k ≤ wn do
13: Extract Ek

C for Wk.
14: Compute temporal intra-window distances dintra tem(ei, ej ,Wk) between edges ei, ej ∈ Ek

C . Add
distances and changed edges to the temporal evolution dissimilarity graphs Gtem evol.

15: for each Wp ∈ adjacent(Wk, η) do
16: Compute temporal inter-window distances dinter tem(ei, ej ,Wp,Wk) between edges ei ∈ Ek

C and
ej ∈ E

p
C and over windows Wp and Wk, p < k. Add distances and changed edges Gtem evol.

17: end for
18: end for
19: Apply multi-level graph partitioning to partition Gtem evol into partitions P, using stoptem as a halting

criterion.
20: for each partition Pk ∈P do
21: Compute the intra-window and inter-window spatial distances, dintra spa(ei, ej ,Wk) and

dinter spa(ei, ej ,Wp,Wk), for edges ei and ej ∈ Pk, and construct the partial spatial evolution dis-
similarity graph Gk

spa evol.

22: Apply graph partitioning to partition Gk
spa evol into a set of Rk regions, using stopspa as a halting

criterion.
23: end for
24: R =

⋃

Rk

13

4.1 Model Formulation

In this subsection, we describe the model regHunter uses to represent evolving dissimilarity

graphs. This, along with the graph partitioning algorithm, forms the regHunter approach.

A dynamic graph can be visualised as an evolving set of changed edges. Between each pair

of changed edges, the temporal and spatial distances are varying with time. Conceptually,

this evolving set of changed edges and distances can be represented as an evolving temporal

dissimilarity graph and evolving spatial dissimilarity graph. The vertices of these evolving

dissimilarity graphs are drawn from the time varying sets of changed edges, and the temporal

or spatial pairwise distances are modeled as weighted edges between the associated vertices

(i.e., the changed edges associated with the distance). For example, the evolving temporal

and spatial dissimilarity graphs for some of the changed edges of the example given in the

introduction (see Figure 1) are shown in Figure 3. The vertices are labeled as <changed

edge, window id> pair - the window id identifies in which subsequence of snapshots the

changed edge occurs, and are labeled in chronological order. This id can be thought of as a

time label. The edge weights of the evolving temporal dissimilarity graph are the temporal

distances (Figure 3a), and the edge weights of the evolving spatial dissimilarity graph are

the spatial distances (Figure 3b).

Note that a region of correlated change is a set of changed edges, labeled with a starting

and ending time. A partition of the vertices of the dissimilarity graphs also results in a set of

changed edges, with a starting and ending time. Hence, finding a partition of the dissimilarity

graphs that simultaneously maximises the inter-partition/intra-partition distance ratio is

equivalent to maximising fspa and ftem (i.e., finding the optimal set of regions of correlated

change for the dynamic graph). For example, the partitions/regions R1, R2, and R3 in Figure

3 form a possible set of partitions/regions.

14

In order to find the set of regions, we need to clarify what it means to simultaneously max-

imise the two objectives. There are many maximisation definitions in multi-objective optimi-

sation [12]. We use lexicographical optimisation [12] to optimise the two objective functions.

In lexicographical optimisation the objective functions f i(S) = (f 1(S), f 2(S), . . . , fQ(S))

are ordered according to their importance, in decreasing order. Each objective is optimised

in turn, starting with f 1. Intuitively, assuming we are maximising and if Sx and Sx+1 are

the optimal solutions for objectives fx and fx+1 respectively, then solution Sx+1 should not

decrease the objective values for the objectives f 1 to fx.

The advantages of lexicographical optimisation are that we can reduce the total number

of distance calculations (we shall describe how this is achieved in the next section), and in

previous work2 [6], it has been found to have the best accuracy and consistency out of three

different multiobjective optimisation schemes. The other two are i) using a weighted linear

sum to combine the two distance relations (named soft in [6]); and ii) thresholding one of the

distance relations and using that as a constraint on the remaining distance relation (hard).

Compared to the spatial distances, we found that the temporal distances within a region

are more consistent, while across regions it varies more. This is particularly true of graphs

with small diameters - like scale-free graphs, of which Internet routing topologies are an

example. We shall see in Section 5.7 that the spatial distances within and across regions

show little variation for a routing topology graph. Therefore, the temporal distances are

better measures for distinguishing regions, so we choose to optimise ftem first, than fspa.

2Named sequential clustering in [6].

15

4.2 Determining the Set of Evolving Changed Edges

Analysing the temporal and spatial correlation of the set of changed edges over the whole

sequence of snapshots can miss local correlation, like regions A1 and A2 in the example of

Figure 2. Therefore, we segment the sequence of snapshots into a number of fixed length

subsequences, or windows, and extract the changed edges over each of the windows. This en-

ables analysis of correlation over the length of a window. By using the evolving dissimilarity

graphs, we can also analyse correlation over multiple windows. This is an important advan-

tage over the previous work in cSTAG [6], which only searches for longer term correlation

after local regions have been found for each window.

The actual implementation of regHunter uses a sliding window to segment the sequence

into a number of overlapping windows of fixed length ω. For each window, we extract the

set of changed edges over that window. This is described in line 11 of Algorithm 1.

4.3 Temporal Distance Measures

Before we introduce the distance measures, we shall define the concepts of intra and inter

window distances. Recall that each vertex in an evolving dissimilarity graph represents a

<changed edge, window id> pair. The weights of edges between vertices with the same

window id represent intra-window temporal or spatial distances between changed edges of

the same window. The weights of edges between vertices with different window ids represent

inter-window distances between changed edges of different windows. Inter-window dis-

tances measure the distance between the two changed edges spanning multiple, consecutive,

windows; i.e., it measures longer term correlation. For example, in Figure 3a, vertices (1-3,0)

and (2-4,0) are two changed edges of window 0 (W0), where edge <(1-3,0), (2-4,0)> repre-

16

sents their intra-window distance, and edge <(1-3,0), (2-4,1)> represents their inter-window

distance over windows W0 and W1.

We shall now describe the intra-window temporal distance measure. The aim of a tem-

poral distance measure is to measure the dissimilarity in temporal change behaviour over a

window of snapshots. As a suitable distance definition is application dependent, we demon-

strate one suitable for network fault diagnosis, first defined in [6]. Note that other formula-

tions can easily be incorporated. Correlated network changes do not always coincide exactly

in time, but usually the sequence of changes are still similar. Hence, two change waveforms

should only be considered similar if they have the same shape, and the timing of the changes

roughly coincides. To accommodate this similarity definition, we extended the popular edit

distance measure to additionally take shape into consideration. This formulation has the ad-

vantage that it is relatively cheap to compute, and can clearly distinguish between different

change waveform shapes. Refer to [6] for further details.

We first need to define the concept of a transition sequence tseq(q(i)), which is used

to represent the shape of a change waveform q(i). In a transition sequence, the changes

in a binary waveform are represented as a sequence of changes. Using this definition, two

waveforms having the same shape will have the same transition sequence.

We define the intra-window temporal distance dintra tem in terms of the modified edit

distance dmed, which is defined as:

dmed(ei, ej,Wk) =















1, tseq(q(i)) 6= tseq(q(j))

ded(q(i), q(j)), otherwise

where 0 ≤ dmed ≤ 1, q(x) = qts,te(ex), and ded is the unmodified edit distance (0 ≤ ded ≤ 1).

As an example, reconsider the waveforms in Table 1. Let the waveforms of regions A, B,

17

and C be represented by qA, qB, and qC respectively. The modified distance between qB and

qC is 0.2, as they have the same transition sequence and ded(qB, qC) = 1, but dsh ed(qA, qB) = 1

since the transition sequences are different.

For inter-window distances dinter tem, we wish to measure the correlation over subse-

quences that span multiple windows, i.e., the correlation over the union of multiple windows.

We can reuse dintra tem for this purpose. More formally, dinter tem(ei, ej,W
tsk,tek
k ,W tsx,tex

k+x) =

dintra tem(ei, ej,W
tsk,tex) where x > 0, and ei ∈ Ek

C , ej ∈ Ek+x
C . For example, consider

edge <(1-3,0), (2-4,1)> in Figure 3a. It has weight 0.75 because over the four snapshots of

W0 ∪W1, the edges have three snapshots in which their values are different.

A naive implementation for computing these distances is computationally expensive. If

we perform a new computation for each of the intra and inter window distances, the time

complexity to compute the intra-window distances is:

wn
∑

k=1

(

Ek
C

2

)

· ω ≤

(

E
1,S
C

2

)

· wn · ω = O((E1,S
C)2 · wn · ω)

For the inter-window distance, the complexity is:

wn−η
∑

k=1

(

Ek
C ∪ Ek+1

C ∪ . . . ∪ Ek+η
C

2

) η
∑

l=1

O(ω+l) ≤

(

E
1,S
C

2

)

(wn−η)

η
∑

l=1

O(ω+l) = O((E1,S
C)2·wn·η(ω+η))

One advantage of using the modified Euclidean distance is that it can be computed

incrementally (in this paper, we analyse the advantage of the incremental computation, but

see [6] for implementation details). Given the computed intra-window distances for window

W ts,te, we can subtract the effect of Gts and add the effect of Gte+1 to obtain the distances

for window W ts+1,te+1. We can perform a similar incremental computation for obtaining

inter-window distances for W ts,te+1. Using this incremental formation, the time complexity

18

for computing the intra-window distances is:

(1)

(

E1
C

2

)

O(ω) +
wn
∑

k=2

(

Ek
C

2

)

O(1) ≤

(

E1
C

2

)

O(ω) + (wn− 1)

(

E
1,S
C

2

)

= O((E1,S
C)2 · wn)

and for inter-window distances it is:

(2)

wn−η
∑

k=1

(

Ek
C ∪ Ek+1

C ∪ . . . ∪ Ek+η
C

2

) η
∑

l=1

O(1) ≤

(

E
1,S
C

2

)

· (wn− η) ·O(η) = O((E1,S
C)2 · wn · η)

In the intra-window case, there is a saving of a factor of O(ω), and O(ω + η) for the

inter-window case. In our evaluation, we found the incremental implementation can reduce

running time by 50% to 300%.

4.3.1 Event Detection

An important application of finding regions of correlated change is to detect and localise

the underlying root causes of a set of changes. Events usually occur in bursts - i.e., there

are significant periods of activity, separated by periods of stability, or quiet periods [3][14].

To detect these types of events, we need to modify our definition of a region of correlated

change as follows,

Definition 7 A region Rts,te
h will additionally have the constraint that

• The time between changes of each edge in a region Rts,te
h ∈ R must be ≤ ψ,

where ψ is the maximum number of snapshots between changes.

From this definition, if two edges have the same change behaviour and waveform, but the

time between any two changes is greater than ψ snapshots, then the two edges are treated as

two separate regions. Intuitively, groups of correlated edges with consecutive changes that

19

are separated by more than ψ snapshots are considered to be separated by a quiet period,

and therefore represent two events. Note that this additional definition is optional, but we

found it improved accuracy in event detection applications.

4.4 Spatial Distance Measures

The spatial distance measure we use is the shortest path distance between a given pair of

edges. For many types of graphs, this is a natural measure of topological proximity. This

is especially true for event detection and fault diagnosis, where changed edges that are close

in terms of shortest path distance are more likely to be caused by the same event or fault.

