
On the Convergence and Robustness of Adversarial Training

Yisen Wang * 1 Xingjun Ma * 2 James Bailey 2 Jinfeng Yi 1 Bowen Zhou 1 Quanquan Gu 3

Abstract
Improving the robustness of deep neural networks
(DNNs) to adversarial examples is an important
yet challenging problem for secure deep learning.
Across existing defense techniques, adversarial
training with Projected Gradient Decent (PGD) is
amongst the most effective. Adversarial training
solves a min-max optimization problem, with the
inner maximization generating adversarial exam-
ples by maximizing the classification loss, and the
outer minimization finding model parameters by
minimizing the loss on adversarial examples gen-
erated from the inner maximization. A criterion
that measures how well the inner maximization is
solved is therefore crucial for adversarial training.
In this paper, we propose such a criterion, namely
First-Order Stationary Condition for constrained
optimization (FOSC), to quantitatively evaluate
the convergence quality of adversarial examples
found in the inner maximization. With FOSC, we
find that to ensure better robustness, it is essential
to use adversarial examples with better conver-
gence quality at the later stages of training. Yet at
the early stages, high convergence quality adver-
sarial examples are not necessary and may even
lead to poor robustness. Based on these obser-
vations, we propose a dynamic training strategy
to gradually increase the convergence quality of
the generated adversarial examples, which sig-
nificantly improves the robustness of adversarial
training. Our theoretical and empirical results
show the effectiveness of the proposed method.

1. Introduction
Although deep neural networks (DNNs) have achieved great
success in a number of fields such as computer vision (He
et al., 2016) and natural language processing (Devlin et al.,

*Equal contribution 1JD.com 2The University of Melbourne
3The University of California, Los Angeles. Correspondence to:
Quanquan Gu <qgu@cs.ucla.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

2018), they are vulnerable to adversarial examples crafted
by adding small, human imperceptible adversarial perturba-
tions to normal examples (Szegedy et al., 2013; Goodfellow
et al., 2015). Such vulnerability of DNNs raises security
concerns about their practicability in security-sensitive ap-
plications such as face recognition (Kurakin et al., 2016) and
autonomous driving (Chen et al., 2015). Defense techniques
that can improve DNN robustness to adversarial examples
have thus become crucial for secure deep learning.

There exist several defense techniques (i.e., “defense mod-
els”), such as input denoising (Guo et al., 2018), gradient
regularization (Papernot et al., 2017), and adversarial train-
ing (Madry et al., 2018). However, many of these defense
models provide either only marginal robustness or have
been evaded by new attacks (Athalye et al., 2018). One
defense model that demonstrates moderate robustness, and
has thus far not been comprehensively attacked, is adversar-
ial training (Athalye et al., 2018). Given a C-class dataset
S = {(x0

i , yi)}ni=1 with x0
i ∈ Rd as a normal example in

the d-dimensional input space and yi ∈ {1, · · · , C} as its
associated label, the objective of adversarial training is to
solve the following min-max optimization problem:

min
θ

1

n

n∑
i=1

max
‖xi−x0

i ‖∞≤ε
`(hθ(xi), yi), (1)

where hθ : Rd → RC is the DNN function, xi is the ad-
versarial example of x0

i , `(hθ(xi), yi) is the loss function
on the adversarial example (xi, yi), and ε is the maximum
perturbation constraint1. The inner maximization problem
is to find an adversarial example xi within the ε-ball around
a given normal example x0

i (i.e., ‖xi − x0
i ‖∞ ≤ ε) that

maximizes the classification loss `. It is typically noncon-
cave with respect to the adversarial example. On the other
hand, the outer minimization problem is to find model pa-
rameters that minimize the loss ` on adversarial examples
{xi}ni=1 that generated from the inner maximization. This
is the problem of training a robust classifier on adversar-
ial examples. Therefore, how well the inner maximization
problem is solved directly affects the performance of the
outer minimization, i.e., the robustness of the classifier.

Several attack methods have been used to solve the inner
1We only focus on the infinity norm constraint in this paper,

but our algorithms and theory apply to other norms as well.
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maximization problem, such as Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015) and Projected Gradient
Descent (PGD) (Madry et al., 2018). However, the degree
to which they solve the inner maximization problem has not
been thoroughly studied. Without an appropriate criterion
to measure how well the inner maximization is solved, the
adversarial training procedure is difficult to monitor or im-
prove. In this paper, we propose such a criterion, namely
First-Order Stationary Condition for constrained optimiza-
tion (FOSC), to measure the convergence quality of the
adversarial examples found in the inner maximization. Our
proposed FOSC facilitates monitoring and understanding
adversarial training through the lens of convergence quality
of the inner maximization, and this in turn motivates us to
propose an improved training strategy for better robustness.
Our main contributions are as follows:

• We propose a principled criterion FOSC to measure the
convergence quality of adversarial examples found in
the inner maximization problem of adversarial training.
It is well-correlated with the adversarial strength of
adversarial examples, and is also a good indicator of
the robustness of adversarial training.

• With FOSC, we find that better robustness of adversar-
ial training is associated with training on adversarial
examples with better convergence quality in the later
stages. However, in the early stages, high convergence
quality adversarial examples are not necessary and can
even be harmful.

• We propose a dynamic training strategy to gradually
increase the convergence quality of the generated ad-
versarial examples and provide a theoretical guarantee
on the overall (min-max) convergence. Experiments
show that dynamic strategy significantly improves the
robustness of adversarial training.

2. Related Work
2.1. Adversarial Attack

Given a normal example (x0
i , yi) and a DNN hθ , the goal of

an attacking method is to find an adversarial example xi that
remains in the ε-ball centered at x0 (‖xi − x0

i ‖∞ ≤ ε) but
can fool the