The intra-window spatial distance (dintra spa) between two changed edges is formulated as

the average distance over all snapshots in the window where both edges exist. If two edges

never exist in the same snapshot over the window, we consider them to be far apart, so we

assign a distance of 1 between them. More formally:

dintra spa(ei, ej,W
l) =















1
C

∑|W l|
k=ts dspa(ei, ej, Gk), C > 0

1, C = 0

where C = |{(ei, ej)|ei ∈ EGk
, ej ∈ EGk

, Gk ∈ W l}| (i.e., the number of snapshots in which

both edges exist) and dspa(ei, ej, Gk) is the shortest path distance (normalised by the graph

diameter) between edges ei and ej in snapshot Gk. As an example, consider the edge <(2-

4,0), (13-14,0)> in Figure 3b, representing dintra spa((2 − 4, 0), (13 − 14, 0),W0). Over the

three snapshots of W0, only in G1 do both edges exist, hence C = 1, dspa((2 − 4, 0), (13 −

14, 0), G1) = 0.4, and dintra spa((2 − 4, 0), (13 − 14, 0),W0) = 0.4.

The start and end times of regions are usually accompanied by large changes in spatial

20

and/or temporal inter-window distances. Hence, we wish to define the spatial inter-window

distance dinter spa such that it has large changes at the boundaries of regions. We cannot

exactly reuse the union idea of dinter tem, because if dinter spa(ei, ej,W
tsk,tek
k ,W tex,tex

k+x) is defined

as dintra spa(ei, ej,W
tsk,tex), then over smoothing from averaging will occur as the length of

W tsk,tex increases. But we can reduce the effect of over-smoothing and still detect large

changes in the spatial distances by defining dinter spa(ei, ej,W
tsk,tek
k ,W tex,tex

k+x) as follows:

(3) dinter spa(ei, ej,Wk,Wk+x) = 0.5(dintra spa(ei, ej,Wk) + dintra spa(ei, ej,Wk+x))

The advantages of this approach are that it does not over-smooth, it is cheap to compute,

particularly when most of the intra-window spatial distances would have been computed

already, and it can still detect changes in spatial proximity between different regions.

4.5 Construction of Evolving Dissimilarity Graphs

In this subsection, we outline the construction of the dissimilarity graphs. We first construct

the evolving temporal dissimilarity graph for all changed edges (lines 13-17 in Algorithm 1).

Then for each subgraph resulting from the partitioning of the temporal dissimilarity graph,

we construct an evolving spatial dissimilarity graph, which can then be further partitioned

(lines 20–23). An important benefit of computing the spatial dissimilarity graph after the

partition of the temporal dissimilarity graph is a reduction in the computational complexity

of spatial distance calculation. This is because only the spatial distances between edges with

similar temporal change behaviour are computed. This reduces computation time as most

of the spatial distances for edges with similar temporal behaviour will form a region, and

21

hence is likely to have small spatial distances between its member edges. Constructing all

the inter-window distances can be expensive, and is mostly unnecessary, as almost all regions

do not span the whole sequence of snapshots. Hence, we introduce a maximum lookahead

bound, η, which limits the amount of lookahead to η snapshots. There is a tradeoff between

accuracy against speed. We shall explore this further in Section 5.4.1, but generally the η

values that produced the most accurate regions are dependent on the window size.

4.6 Multi-level Multi-objective Graph Partitioning

We now describe how region discovery is achieved in regHunter by using spectral graph

partitioning on the evolving dissimilarity graphs. One of the key challenges in this graph

partitioning problem is how to manage its complexity on larger graphs. We describe how

we address this challenge by using a form of multi-level graph coarsening and refining to

increase the efficiency of partitioning without significant loss in accuracy.

4.6.1 Spectral Graph Partitioning

Spectral graph partitioning approaches have been successfully employed for circuit layout and

graph partitioning [24][11], particularly for problems that require a more global approach. In

spectral partitioning, the optimising properties of the eigendecomposition of graphs are used

to find an optimal partition. There have been many different objective criteria proposed

for spectral partitioning. One such criterion is the MinMaxCut criterion [11], which tries

to optimise the inter-region/intra-region ratios across all regions. This is actually the same

objective formulation as ftem and fspa. However, like the authors of MinMaxCut [11], we

found that such an objective function tends to favour evenly sized regions, which is not the

optimal solution for all sets of regions. Hence, we will modify ftem and fspa to form an

22

objective function that does not favour evenly sized regions - the Normalized Cut criterion

[24]. The only difference is the denominator in the ratio. Rather than just the intra-region

distance, in the Normalized Cut it is intra-region + inter-region distance. Due to space

considerations, we only present the reformulated ftem, as fspa is similarly defined:

Definition 8

ftem(R, dtem) =
∑

Rr∈R

tem inter(Rr, E
1,S
C /Rr)

tem intra(Rr) + tem inter(Rr, E
1,S
C /Rr)

Spectral Bipartitioning Due to the fact that neither the number of regions, nor their

sizes, are known beforehand, our approach is to recursively bipartition the existing partitions

into two, until a stopping threshold is reached. In the rest of this section, we first describe how

spectral methods are used to find the optimal bipartitions. Then we outline the recursive

bipartition process, and introduce a lemma that shows the recursive process will always

terminate.

Optimising ftem involves the same process as optimising fspa, hence we shall limit the

following discussion to ftem. Let R1 be an existing partition, and R2 and R3 be two disjoint

regions, where R2 ∪ R3 = R1, R2 ∩ R3 = ∅. Let x be a indicator vector of length |R1|.

It indicates whether each edge ei either belongs to partition R2 or R3. It is defined as a)

xi = −1, if ei ∈ R2; and b) xi = 1 if ei ∈ R3. The partitioning is performed by solving

maxxftem(R2, R3), i.e., finding the x that minimises ftem(R2, R3). In this form, the problem

is NP-Complete3 [24], hence a relaxed version of the problem is solved, where x can take real

values (denoted as x′). The process involves transforming the objective ftem into the form

of Rayleigh’s quotient, which can be solved using a generalised eigenvalue system [23][24].

3In [24], the authors partition a similarity graph, hence solve minxftem(R2, R3). However, we can easily
convert our dissimilarity graph to a similarity graph by using the fact similarity = 1 - dissimilarity.

23

Because we require a discrete solution, x′ needs to be discretised back to the binary x.

Let isplit denote the optimal split point. Then we determine whether an edge ei belongs

in R2 or R3 by R2 = {ei|i ≤ isplit} and R3 = {ei|i > isplit}. We tried several approaches

to determine the best method for determining isplit, including isplit = 0, isplit = avg(x′),

and isplit = median(sort(x′)). We found that dividing the indicator vector into a number

of splitting points, then choosing the point which resulted in the best ftem(R2, R3) value,

produced the most accurate results.

Recursive Bipartitioning Process The recursive bipartition process selects the best

region to bipartition, performs the bipartition, then checks with a stopping criterion to see if

the process should continue. Algorithm 2 outlines the recursive bipartition graph partitioning

algorithm. We shall next discuss how the process chooses the next region to bipartition and

how it determines when to terminate the recursive process.

Algorithm 2 Outline of recursive bipartition graph partitioning algorithm.
1: Inputs: - Evolution distance graph Gdis(V,E).
2: Outputs: - Set of regions of correlated spatio-temporal change, R
3:
4: leaf clusters leaf = {{V }}
5: fopt = ftem(leaf)
6: while fopt < stop threshold do
7: Choose next region Ppar ∈ leaf to bipartition.
8: Obtain children PA, PB by performing bipartition(Ppar).
9: Remove Ppar from leaf , and insert PA, PB into leaf .

10: fopt = ftem(leaf)
11: end while
12: R = leaf .

We choose the next region to bipartition based on its average dissimilarity. That is,

the next region to split Ppar among the current leaf regions leaf can be defined by: Ppar =

argmaxP∈leafavg dissim(P)4. This criterion is based on the intuition that regions with the

4argmaxf(P) returns the value of P that maximises function f

24

highest average dissimilarity are most likely to cause the largest reduction in the overall

objective if further partitioned. We also evaluated schemes where we choose Ppar to be the

region with the highest and lowest objective function values. We found both schemes to

produce less accurate regions than using the average dissimilarity.

The stopping criterion tests if the total objective value of the current set of partitions

(leaf) exceeds a user-determined threshold. When the objective value exceeds the threshold,

the partitioning algorithm stops, to prevent the regions from becoming too fragmented.

The following lemma states that with the bipartitioning process, ftem (and fspa) is mono-

tonically increasing with the number of regions in R, and hence the bipartitioning process

is guaranteed to reach the finite stopping threshold and terminate.

Lemma 1 Let R(x) = {R1, . . . , Rx} and R(x+1) = {R1, . . . , Ry−1, Ry+1, . . . , Rx, R
′
y, Rx+1} be

the sets of regions at iterations x and x+ 1, respectively. Let Ry be bisectioned into disjoint

partitions R′
y and Rx+1, 1 ≤ y ≤ x. Then

ftem(R(x)) ≤ ftem(R(x+1))

Proof 1 See Appendix A.

4.6.2 Multi-level Graph Partitioning

The motivation behind our use of multi-level graph partitioning [18] is to reduce compu-

tational complexity while maintaining similar accuracy. Computational complexity can be

reduced by partitioning a simplified version of the original graph. It consists of three steps:

a) reducing the original graph to a much smaller version (coarsening); b) performing the

partitioning on the coarsened/compressed graph (partitioning); and c) iteratively expand-

25

ing the discovered partitions by one level and locally optimising the expanded partitions

(refinement). At the end of the process, the refined partitions will form a disjoint partition

of the vertices in the original graph. Algorithm 3 and Figure 4 provide overviews of the

multi-level partitioning process. Next, we describe the coarsening and refinement steps (the

partitioning step was described in Section 4.6.1).

Algorithm 3 Multi-level algorithm for partitioning the temporal evolution graph into re-
gions.
1: Input: G0

t evol - Temporal evolution graph, Tcoarsen - Threshold to indicate when to stop coarsening
2: Output: R0 - Regions of correlated temporal change
3:
4: // Coarsen Graph
5: l = 0;
6: while |Gl

t evol| > Tcoarsen do
7: // Find maximum matching among vertices
8: M l = neighMatch(Gl

t evol);
9: // Merge matched vertices

10: Gl+1

t evol = merge(Gl
t evol,M

l);
11: l = l + 1;
12: end while
13:
14: // Partition reduced graph Gl

t evol into initial set of regions, Rl

15: Rl = bipartition(Gl
t evol);

16:
17: // Uncoarsen - expand and refine after each expansion step
18: while l > 0 do
19: Rl−1 = expand(Rl);
20: Rl−1 = refine(Rl−1, Gl

t evol);
21: l = l − 1;
22: end while

Coarsening As a compromise between having many levels of refinement against the speed

of coarsening, we used the popular method of finding the maximum matching at each level

of coarsening (i.e., the number of vertices will approximately be halved after each step of

coarsening). We considered two methods to find the best matching among the vertices.

The first method was to pick a random vertex, and match it with a neighbouring vertex

26

that is most similar (i.e., has minimum edge weight). This produced very inaccurate results,

as this approach is similar to cSTAG.

The second method that we considered, and implemented in regHunter, is to view the

adjacency matrix of the evolving dissimilarity graphs as a set of row5 vectors. Each row

vector ri describes the neighbourhood of vertex i. Given two vertices i and j, we can

compare their similarity by the inner product of their row vectors < ri · r
T
j >. Small values

for the inner product between the vectors mean that the vertices are similar to the same set

of vertices (i.e., changed edges), which indicates these two vertices are likely to belong to the

same region of correlated spatio-temporal change. Note that although computing the inner

product can be computationally expensive, many of the values in the row vectors are zero

(the adjacency matrix is very sparse), hence there are only a few non-zero multiplications.

Refinement In the refinement step, the condensed graph (and its associated partitions)

is progressively expanded back to its original size. After each expansion, refinement, (i.e.,

local optimisation), is performed.

Kernighan-Lin (KL) based refinement strategies have been found to work well when

refining bipartitions [18]. However, when this is extended to k partitions, where k > 2,

the complexity increases significantly, as calculations are needed to determine if a set of

points should be swapped among k different partitions [17]. In addition, KL based strategies

attempt to keep partitions balanced in size, which is not necessarily what is desired in the

region discovery problem.

The second method, which is implemented in regHunter, is the kernel k-means refinement

strategy, first implemented in [10]. We use the number of partitions at the start of the

refinement process as k, the number of clusters, and use k-means to move the objects around

5We can use column vectors as well, as the adjacency matrix is symmetric.

27

until we reach a minima. The difference with greedy search lies in the method to determine

the distance - a kernel distance is used instead of the typical Euclidean distance. By using the

higher-dimensional kernel space, the kernelised k-means algorithm can find partitions that

are not spherical in shape. According to Mercer’s Theorem [8], any positive semi-definite

matrix can be converted to a Gram matrix, which is used to represent the distances between

points in the kernel space. The matrix used in spectral partitioning is non-negative semi-

definite, but can be made positive semi-definite by adding a small constant to it. This does

not change the objective in theory (see [9]), but does slightly reduce the optimality of the

solutions in practice. In [9], Dhillon et al. showed how to construct a kernel for the kernel k-

means algorithm that has the same theoretical result as spectral partitioning. In theory, this

means kernel k-means can be used to find partitions rather than the spectral partitioning

methods. In practice, we found that kernel k-means produces less optimal regions than

spectral methods. However, it can approach the accuracy of spectral methods if the initial

set of partitions given to it are reasonably optimal. The starting partitions at each level of

refinement certainly fit this condition, hence we chose to use kernel k-means for refinement.

For brevity, we do not describe the kernel and its equivalence with ftem here. Please refer to

[9] for details.

4.7 Time Complexity

The steps in regHunter that make the largest contribute to its time complexity are i) com-

puting the temporal and spatial distances; ii) performing the multilevel graph partitioning

on the temporal evolving dissimilarity graph; and iii) partitioning the spatial evolving dis-

similarity graphs. Let mc = |E1,S
C | be the total number of changed edges. Let m be the

number of edges in the graph resulting from the union of all the snapshots.

28

The complexity of computing the temporal distances is O(m2
c ·wn ·η) (see Equation 1 and

2). The complexity for computing the spatial distances is more complex, because it depends

on the accuracy of the temporal-based partitioning. In the highly unlikely worst case, where

all the changed edges are at the fringe of the graph snapshots, and each changed edge spans

the whole sequence, then the complexity is O(S ·mc ·m). In practice, this rarely occurs, and

we can easily place bounds on the search depth to guarantee a lower bound.

The complexity of the graph partitioning step can be broken down into three parts a)

coarsening; b) spectral partition; and c) refinement. The number of vertices in the evolving

graphs is O(mc).

The nearest neighbourhood coarsening step can be measured in terms of the number of

comparison it takes. Let L be the most coarse level reached (the levels start from 0). First,

consider the number of comparisons needed at level l, 0 ≤ l ≤ L. Let mc,l be the number of

vertices in the adjacency matrix at the level l that is being partitioned. When mc,l is even,

then the number of comparisons required are (mc,l − 1) + (mc,l − 3) + . . . + 5 + 3 and the

total sum of the sequence is
(

mc,l
2

−1)(3+(mc,l−1))

2
=

m2
c,l

4
− 1.

Let the comparison cost of the inner product be ic. Then the total cost of coarsening at

level l is O(
ic·m2

c,l

4
− ic). Hence, the total cost across L+ 1 levels is

L
∑

l=0

O(
ic ·m2

c,l

4
− ic) = O(

ic ·m2
c

4
− ic) + . . .+O(

(mc

2L)2

4
−
ic

2L
)

= O((
1 − (1

4
)L+1

4
)ic ·m2

c − (2 − (
1

2
)L)ic) = O(m2

c · ic− ic)

When the row vectors are sparse, then ic << mc, hence, the complexity of coarsening is

O(m2
c). The odd case can be solved similarly and has the same worst case complexity.

The spectral partitioning step can be performed using an iterative eigensolver like the

29

Lanczos technique [15]. Because of the sparsity of the adjacency matrix, the complexity of

partitioning is approximately O(m1.5
c,L).

The kernel k-means refinement step requires the computation of the kernel matrix and the

iterative refinement of the k-means algorithm. The computation of the kernel matrix at level

l is O(m2
c,l). The computation of the k-means algorithm at level l is O(κ(mc,l) · kl + mc,l))

= O(κ(mc,l) · kl), where kl is the number of partitions at level l and κ is the number of

iterations for k-means to converge. Therefore, the total complexity for the kernel k-means

refinement over L+ 1 levels is:

L
∑

l=0

O(m2
c,l + κ ·mc,l · kl) = O(

4 − (1
4
)L

3
m2

c + (2 − (
1

2
)L)κ · k ·mc) = O(m2

c + κ · k ·mc)

In general, k << mc, and most of the refinement occurs in the first few iterations, hence

κ can be upper-bounded by a small value and the k-means refinement will still produce

accurate results. Hence, the computation of the kernel is the dominant factor, particularly

for small l, where mc,l is largest. Fortunately, the computation of the normalised cut kernel

is based on the adjacency matrix of the evolving dissimilarity graphs, which are generally

very sparse (the limited lookahead, η, ensures many of the values are zero) for low l. If

the number of non-zero entries is nzc,l, then the complexity to compute the kernel is only

O(nzc,l) for the lower levels. Since mc = mc,0, then the cost to compute the refinement is

O(nzc + κ · k ·mc).

The analysis of the partitioning of the spatial evolving dissimilarity graphs is more diffi-

cult, as it depends on the size and number of partitions produced in the temporal partitioning

step. Consider two cases to obtain some intuition about the complexity. Let there be k par-

titions. The spatial evolving dissimilarity graphs are generally sparse. Hence, the complexity

to partition one of these evolving graphs is O(n1.5), where n is the number of vertices. First,

30

consider the case where the mc changed edges are evenly divided into k partitions. The

complexity of partitioning these are k · O((mc

k
)1.5) = O(m1.5

c

k0.5). This uniform distribution of

the partition sizes is actually the lower bound on the complexity among k partitions. On

the other extreme, we can have the scenario where k − 1 of the partitions are singletons,

and the remaining partition contains the rest of the edges. In this case, the complexity is

(k− 1)(1)+O((mc − (k− 1))1.5). If mc >> k, which is usually the case, then the complexity

is O(m1.5
c). The complexity lies somewhere between the two extremes, and we can generally

say that the complexity is O(m1.5
c), given k << mc in general.

Therefore, the complexity of regHunter, k partitions and assuming the worst case for

partitioning the spatial evolving graphs, is:

O(m2
c · wn · η + S ·mc ·m+m2

c+

m1.5
c,L + nzc + κ · k ·mc +m1.5

c)

= O(m2
c · wn · η + S ·mc ·m+ nzc)

(4)

In practice, most of the steps do not take the worst case times. For example, computing the

temporal distances takes a small fraction of O(m2
c · wn · η) time. This is also the case for

computing the shortest paths, particularly when many of the distances computed are short.

5 Evaluation of regHunter

In this section we evaluate the accuracy and running time of regHunter. Accuracy was

evaluated using external and internal cluster validation methods. In the external methods,

we compare the obtained set of regions with a known set of true regions, while in the

internal methods, we compare against a set of measures that are based on other partitioning

31

objectives. External methods are used to evaluate the effect of the parameter settings on

the accuracy and timing of regHunter on synthetic datasets (with known clusterings), and

to compare the results of regHunter with those of cSTAG. We also use a set of internal

measures to evaluate the regions found by regHunter on two real datasets, where there is no

known set of clusterings - the access graph of the 1998 World Cup website, and the BGP

connectivity graph during the landfall of Hurricane Katrina.

In the rest of this section, we first describe the external and internal accuracy validation

measures used. Then we outline the synthetic dataset generation process, and present the

accuracy and running time results of cSTAG and regHunter. Finally, we introduce the World

Cup and BGP connectivity datasets, and present the internal validation results in each case,

as well as the regions discovered for the World Cup data.

5.1 External Accuracy Validation Measure

In external accuracy validation, we have a set of true (generated) regions, Rtru, and a set

of detected regions Rdet. We wish to quantify how closely the two sets of regions match.

The number of regions in each set can differ, and the matching between two regions can be

partial, hence traditional notions of true and false positives cannot be used. This problem

has been partially studied in the field of external cluster validation [16]. Existing validation

methods can be divided into three groups: a) those that count the number of pairs; b) those

that compare set membership; and c) those that compare membership distribution. Pair

counting methods are based on comparing the number of pairs of objects that belong in the

same cluster in one or both clusterings. Some examples include the Rand and Jaccard indices

[16]. Methods that compare set membership are based on finding the best matching between

the clusters, using set overlap as the criterion [32][16]. Finally, membership distribution

32

methods compute the distance between the cluster membership distributions of the two

clusterings. Examples include ADCO [31] and [30].

However, in the region comparison problem, there is also the need to consider the tem-

poral behaviour of the regions. Consider the case where two regions consist of the same set

of changed edges but are defined over different periods of time, like regions A1 and A2 from

Table 2. Existing cluster comparison measures will incorrectly indicate they are the same,

since they have the same set of edges, but in fact the measure should indicate that they are

different because of their temporal differences.

Recently, Zhou et al. [30] posed the comparison problem as a mass transportation prob-

lem [22], trying to minimise a set of matching weights between two clusterings. A significant

advantage of this formulation is that it allows for partial matches among clusters and uses a

region distance formulation that can incorporate both membership and temporal consider-

ations. Therefore, we extend Zhou’s method to consider temporal behaviour of regions and

membership similarities.

Consider Figure 5, which illustrates the general region comparison problem. Each region

in Rtru is matched to one or more regions in Rdet. The relative importance of a region Rtru
z in

Rtru is measured by βz, βz ≥ 0,
∑Z

z=1 βz = 1. It indicates the relative emphasis the matching

algorithm places on matching region Rtru
z with regions in Rdet. For example, βz = 0 indicates

that the matching of Rtru
z should have no bearing on the total distance between the two sets

of regions, while βz = 1 indicates Rtru
z must be matched with all the regions in Rdet. We

similarly define the relative importance of region Rdet
y as αy, αy ≥ 0,

∑Y

y=1 αy = 1.

Weight wyz indicates the extent of matching between Rtru
y and Rdet

z . There are two

constraints on the matching weights: 1) wyz ≥ 0; 2)
∑Y

y=1wyz = βz,
∑Z

z=1wyz = αy,∀y, z.

The second constraint uses the perceived relative importance of each region to control the

33

amount of matching. As we wish all regions to be matched, and we do not know a priori

their relative importance, we set αy = 1
Y
,∀y and βz = 1

Z
,∀z for the experiments.

The distance between two regions has a temporal and spatial component. If the temporal

and spatial components are matched separately, then it is likely that two different sets of

matchings will result. To prevent this occurring, the two inter-region distances are combined

into one measure. More formally, the distance between region Rtru
y and region Rdet

z is defined

as:

d(Rtru
y , Rdet

z) = µ · dS(Rtru
y , Rdet

z) + (1 − µ) · dW (Rtru
y , Rdet

z)

where 0 ≤ µ ≤ 1. Distances dS(Rtru
y , Rdet

z) and dW (Rtru
y , Rdet

z) are the set and waveform

distance between Rtru
y and Rdet

z , respectively. The waveform distance measures the temporal

correlation. The terms µ and 1 − µ represent the relative contribution of each distance to

the overall distance.

Definition 9 The set distance between regions is defined as:

dS(Rtru
y , Rdet

z) = 1 −
2 · |Rtru

y ∪Rdet
z |

|Rtru
y | + |Rdet

z |
.

It is computed as 1 - the (normalised) set intersection between the edges of the two

regions. Note that the normalisation avoids cases where a small distance can occur between

a large and small region, where the large region is a superset of a smaller region.

For notational convenience, we denote the set of changed waveforms (and their relative

frequencies) associated with the changed edges in region Rts,te
r by Rts,te

r .Q. Rts,te
r .Q is a set

of (change waveforms, frequency) pairs, where the change waveforms are drawn from the

collection of change waveforms of its member edges, and the frequency defines the relative

number of times it occurs among the collection of waveforms. The frequency ranges from 0

34

to 1.

Definition 10 The waveform distance between regions is defined as:

(5) dQ(Rtru
y , Rdet

z) =

|Rtru
y .Q|
∑

a=1

|Rdet
z .Q|
∑

b=1

freqa · freqb · d(qa, qb)

This distance measure compares each waveform in Rtru
y .Q with each waveform in Rdet

z .Q,

weighted by the relative count of the waveforms. The waveform measure we use, d, is

the Euclidean distance deq(). However, the waveforms in the region comparison problem

might not have the same length, and could have different starting and ending times. We

wish to penalise these cases, as similar sequences of change should be defined over similar

periods of time. Hence, d(qa, qb) incorporates this by penalising misalignment among the

two waveforms, and is formally defined as:

d(qtsa,tea
a , qtsb,teb

b) = (tsc− min(tsa, tsb)) + ded(
tsc,tec
a , qtsc,tec

b) + (tec− max(tea, teb))

where (tsc, tec) denotes the common starting and ending times of the two waveforms, and

d′ed is the unnormalised Euclidean distance measure.

With the distance between two regions defined, we can now define the distance measure

between two sets of regions.

Definition 11 The total distance between the sets of regions Rtru and Rdet is given by

(6) d(Rtru, Rdet) = minwyz

Y
∑

y=1

Z
∑

z=1

wyzd(R
tru
y , Rdet

z)

subject to wyz ≥ 0,
∑Z

z=1wyz = αy,
∑Y

y=1wyz = βz,∀y, z, and 0 ≤ d(Rtru, Rdet) ≤ 1.

35

Solving this equation involves finding the set of matching weights that minimises the total

distance between the matched regions. This is equivalent to finding a matching that min-

imises the distance between the regions. Equation 6 is in the form of a mass transportation

problem [22]. Mass transportation problems are known to always yield an optimal solution

[22], and can be solved using a technique such as the simplex method [22].

In our presentation of the results, we converted the distance scores to an accuracy score

(1 - distance). Henceforth, we refer to our method as extRegCompare.

5.2 Internal Accuracy Validation Measure

The two internal measures we use are the average intra-region distance and the average

inter-region distance. Average intra-region distance measures how compact the regions are.

Average inter-region distance measures how well separated the regions are.

Both of these measures depend on an intra or inter-region distance measure. We use

separate spatial (in terms of shortest path distances) and temporal distances. So effectively,

there are four different measures (two for temporal, two for spatial). More formally, the

average intra-region spatial distance is defined as:

Definition 12

dspa(Ry, Rz) =
1

|Ry||Rz|

∑

ei∈Ry

∑

ej∈Rz

dintra spa(ei, ej,W
1,S)

where Ry and Rz are two of the discovered regions.

The average inter-region spatial distance is defined as 1
|R−1|

dspa(Ry, Rz), Ry, Rz ∈ R,

Ry 6= Rz. The average intra and inter region temporal distances are defined similarly, except

dQ (see Equation 5) replaces dintra spa.

36

5.3 Synthetic Region Dataset

5.3.1 Synthetic Graphs

The accuracy of regHunter is dependent on the separability of the regions. The separability

is measured by three factors: minSpaSep, the minimum spatial separation between any pair

of edges that are in different regions; ii) minTemSep, the minimum temporal separation

between the change waveforms of any pair of edges in different regions; and iii) minEvtSep,

the minimum temporal separation between consecutive, but independent and separate win-

dows of changes affecting the same set of edges. By varying these factors, we can generate

a variety of synthetic dynamic graphs and introduce known regions of correlated change.

Two methods were used to generate the synthetic datasets. The first method generates

the regions, then generates the path between them to form the dynamic graph. The second

method generates the graph, then randomly selects subgraphs to become regions. The first

method allows more control over the separation criteria between the regions. However, it is

more difficult to control the size of snapshots generated using the first method. Hence, the

introduction of the second method.

Region-then-link Method To generate the datasets using this method, a pseudo random

graph is first generated, with a number of random subgraphs extracted from the random

graph. Each subgraph must be at least minSpatSep from all the other extracted subgraphs.

Next, a random sequence of changes are generated for each subgraph, such that the distance

between any pair of sequences is at least minTemSep. In addition, each sequence consists of a

random number of subsequences of high change, separated by at least minEvtSep of periods

of no change. Each subgraph, along with a subsequence of change, constitutes a region.

A simulation is used to generate the snapshots and regions by applying the sequences of

37

changes to the original random graph. The names of datasets generated by this method

have the prefix synGen.

Graph-then-region Method To generate datasets using this method, a graph with ran-

dom edges and vertices is first generated. Any graph model generator can be used to generate

this graph. Next, non-overlapping subgraphs are selected for each region. Finally, random

change sequences are assigned to each region, and additional graph snapshots are generated

based on the original graph, the set of regions, and their associated change sequences. The

names of the datasets generated by this method have the prefix introGen.

5.4 Synthetic Dataset Evaluation

In this section, we evaluate the sensitivity of regHunter to its parameters: the stopping

thresholds, window size, lookahead and maximum quiet period. We also compared regHunter against

several methods from cSTAG, namely hard and soft techniques with {single-linkage, average-

linkage and leaderFollower} clustering algorithms, and sequential with leaderFollower + sin-

gleLinkage (apply leaderFollower using the temporal distances, then singleLinkage using the

spatial distances) and leaderFollower + averageLinkage. For each type of dataset, three

different instances were generated. The results reported are an average over the three in-

stances. Finally, cSTAG was implemented completely in C++, while most of regHunter was

implemented in MatlabTM. All synthetic tests, except the tests involving the variation in

graph size, were conducted on an Intel Duo Core 2.8GHz PC with 2GB of memory and

running Fedora Core 7. The graph size variation tests and the real dataset evaluations were

performed on a server with 16 Intel Xeon 3.0GHz processors, 32 GB of memory and running

RedHat Enterprise Linux 5.

38

5.4.1 Parameter Sensitivity

We used datasets generated with the parameters minTempSep = 3, minSpatSep = 3 and

minEvtSep = 3 to evaluate the effect of regHunter’s parameters. We have also conducted

this evaluation using other generated datasets, but the results from these datasets exhibit

similar trends, hence we do not report them here.

Figure 6a and 6b compares the effect of varying the temporal and spatial stopping thresh-

olds (stoptem and stopspa), with different window sizes (ω), on the accuracy and timing of

regHunter. The results show that regHunter is more sensitive to stopspa than stoptem. As

stopspa increases, the accuracy generally increases, hits a maximum around the values of 0.8

to 0.9, then falls away. For low stopping thresholds, the algorithm is prematurely stopped,

while for high thresholds, too much partitioning has occurred. This phenomena occurs across

all window sizes.

In general, the smaller window sizes produced more accurate results. This can be at-

tributed to the fact that smaller windows give better comparison granularity, which usually

results in less false negative matches but more false positive matches. However, combined

with sufficient lookahead and graph partitioning, the number of false positive matches is re-

duced, hence the smaller window lengths are more accurate than the longer window lengths.

It can be seen from Figures 6e and 6f that the running time also plateaus around

stoptem/stopspa = 0.8 to 0.9. The reason this occurs is that as the stopping threshold in-

creases, the total number of iterations for refinement increases. However, when the thresh-

olds hit 1.0, there are actually fewer iterations, because the regions are much smaller in size.

Hence, the optimal stopping thresholds occur over the range of 0.8–0.9. This holds over all

the other synthetic datasets that we generated and evaluated.

Figure 6c shows the results of varying the lookahead (η) and window size(ω). The results

39

indicate that the optimal lookahead value depends on the window size used. For a small

window, greater lookahead improves the accuracy, as it allows regHunter to look for longer

correlation spans that a small window does not allow it to do. If there is too much lookahead,

similar regions that should be separate can be accidentally merged.

It is difficult to identify a trend or pattern for the running time (Figure 6g). After

manually examining the steps of the algorithm and results, changing the lookahead and

window size affects both the coarsening and refinement time, and also the time needed to

partition the spatial evolving dissimilarity graphs. For example, ω = 9 and η = 3 had

triple the running time of ω = 9 and η = 6 because there were some larger spatial evolving

dissimilarity graphs to be partitioned, which greatly increased the running time.

Figures 6d and 6h show the results from varying the maximum quiet time (η) and four

configurations of stoptem and stopspa. The results show that there are no monotonicity

properties associated with the maximum time between changes. For example, there is a dip

in accuracy when ψ = 5. After studying the results, it seems that some regions discovered

at ψ = 4 were further incorrectly partitioned at ψ = 5, while other regions that should have

been further partitioned were not. These results suggest that a range of ψ values should be

evaluated for different datasets, but generally ψ should not be too small compared to the

sequence length.

5.4.2 Comparison with cSTAG

To ensure a fair comparison, we tested up to 360 different parameter configurations for each

of the multi-objective approaches of cSTAG (120 for each of the single-relation clustering

methods, including multiple window sizes (3–12)) for each dataset. In contrast, we only

tested a total of about 100 parameter configurations (ω = {3, 6, 9, 12}, η = {3, 6, 9, 12},

40

stoptem = stopspa = {0.7, 0.8, 0.9, 1.0}, ψ = {3, 4, 5, 6}) for regHunter.

We evaluated regHunter and cSTAG on five different types of datasets, and their details

are summarised in Table 4. exampleDS is the motivating example given in the introduction

(Figure 2, Table 2). synGen003 is the set of synthetic datasets used to evaluate the parameter

sensitivity of regHunter. synGen002 and synGen001 are additional sets of datasets used for

comparison. synGen002 are generated with minTempSep = 2, minSpatSep = 2 and

minEvtSep = 2, while synGen001 are generated with minTempSep = 1, minSpatSep

= 1 and minEvtSep = 1. The region separation of synGen002 and synGen001 are smaller

than synGen003. In addition, introGenSize is a set of dynamic scale-free graphs that varied

from 2000-16,000 edges. 20% of the edges experienced change over a sequence of 30 snapshots.

In terms of scalability, introGenSize is particularly difficult as: 1) it has scale-free graph

properties, greatly increasing the number of vertices visited in any shortest path search, and

2) each region does not necessarily form a connected component.

We present the results in terms of the average of the k most accurate results, where k

takes values from the set {1, 10, 30, 50}. Then we use these top k results to compute the

appropriate average running time. This presentation format allows, on one hand, the spread

of the results to be displayed. On the other hand, it kept the comparison fair, as it eliminated

some of the extremely inaccurate results (single digit accuracy) for cSTAG.

First, we shall examine the results of analysing the example dataset (Figure 7a). The

results show that even though cSTAG consists of a variety of different methods that in theory

should perform well for a large spectrum of datasets, and we also varied the window size over

a large range, the best the algorithms of cSTAG can achieve is to find the three regions when

a large window size is used. This corresponded to regions B, C and incorrectly identifying

regions A1 and A2 as one region. On the other hand, regHunter could find the correct

41

regions, with fewer parameters to tune. Even the average accuracy of the top 50 results of

regHunter was significantly more accurate than any version of cSTAG. Both algorithms took

less than a second to find their set of regions.

regHunter also had superior accuracy for the other datasets. Consider the results for

synGen003 (Figure 7b and 7c). The regions generated are reasonably separated, hence

cSTAG is able to achieve almost 90% accuracy for the leader-single sequential method.

However, even for this well separated dataset, regHunter still has superior accuracy (almost

95%). Equally as important, the spread of the accuracy for regHunter is less than cSTAG (the

top 50 result for regHunter is on par with the best results of cSTAG), which indicates

that regHunter is less sensitive to the choice of parameters when evaluating datasets with

reasonably separated regions.

Figure 7d and 7e shows the results for synGen002. Although the top 10, 30 and 50

accuracy results are comparable to cSTAG, the best results of regHunter are at least 10%

better than the best results of cSTAG.

Consider the results for synGen001 (Figure 7f and 7g). Again, regHunter has better

accuracy across all the results. In particular, the best results are approximately 13-15%

better than those of cSTAG.

Finally, consider the results for introGenSize (Figure 8). Although the running time for

cSTAG is faster than regHunter for smaller graphs, as Figure 8 and other previous synthetic

dataset evaluation showed, regHunter was about twice as fast as cSTAG for larger graph

sizes. As the graph size increases, the time to compute the region association for cSTAG

starts to become more and more significant. Around a graph size of 8000 edges, the region

association time overtakes the time to compute the shortest path distances, resulting in

regHunter being faster than cSTAG as the graph size increases.

42

Although regHunter is slower than cSTAG in smaller datasets, it must be remembered

that most of regHunter was implemented in MatlabTM, which is slower than a C++ im-

plementation. Furthermore, a vast amount of time (up to 30%) was spent copying data

structures between C++ and Matlab. Furthermore, the total time required to find the best

regions for cSTAG using all parameter settings was magnitudes longer than for regHunter –

days compared to hours. Most importantly, regHunter is faster than cSTAG as the size of

the graph increases.

This synthetic dataset evaluation indicates that regHunter is more accurate than cSTAG for

datasets with regions that have small temporal and spatial separation. The difference in accu-

racy increases as the regions in the datasets become less separated (synGen003, synGen002,

synGen001, exampleDS). In addition, regHunter is generally less sensitive to parameter se-

lection, reducing the time needed for parameter tuning, hence actually making it easier and

faster to find the best regions.

5.5 Internal Accuracy Evaluation

In this section, we analyse the normalised intra and inter-region distances on the synthetic

dataset synGen003, and compare them to the results obtained by using the external val-

idation measure. This provides an indication of the relative accuracy of the two internal

validation measures. In terms of these two measures, low intra-region distance and high

inter-region distance is preferable.

Figure 9 shows the {temporal, spatial} {intra, inter} region distance for the results ob-

tained when regHunter was evaluated on the dataset synGen003. As there are four different

measures, we plotted different combinations of measures against each other.

For the four plots (Figure 9), we can see there is a group of results (blue ellipse, la-

43

beled ‘1’) that have low spatial and temporal intra-region distances. These results have

low extRegCompare scores, because they consist of many small sized regions, which have

low intra-region distances but also low inter-region distances (for example, as shown by the

results in the blue ellipse labelled ‘1’ in Figure 9d).

The best group of results suggested by extRegCompare consist of the group of results

circled by the red ellipses, labeled ‘2’. As can be seen, these results have low intra-region

distances, but also low to medium spatial and temporal inter-region distances. Contrast this

with the group of results (green ellipses, labeled ‘3’) with high inter-region distances. These

also have low to medium intra-region distances, but very low extRegCompare scores – within

the bottom 30% of results.

The results (Figure 10) for the most accurate algorithm of the cSTAG framework,

sequential-leaderFollower-singleLinkage, have similar trends to the results of regHunter. The

singleton regions, highlighted by the blue ellipses, labeled ‘1’, have low temporal and spa-

tial intra-region distance, but relatively poor spatial inter-region distance. Again, these

single region results had an accuracy of about 5% when evaluated by the extRegCompare

measure. The results highlighted by the green ellipses, labeled ‘3’, had high spatial inter-

region distance, but relatively low temporal inter-region distances. They also had average

spatial, but low temporal intra-region distances. These results had on average 65% accu-

racy when evaluated by the extRegCompare measure. Finally, the results that had higher

extRegCompare measured accuracy are highlighted by the red ellipses, labeled ‘2’. Similar

to the regHunter results, they have relatively low intra-region distances, high temporal and

moderate spatial inter-region distances.

For comparison, the distances for the reference set of regions for the synGen003 were:

temporal intra-region = 0.000, spatial intra-region = 0.177, temporal inter-region = 0.923

44

and spatial inter-region = 0.447. Note that both the best results (red ellipse, labelled ‘2’) of

regHunter and sequential-leaderFollower-singleLinkage have similar values for the distances.

In summary, the results indicate that it is not possible to achieve both low intra-region

and high inter-region distances. However, as the evaluation suggests, the set of intra and

inter-region distances, when used together, provide an adequate guide to accuracy. Hence,

in the next subsections, we shall use these as measures of the accuracy obtained for the two

real datasets.

5.6 1998 World Cup Website Access Evaluation

In 1998, the 16th FIFA World Cup was held in France. To study the workload characteristics

of the official web site, www.france98.com6, access logs7 of the web site were analysed by Arlitt

and Jin [1]. It was reported by Arlitt and Jin that the website experienced flash crowds -

sudden, large increases in the number of unique, legitimate clients accessing the website.

This coincided with the time of weekday matches. The 1998 World Cup was the first world

cup where live scores were available online. Therefore, a significant number of fans, who

cannot watch the football matches on television, monitored the live scores via the website

during the matches, producing the flash crowds. Figure 11, which shows the number of

requests per hour over the period from June 7 to June 13, illustrates the aforementioned

flash crowd effect coinciding with the times of the matches.

We wish to construct a dynamic graph of the website accesses and find regions of corre-

lated change that correspond to different types of access - e.g., a group of accesses relating to

online viewing of a particular match. In previous work [6], we had manually matched discov-

ered regions with the matches, based on the time the regions were defined and the websites

6As of August 2007, the address is still valid, but links to a general soccer promotion website.
7Available at [29].

45

contained in them. To extend our evaluation, we use the four described internal measures

to evaluate the obtained regions. In addition, we present two new interesting regions found

by regHunter that cSTAG was not able to find.

5.6.1 Construction of the Snapshots

The access logs consist of lists of website accesses. Each access has a timestamp, client ID

(corresponding to the IP address of the computer accessing the website), object ID (where

an object is any individual file requested by the clients, such as HTML, image or java files

for example), and other(irrelevant) information.

Each flash crowd should have a set of objects that are uniquely associated with the flash

crowd, i.e., objects associated with the team that was playing at the time of the flash crowd.

This set of objects should have a sudden, large number of unique clients accessing them over

the period of the associated matches, and after the match, this set of objects are no longer

frequently accessed at the same time. For example, if Paraguay was playing, then we expect

objects relating to Paraguay to be accessed by a large number of the same clients during

that period.

Therefore, to infer the flash crowds/matches from the web logs, we construct snapshots of

the object-object graph and find regions in the snapshot sequence. Each vertex in the object-

object graph represents an object, and a (weighted) edge exists between a pair of objects

if one or more clients accessed both objects during the period over which the snapshot is

defined. The weights count the number of unique clients accessing the two incident objects.

The regions of correlated change discovered over the snapshots represent groups of objects

that have been accessed by the same set of clients. These clients should be predominately

the fans of the teams playing, hence each flash crowd/match should produce a unique region.

46

To build the snapshots, we divide the list of accesses into a sequence of two hour snap-

shots, which roughly correspond to the length of a match, including half-time and regular

extra-time. From each two hour bin, we build the object-object snapshots. We then convert

the weighted snapshots to unweighted snapshots by setting a filter threshold - edges with

weights less than the filter threshold are deleted, and all remaining edges are turned into

unweighted edges. As Figure 11 shows, there is a high level of background activity and traffic

which is not of interest. We plotted the number of edges with weight x vs. the weight x,

and found that the distribution was heavy tailed. The objects involved in the flash crowds

predominately have large edge weights between them. This suggests that there are many

irrelevant edges with small weights that can be considered as noise and therefore should be

filtered out. We set the threshold for filtering irrelevant edges to 500.

The resulting snapshots varied greatly in size, ranging from 4692 to 3871 vertices and

110 to 530 edges. The size of the snapshot corresponds directly to the amount of traffic to

the website (see Figure 11).

5.6.2 Internal Accuracy Evaluation

The leaderFollower-singleLinkage algorithm was used as a comparison benchmark against

regHunter for the World Cup dataset evaluation, as it produced the best result among

the algorithms of the cSTAG framework. We tested 15 diverse parameter configurations for

both algorithms, and present the internal accuracy results for the best intra-region distance

(Table 5), and best inter-region distance (Table 6) for each algorithm.

Consider the best intra-region results first (Table 5). Although the result for regHunter had

higher temporal intra-region distance, it also had lower spatial intra-region distance, as well

as significantly better temporal inter-region distance. The best inter-region results (Table

47

6) show similar trends. regHunter had slightly worse spatial results, but its temporal results

were more accurate than leaderFollower-singleLinkage, particularly the temporal intra-region

result. In summary, for both sets of results, regHunter had better overall accuracy.

5.6.3 New Findings on the 1998 World Cup Dataset

In this section, we present and discuss two new regions of correlated change discovered by

regHunter. These regions were not detected by the leaderFollower-singleLinkage algorithm

of cSTAG, nor in the analysis of the World Cup dataset in previous work [6]. The analysis

was performed over the same two day period as in [6], from 0000 Friday, June 12th to 2359

Saturday June 13th.

We shall present the regions in two ways. The first method is to present the size, dominant

change waveforms, and some comments about the two regions. The second method is to

extract the list of incident objects in each region, and truncate the list to the most interesting

objects, similar to the approach taken in [6].

As the website is no longer available, we do not know the content of the actual webpages

or objects, but we can still distinguish the different regions and identify some interesting fea-

tures of those regions. For example, we can infer that the files matchprogXXXX.htm refer

to the webpages that display the live scores of match XXXX, and matchstatXXXX.htm

refer to the webpages that display the statistics of the match. In addition, files of the

form teambioYYY.htm probably refer to the biography of team YYY, and groupstand-

ings163 77.htm refers to the group standings of group 163 77.

Consider the information about the two regions, presented in Tables 7, 8 and 9. The

two regions identified by regHunter are different to all the regions identified by cSTAG. The

newly identified regions only have matchstat objects for Saturday matches, but no matchprog

48

objects. This suggests the purpose of the accesses that make up these regions are to view the

match summaries and team information, not to watch the live match updates (matchprog

sites). This is significantly different from the regions found by cSTAG [6], where the accesses

are more likely from fans who watch the live matches, then log off the website. Those regions

had change waveforms that appear then disappear. The two regions however, have change

waveforms that just appear, and are likely to represent a constant stream of fans who check

the match summaries throughout Saturday.

The main difference between the two regions is the access of object teambio138.htm and

the time of the appearance of the regions. Region Sat-C2 is likely to represent fans in a

different time zone to Region Sat-C1 (hence the delay in the appearance of Sat-C2). They

are also more likely to be fans of team 135.

We analysed why cSTAG could not detect these regions, and we found that cSTAG would

distribute the edges discovered in these two regions to regions that represent live match

viewing (i.e., with matchprog objects), or to noisy regions that are difficult to interpret.

From this analysis, it can be seen that regHunter is not only quantitatively more accurate

than cSTAG, but can also identify new regions that cSTAG misses.

5.7 BGP Dataset Evaluation

In this section, we use the internal validation measure to compare the accuracy of regHunter and

cSTAG on the US portion of the Border Gateway Protocol (BGP) connectivity graph dur-

ing the landfall of Hurricane Katrina. In prior work [6], we have qualitatively analysed this

dataset, but did not perform any internal validation.

BGP is a routing protocol used to establish the forwarding tables between the routers

of organisations, known as Autonomous Systems (ASs), on the Internet. The vertices in

49

the BGP connectivity graph represent the ASs, and the edges represent the existence of a

routing path between the ASs. The BGP connectivity graph represents the top-level routing

topology of the Internet.

In order to understand how the BGP graphs were built from routing tables, we briefly

introduce how paths are stored in the tables. Each BGP routing table entry can be summa-

rized as a network prefix and its AS PATH attribute. AS PATH lists the path of ASs that

was used by the original announcement in reaching the current router and its AS. For exam-

ple, AS1-AS2-AS3 means the prefix originated from AS3, and the announcement propagated

from AS3 to AS2 to AS1, before reaching the current AS.

The RouteViews project8 at the University of Oregan collects BGP routing information

by passively peering with a number of distributed ASs. From each table obtained from

RouteViews, we built a snapshot of the BGP connectivity graph using the AS PATH path

entries. Please refer to [6] for details on how the connectivity graphs can be built from the

table entries.

In [6], we examined the Katrina event because it has been reported that its effect on

the Internet was mostly localised around Louisiana and several other southern states. This

enabled us to demonstrate the ability of cSTAG to show significant activity in the ASs

around that region. We also concentrate on the US portion of the BGP graph, as this was

large enough to hide very localised events, like the Hurricane Katrina event. In August 2005,

the US BGP graph consisted of around 9,000-10,000 vertices and 45,000 edges. We analysed

three and half days of snapshots, from 28 August, 13:19 to 31 August, 22:32. This period

included the landfall of Hurricane Katrina (around 29 August, 10:00). Figure 12 shows the

number of edges and vertices that have experienced a change in each window.

8http://www.routeviews.org

50

5.7.1 Internal Accuracy Evaluation

Similar to the World Cup analysis, we tested 15 different parameter settings for the two

algorithms, and presented the results with the best intra-region distances, and the best

inter-region distances (Tables 10 and 11 respectively).

Consider the best intra-region distances (Table 10). In terms of temporal intra-region

distance, the results for regHunter are about 10% more accurate than the leaderFollower-

singleLinkage algorithm. For the other internal measures, they are similar. The best inter-

region distance results (Table 11) again indicate that regHunter is much more accurate in

terms of temporal intra-region distances, and has comparable results for the other measures.

Note that the spatial distances for this dataset are generally high, no matter what algorithm

is used to extract the regions, because the BGP network has scale-free properties, which

means it has a small diameter, and the shortest path between any pair of vertices is small.

Hence, the temporal aspect of the regions is the more discriminating dimension for this

particular dataset.

These results indicate that regHunter can generally produce regions that are more accu-

rate than the best algorithm of the cSTAG framework.

6 Conclusion

In this paper, we formulated the region discovery problem as a multi-objective optimisa-

tion problem. We then proposed a new algorithm, regHunter, to solve this optimisation

formulation using multi-level spectral graph partitioning. In addition, we have developed

a new dataset generator, presented a new comparison method to quantitatively measure

the accuracy of the set of discovered regions and applied internal validation analysis to two

51

real datasets. We found regHunter was able to substantially outperform all methods pro-

posed in cSTAG while being only slightly slower than cSTAG. Furthermore, we showed that

regHunter is more accurate than cSTAG when analysing real datasets like the World Cup

access graph and the BGP connectivity graph data. We also demonstrated that the increased

accuracy of regHunter meant it was able to find interesting regions in the World Cup data

that cSTAG did not find.

There are a number of future directions we would like to pursue. One of these is to use

ideas from the constraint programming community to help the recursive bipartition process

to focus on more promising areas in the search space. In addition, we would like to adapt

the multi-level graph partitioning approach to an incremental formulation. We want to keep

the accuracy obtained from the batch mode of regHunter, but adapt it to an incremental

formulation for multilevel structures.

7 Acknowledgements

We would like to thank National ICT Australia for their support and funding of this research.

In addition, we are in debt to Martin Arlitt and Tai Jin of Hewlett-Packard Laboratories for

making the workload characteristics to the World Cup website publicly available, and the

Lawrence Berkeley National Laboratory for making the traces available.

References

[1] Martin Arlitt and Tai Jin. Workload characterization of the 1998 World Cup website.

Technical Report HPL-99-35R1, Hewlett-Packard Labs, September 1999.

52

[2] Karsten M. Borgwardt, Hans-Peter Kriegel, and Peter Wackersreuther. Pattern mining

in frequent dynamic subgraphs. In Proceedings of the 6th International Conference on

Data Mining, pages 818–822, 2006.

[3] Matthrew Caesar, Lakshminarayanan Subramanian, and Randy H. Katz. Towards lo-

calizing root causes of BGP dynamics. Technical Report UCB/CSD-04-1302, University

of California, Berkeley, November 2003.

[4] M.R. Carey and D.S. Johnson. Computers and Intractability. W.H. Freeman and Com-

pany, 1979.

[5] Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and Jin Soung Yoo.

Mixed-drove spatio-temporal co-occurance pattern mining: A summary of results. In

Proceedings of the 6th International Conference on Data Mining, pages 119–128, 2006.

[6] Jeffrey Chan, James Bailey, and Christopher Leckie. Discovering correlated spatio-

temporal changes in evolving graphs. Knowledge and Information Systems, 2007.

[7] Stuart Clare. Functional MRI : Methods and Applications. PhD thesis, University of

Nottingham, 1997.

[8] Nello Cristianini and John Shawne-Taylor. An Introduction to Support Vector Machines

and other Kernel-based methods. Cambridge University Press, 2000.

[9] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means, spectral clustering

and normalized cuts. In Proceedings of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2004.

53

[10] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kullis. A fast kernel-based multilevel

algorithm for graph clustering. In Proceedings of the 11th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2005.

[11] C. Ding, X. He, H. Zha, and H. Simon. A minmaxcut spectral method for data clustering

and graph partitioning. Technical Report 54111, LBNL, 2003.

[12] M. Ehrgott and X. Gandibleux. Multiple Criteria Optimization: State of the Art An-

notated Bibliographic Surveys. Kluwer, 2002.

[13] Nick Feamster, Hari Balakrishnan, and Jennifier Rexford. Some foundational problems

in interdomain routing. In 3rd ACM SIGCOMM Workshop on Hot Topics in Networking

(HotNets), November 2004.

[14] Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and Bruce Maggs. Lo-

cating internet routing instabilities. In SIGCOMM ’04, pages 205–218, New York, NY,

USA, 2004. ACM Press.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Press,

3 edition, 1996.

[16] Maria Halkidi, Yannis Batisakis, and Michalis Vazirgiannis. On clustering validation

techniques. Journal of Intelligent Information Systems, 17(2–3):107–145, 2001.

[17] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. VLSI

Design, 1(3):285–303, 2000.

[18] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for parti-

tioning irregular graphs. SIAM Journal of Scientific Computing, 20(1):359–392, 1998.

54

[19] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew S. Tomkins. On the

bursty evolution of blogspace. In Proceedings of the 12th International Conference on

World Wide Web, pages 568–576, 2003.

[20] Ravi Kumar, Jasmine Novak, and Andrew S. Tomkins. Structure and evolution of online

social networks. In Proceedings of the 12th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (poster), 2006.

[21] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification

laws, shrinking diameters and possible explanations. In Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining, pages 177–

187, 2005.

[22] D. Luenberger. Linear and Nonlinear Programming. Kluwer Academic Publishers, 2003.

[23] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and

Applied Mathematics, 2000.

[24] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, (8), 2000.

[25] Peter J. Shoubridge, Miro Kraetzl, Walter D. Wallis, and Horst Bunke. Detection

of abnormal change in a time series of graphs. Journal of Interconnection Networks,

3(1-2):85–101, 2002.

[26] Malgorzata Steinder and Adarshpal S. Sethi. Probabilistic fault localization in com-

munication systems using belief networks. IEEE/ACM Transactions on Networking,

12(5):809–822, 2004.

55

[27] Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. Graphscope:

Parameter-free mining of large time-evolving graphs. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

687–696, 2007.

[28] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining. ACM

SIGKDD Explorations Newsletter, 5(1):59–68, 2003.

[29] 1998 World Cup website access traces. http://ita.ee.lbl.gov/html/contrib/

WorldCup.html

[30] Ding Zhou, Jia Li, and Hongyuan Zha. A new mallows distance based metric for

comparing clusterings. In Proceedings of the 22nd International Conference on Machine

Learning, 2005.

[31] Eric Kyoo Han Bae, James Bailey and Guozhu Dong. Clustering Similarity Compari-

son Using Density Profiles. In Proceedings of the 19th Australian Joint Conference on

Artificial Intelligence, pages 342–351, 2006.

[32] Marina Meila. Comparing Clusterings. Technical Report 418, University of Washington,

2002.

A Monotonicity Proof of Normalized Cut

Let V be the set of vertices to be partitioned into regions. Let Rx = {R1, . . . , Rx} be the set of

regions at iteration x. Let Ry be the partition chosen to be bisectioned into disjoint partitions

R′
y and Rx+1, 1 ≤ y ≤ x. Let inter(RA, RB) =

∑

i∈RA,j∈RB
d(i, j) be the inter-region distance,

56

intra(RA) =
∑

i∈RA,j∈RA
di, j be the intra-region distance, and assoc(RA) = inter(RA, V −RA) +

intra(RA) be the inter-region + intra-region distances.

Lemma 2

inter(Ry, V −Ry) ≤ inter(R′
y, V −R′

y) + inter(Rx+1, V −Rx+1)

Proof 2 Consider the sum of the inter values of R′
y and Rx+1.

inter(R′
y, V −A′

y) + inter(Rx+1, V −Rx+1)

=
∑

i∈R′

y ,j∈V −Ry

d(i, j) +
∑

i∈Rx+1,j∈V −(Ry∪Rx+1)

d(i, j) +
∑

i∈R′

y ,j∈Rx+1

d(i, j) +
∑

i∈Rx+1,j∈R′

y

d(i, j)

= inter(Ry, V −Ry) +
∑

i∈R′

y ,j∈Rx+1

d(i, j) +
∑

i∈Rx+1,j∈R′

y

d(i, j)

The result follows since
∑

i∈R′

y ,j∈Rx+1
d(i, j) +

∑

i∈Rx+1,j∈R′

y
d(i, j) ≥ 0.

Lemma 3

assoc(Ry) = assoc(R′
y) + assoc(Rx+1)

Proof 3 Consider the association values of A′
y + Ax+1.

57

assoc(R′
y) + assoc(Rx+1)

=
∑

i∈R′

y ,j∈V

d(i, j) +
∑

i∈Rx+1,j∈V

d(i, j)

=
∑

i∈R′

y ,j∈R′

y

d(i, j) +
∑

i∈R′

y ,j∈Rx+1

d(i, j) +
∑

i∈R′

y ,j∈V −(R′

y∪Rx+1)

d(i, j)

+
∑

i∈Rx+1,j∈Rx+1

d(i, j) +
∑

i∈Rx+1,j∈R′

y

d(i, j) +
∑

i∈Rx+1,j∈V −(R′

y∪Rx+1)

d(i, j)

=
∑

i∈Ry ,j∈Ry

d(i, j) +
∑

i∈Ry ,j∈V −Ry

d(i, j)

=
∑

i∈Ry ,j∈V

d(i, j) = assoc(Ay)

Lemma 4

(7) ftem(Rx) ≤ ftem(Rx+1)

Proof 4 We can rewrite Equation 7 as:

ftem(R1, . . . , Ry, . . . , Rx) ≤ ftem(R1, . . . , R
′
y, . . . , Rx, Rx+1)

Expanding the terms, we get:

inter(R1, V −R1)

assoc(R1)
+ . . .+

inter(Ry, V −Ry)

assoc(Ry)
+ . . .+

inter(Rx, V −Rx)

assoc(Rx)

≤
inter(R1, V −R1)

assoc(R1)
+ . . .+

inter(R′
y, V −Ry)

assoc(R′
y)

+

. . .+
inter(Rx, V −Rx)

assoc(Rx)
+
inter(Rx+1, V −Rx+1)

assoc(Rx+1)

58

Canceling terms on either side of the inequality gives:

inter(Ry, V −Ry)

assoc(Ry)
≤
inter(R′

y, V −Ry)

assoc(R′
y)

+
inter(Rx+1, V −Rx+1)

assoc(Rx+1)

From Lemma 2 and 3, we have

inter(Ry, V −Ry)

assoc(Ry)
≤
inter(R′

y, V −R′
y) + inter(Ax+1, V −Rx+1)

assoc(Ry)

=
inter(R′

y, V −R′
y) + inter(Rx+1, V −Rx+1)

assoc(R′
y) + assoc(Rx+1)

≤
inter(R′

y, V −R′
y)

assoc(R′
y)

+
inter(Rx+1, V −Rx+1)

assoc(Rx+1)

=
inter(R′

y, V −R′
y)

assoc(R′
y)

+
inter(Rx+1, V −Rx+1)

assoc(Rx+1)

59

Region Edge Set Change Waveform

A {e1−6, e1−7}

B {e1−2, e1−3}

C {e2−4}

D {e3−5}

E1 {e12−13, e13−14}

E2 {e15−16}

F {e8−9, e9−10, e9−11}

Table 1: Regions of correlated spatio-temporal change and their associated change wave-
forms of the dynamic graph from Figure 1.

60

Region Edge Set Change Waveform

G1 G3 G5 G7 G15G11G9 G13 G17

A1 {e1−3, e2−3, e2−6, e3−5, e3−4, e4−11}

A2 {e1−3, e2−3, e2−6, e3−5, e3−4, e4−11}

B {e2−12, e5−12, e11−12, e12−13}

C {e6−8, e7−8, e8−9, e8−10}

w1

w2

Table 2: Regions of correlated change and their associated change waveforms of the graph
from Figure 2b. The dashed circle of each waveform illustrate the subsequence over which
the respective regions of Figure 2 are defined. Two example window lengths, ω1 and ω2,
are provided to highlight that no single window length can adequately find the correct
regions.

61

Symbol Description
G(VG, EG) A graph, with vertex and edge set VG

and EG.
W ts,te(Wk) A subsequence of snapshots

< Gts, . . . , Gte >.

E
ts,te
C (Ek

C) Set of changed edges over W ts,te (Wk).
qts,te(ei) The change waveform of edge ei over

W ts,te.
Rts,te

r A region of correlated spatio-temporal
change, defined over W ts,te.

Rts,te
r .Q The set of (waveforms, frequency) pairs

of Rts,te
r .

R A set of regions of correlated spatio-
temporal change.

dtem(ei, ej ,Wk) The temporal distance relation between
edges ei and ej , over Wk.

dspa(ei, ej ,Wk) The spatial distance relation between
edges ei and ej , over Wk.

ω Window size.
η Maximum number of snapshots to look

ahead.
ψ Maximum allowed time between

changes within a region.
stoptem Temporal stopping threshold for graph

partitioning.
stopspa Spatial stopping threshold for graph

partitioning.

Table 3: Summary of the main symbols and parameters used in this paper.

62

Name Vertices (Edges) Parameters

exampleDS 13 (17) Example from introduction

synGen003 497–529 (1368–1507) minTempSep = minSpat-
Sep = minEvtSep = 3

synGen002 315–335 (1183–1333) minTempSep = minSpat-
Sep = minEvtSep = 2

synGen001 124–128 (309–313) minTempSep = minSpat-
Sep = minEvtSep = 1

introGenSize 670–5339 (2000–16,000) Introduce regions into
scale-free graphs

Table 4: Summary of the synthetic datasets used for comparison purposes.

63

Algorithm
Intra Inter Timing

(secs)Temporal Spatial Temporal Spatial

regH 0.184 0.119 0.951 0.158 1583
ld-sn 0.138 0.145 0.810 0.168 296

Table 5: Results for the best intra-region distance, 1998 World Cup website access graph.
Lower intra-region and higher inter-region distances are more accurate.

64

Algorithm
Intra Inter Timing

(secs)Temporal Spatial Temporal Spatial

regH 0.299 0.164 0.962 0.167 513
ld-sn 0.442 0.145 0.932 0.168 1148

Table 6: Results for the best inter-region distance, 1998 World Cup website access graph.
Lower intra-region and higher inter-region distances are more accurate.

65

Region No. of Edges Change Waveform Comments

Sat-C1 101

16 17 Region corresponding to
fans that read the statis-
tics summary of matches
8895 and 8896, but not
match 8894.

Sat-C2 131

18 19 Region corresponding
to fans that read the
statistics summary of
all matches played on
Saturday (8895, 8896,
8894).

Table 7: Characteristics of the two new discovered regions of correlated change over the
period 0000, June 12th to 2359, June 13th.

66

Object/File Name
/eng/teams/teambio160.htm
/eng/teams/teambio76.htm
/eng/teams/teambio111.htm
/eng/competition/matchstat8896.htm
/eng/competition/groupstandings163 77.htm
/eng/competition/matchstat8895.htm

Table 8: List of objects/files for region Sat-C1.

67

Object/File Name
/eng/teams/teambio160.htm
/eng/teams/teambio76.htm
/eng/teams/teambio111.htm
/eng/teams/teambio135.htm
/eng/competition/matchstat8894.htm
/eng/competition/matchstat8896.htm
/eng/competition/groupstandings163 77.htm
/eng/competition/matchstat8895.htm

Table 9: List of objects/files for region Sat-C2.

68

Algorithm
Intra Inter Timing

(secs)Temporal Spatial Temporal Spatial

regH 0.170 0.405 0.970 0.616 5932
ld-sn 0.271 0.397 0.963 0.621 34402

Table 10: Results for the best intra-region distance, for the effect of Hurricane Katrina on
BGP connectivity graph. Lower intra-region and higher inter-region distances are more
accurate.

69

Algorithm
Intra Inter Timing

(secs)Temporal Spatial Temporal Spatial

regH 0.184 0.353 0.973 0.586 6555
ld-sn 0.469 0.514 0.963 0.647 35209

Table 11: Results for the best inter-region distance, for the effect of Hurricane Katrina on
BGP connectivity graph. Lower intra-region and higher inter-region distances are more
accurate.

70

List of Figures

1 An example of a dynamic graph with five snapshots. Bold edges highlight

edges that have experienced change in the five snapshots. The changed edges

belonging to each region are circled in Figure 1f. 75

(a) Snapshot 1, G1. 75

(b) Snapshot 2, G2. 75

(c) Snapshot 3, G3. 75

(d) Snapshot 4, G4. 75

(e) Snapshot 5, G5. 75

(f) Union graph of snapshots. 75

2 A two layered evolving graph with changes in routers A, B, and C in the

physical layer inducing changes in subgraphs A, B, C in the connection layer,

respectively. 76

(a) Physical layer graph. The hexagons represent routers, and squares rep-

resent hosts. For ease of reference, all links connected to the same router

have the same line style. Red, double headed arrowed lines are examples

of the IP connections displayed in Figure 2b. 76

(b) Connection layer graph. Subgraph A is drawn with solid edges, subgraph

B with dashed edges, and subgraph C with dotted edges. Gray coloured

edges represent edges that have not experienced change. 76

71

3 Evolving dissimilarity graphs for some of the changed edges in the dynamic

graph given in Figure 1. Solid and dotted edges represent intra-window and

inter-window distances respectively. For clarity, not all intra/inter window

edges are shown. These graphs were generated using a window size ω of 3,

and window increment of 1. There are three actual regions, labeled R1, R2,

and R3. Note how across region boundaries, temporal and/or spatial distances

are high, but within a region, they are generally low. 77

(a) Temporal. 77

(b) Spatial. 77

4 Illustration of the general multi-level graph partitioning process. The initial

graph is labeled G0, and the final partitions labeled R0. There are four levels

in this example (l = 0 to 3). 78

5 The general region comparison problem. 79

6 Parameter sensitivity evaluation results. Datasets used had the parameters

minTempSep = 3, minSpatSep = 3 and minEvtSep = 3. 80

(a) stoptem vs accuracy. stopspa = 0.9, η = 6, ψ = 4. 80

(b) stopspa vs accuracy. stoptem = 0.9, η = 6, ψ = 4. 80

(c) η vs accuracy. stopspa = 0.9, stoptem = 0.9, ψ = 4. 80

(d) ψ vs accuracy. ω = 6, η = 9. 80

(e) stoptem vs accuracy. stopspa = 0.9, η = 6, ψ = 4. 80

(f) stopspa vs accuracy. stoptem = 0.9, η = 6, ψ = 4 80

(g) η vs accuracy. stopspa = 0.9, stoptem = 0.9, ψ = 4 80

(h) ψ vs accuracy. ω = 6, η = 9. 80

72

7 Accuracy and timing comparison of regHunter (regH) vs. algorithms of

cSTAG. The algorithms labeled har-ag, har-ld, har-sn is the hard approach

with the {averageLinkage, leaderFollower, singleLinkage} methods; sof-ag,

sof-ld, sof-sn is the soft approach with the any of {averageLinkage, lead-

erFollower, singleLinkage} methods; ld-ag, ld-sn is the sequential approach

with {leaderFollower + singleLinkage, leaderFollower + averageLinkage}; and

regH is regHunter. 81

(a) Accuracy comparison for the exampleDS dataset. 81

(b) Accuracy comparison for the synGen003 datasets. 81

(c) Running time comparison for the synGen003 datasets. 81

(d) Accuracy comparison for the synGen002 datasets. 81

(e) Running time comparison for the synGen002 datasets. 81

(f) Accuracy comparison for the synGen001 datasets. 81

(g) Running time comparison for the synGen001 datasets. 81

8 Timing comparison of regHunter against cSTAG, for introGenSize datasets. . 82

9 The temporal and spatial intra-region and inter-region validation results, for

regHunter, synGen003 dataset. Results with low intra-region distances are

labeled with 1. Results with high inter-region distances are labeled with 3.

Results with the most accurate extRegCompare scores are labeled as 2. . . . 83

(a) Temporal intra-region distance vs. Spatial intra-region distance. 83

(b) Temporal inter-region distance vs. Spatial inter-region distance. 83

(c) Temporal intra-region distance vs. Temporal inter-region distance. . . . 83

(d) Spatial inter-region distance vs. Spatial inter-region distance. 83

73

10 The temporal and spatial intra-region and inter-region validation results, for

seqComb-leaderFollower-singleLinkage, synGen003 dataset. Results with low

intra-region distances are labeled with 1. Results with high inter-region dis-

tances are labeled with 3. Results with the most accurate extRegCompare

scores are labeled as 2. 84

(a) Temporal intra-region distance vs. Spatial intra-region distance. 84

(b) Temporal inter-region distance vs. Spatial inter-region distance. 84

(c) Temporal intra-region distance vs. Temporal inter-region distance. . . . 84

(d) Spatial inter-region distance vs. Spatial inter-region distance. 84

11 Hourly Traffic Volume to the 1998 World Cup Website over the period Sunday,

June 7 to Saturday, June 13. Based on Figure 2 [1]). 85

12 Number of changed edges and vertices during each time window in the US

portion of the BGP graph during the period 28 August to 31 August 2005.

The dotted line signifies the landfall of Hurricane Katrina. 86

74

(a) Snapshot 1, G1. (b) Snapshot 2, G2. (c) Snapshot 3, G3.

(d) Snapshot 4, G4. (e) Snapshot 5, G5. (f) Union graph of snapshots.

Figure 1: An example of a dynamic graph with five snapshots. Bold edges highlight edges
that have experienced change in the five snapshots. The changed edges belonging to each
region are circled in Figure 1f.

75

(a) Physical layer graph. The
hexagons represent routers, and
squares represent hosts. For ease of
reference, all links connected to the
same router have the same line style.
Red, double headed arrowed lines
are examples of the IP connections
displayed in Figure 2b.

(b) Connection layer graph. Subgraph
A is drawn with solid edges, subgraph
B with dashed edges, and subgraph
C with dotted edges. Gray coloured
edges represent edges that have not ex-
perienced change.

Figure 2: A two layered evolving graph with changes in routers A, B, and C in the physical
layer inducing changes in subgraphs A, B, C in the connection layer, respectively.

76

(a) Temporal. (b) Spatial.

Figure 3: Evolving dissimilarity graphs for some of the changed edges in the dynamic
graph given in Figure 1. Solid and dotted edges represent intra-window and inter-window
distances respectively. For clarity, not all intra/inter window edges are shown. These
graphs were generated using a window size ω of 3, and window increment of 1. There are
three actual regions, labeled R1, R2, and R3. Note how across region boundaries, temporal
and/or spatial distances are high, but within a region, they are generally low.

77

Figure 4: Illustration of the general multi-level graph partitioning process. The initial
graph is labeled G0, and the final partitions labeled R0. There are four levels in this
example (l = 0 to 3).

78

w11

w22

w12 w22

R1
det

Ry
det

R1
tru

Rz
tru

R2
truR2

det

Rdet Rtru

Figure 5: The general region comparison problem.

79

0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

stop
tem

A
cc

ur
ac

y

ω=3
ω=6
ω=9
ω=12

(a) stoptem vs accuracy. stopspa =
0.9, η = 6, ψ = 4.

0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

stop
spa

A
cc

ur
ac

y

ω=3
ω=6
ω=9
ω=12

(b) stopspa vs accuracy. stoptem =
0.9, η = 6, ψ = 4.

3 6 9 12
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

η

A
cc

ur
ac

y

ω=3
ω=6
ω=9
ω=12

(c) η vs accuracy. stopspa = 0.9,
stoptem = 0.9, ψ = 4.

2 3 4 5 6 7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ψ

A
cc

ur
ac

y

 stop
tem

=0.8,stop
spa

=0.8

stop
tem

=0.8,stop
spa

=0.9

stop
tem

=0.9,stop
spa

=0.8

stop
tem

=0.9,stop
spa

=0.9

stop
tem

=0.8,stop
spa

=0.8
stop

tem
=0.8,stop

spa
=0.8

(d) ψ vs accuracy. ω = 6, η = 9.

0.7 0.8 0.9 1
100

150

200

250

300

350

400

450

500

550

600

stop
tem

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

ω=3
ω=6
ω=9
ω=12

(e) stoptem vs accuracy. stopspa =
0.9, η = 6, ψ = 4.

0.7 0.8 0.9 1
0

100

200

300

400

500

600

stop
spa

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

ω=3
ω=6
ω=9
ω=12

(f) stopspa vs accuracy. stoptem =
0.9, η = 6, ψ = 4

3 6 9 12
0

200

400

600

800

1000

1200

η

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

ω=3
ω=6
ω=9
ω=12

(g) η vs accuracy. stopspa = 0.9,
stoptem = 0.9, ψ = 4

2 3 4 5 6 7
200

250

300

350

400

450

ψ

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

 stop
tem

=0.8,stop
spa

=0.8

stop
tem

=0.8,stop
spa

=0.9

stop
tem

=0.9,stop
spa

=0.8

stop
tem

=0.9,stop
spa

=0.9

(h) ψ vs accuracy. ω = 6, η = 9.

Figure 6: Parameter sensitivity evaluation results. Datasets used had the parameters
minTempSep = 3, minSpatSep = 3 and minEvtSep = 3.

80

har−aghar−ldhar−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

top 1
top 10
top 30
top 50

(a) Accuracy comparison for the
exampleDS dataset.

har−aghar−ldhar−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(b) Accuracy comparison for the
synGen003 datasets.

har−aghar−ldhar−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

50

100

150

200

250

300

350

400

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

top 1
top 10
top 30
top 50

(c) Running time comparison for
the synGen003 datasets.

har−aghar−ldhar−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(d) Accuracy comparison for the
synGen002 datasets.

har−aghar−ld har−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

15

30

45

60

75

90

105

120

135

150
W

al
l c

lo
ck

 r
un

ni
ng

 ti
m

e
(s

ec
s)

top 1
top 10
top 30
top 50

(e) Running time comparison for
the synGen002 datasets.

har−aghar−ldhar−snsof−ag sof−ld sof−sn ld−ag ld−sn regH
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(f) Accuracy comparison for the
synGen001 datasets.

har−aghar−ldhar−snsof−ag sof−ld sof−sn ls−ag ld−sn regH
0

20

40

60

80

100

120

140

160

180

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(s
ec

s)

top 1
top 10
top 30
top 50

(g) Running time comparison for
the synGen001 datasets.

Figure 7: Accuracy and timing comparison of regHunter (regH) vs. algorithms of
cSTAG. The algorithms labeled har-ag, har-ld, har-sn is the hard approach with the
{averageLinkage, leaderFollower, singleLinkage} methods; sof-ag, sof-ld, sof-sn is the soft
approach with the any of {averageLinkage, leaderFollower, singleLinkage} methods; ld-ag,
ld-sn is the sequential approach with {leaderFollower + singleLinkage, leaderFollower +
averageLinkage}; and regH is regHunter.

81

2000 4000 6000 8000 10000 12000 14000 16000
2.5

3

3.5

4

4.5

5

5.5

6

Graph size (number of edges)

W
al

l c
lo

ck
 r

un
ni

ng
 ti

m
e

(lo
g

10
 s

ec
s)

cSTAG

regHunter

Figure 8: Timing comparison of regHunter against cSTAG, for introGenSize datasets.

82

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Temporal intra−distance

S
pa

tia
l i

nt
ra

−d
is

ta
nc

e

2

1

3

(a) Temporal intra-
region distance vs.
Spatial intra-region
distance.

0.75 0.8 0.85 0.9 0.95
0.425

0.43

0.435

0.44

0.445

0.45

0.455

Temporal inter−distance

S
pa

tia
l i

nt
er

−d
is

ta
nc

e

1

2

3

(b) Temporal inter-
region distance vs.
Spatial inter-region
distance.

0 0.1 0.2 0.3 0.4
0.75

0.8

0.85

0.9

0.95

Temporal intra−distance

T
em

po
ra

l i
nt

er
−d

is
ta

nc
e 2

1

3

(c) Temporal intra-
region distance vs.
Temporal inter-region
distance.

0 0.1 0.2 0.3 0.4
0.425

0.43

0.435

0.44

0.445

0.45

0.455

Spatial intra−distance

S
pa

tia
l i

nt
er

−d
is

ta
nc

e

1
2

3

(d) Spatial inter-region
distance vs. Spatial
inter-region distance.

Figure 9: The temporal and spatial intra-region and inter-region validation results, for
regHunter, synGen003 dataset. Results with low intra-region distances are labeled with
1. Results with high inter-region distances are labeled with 3. Results with the most
accurate extRegCompare scores are labeled as 2.

83

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Temporal intra−distance

S
pa

tia
l i

nt
ra

−d
is

ta
nc

e

3

2

1

(a) Temporal intra-
region distance vs.
Spatial intra-region
distance.

0.7 0.8 0.9 1
0.42

0.43

0.44

0.45

0.46

0.47

Temporal inter−distance

S
pa

tia
l i

nt
er

−d
is

ta
nc

e

1

3
2

(b) Temporal inter-
region distance vs.
Spatial inter-region
distance.

0 0.1 0.2 0.3 0.4 0.5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Temporal intra−distance

T
em

po
ra

l i
nt

er
−d

is
ta

nc
e

1

3

2

(c) Temporal intra-
region distance vs.
Temporal inter-region
distance.

0 0.1 0.2 0.3 0.4
0.42

0.43

0.44

0.45

0.46

0.47

Spatial intra−distance

S
pa

tia
l i

nt
er

−d
is

ta
nc

e

1

3

2

(d) Spatial inter-region
distance vs. Spatial
inter-region distance.

Figure 10: The temporal and spatial intra-region and inter-region validation results, for
seqComb-leaderFollower-singleLinkage, synGen003 dataset. Results with low intra-region
distances are labeled with 1. Results with high inter-region distances are labeled with 3.
Results with the most accurate extRegCompare scores are labeled as 2.

84

Sun 7/6 Mon 8/6 Tue 9/6 Wed 10/6 Thu 11/6 Fri 12/6 Sat 13/6 Sun 14/6
0

2

4

6

8

10

M
ill

io
ns

 o
f R

eq
ue

st
s

pe
r

H
ou

r 1998 World Cup
begins

PAR−BGR
KSA−DEN
FRA−RSA

ESP−NGA
KOR−MEX
HOL−BEL

Figure 11: Hourly Traffic Volume to the 1998 World Cup Website over the period Sunday,
June 7 to Saturday, June 13. Based on Figure 2 [1]).

85

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

C
ha

ng
ed

 N
um

be
r

Window Number

Changed Vertices
Changed Edges

Figure 12: Number of changed edges and vertices during each time window in the US
portion of the BGP graph during the period 28 August to 31 August 2005. The dotted
line signifies the landfall of Hurricane Katrina.

86

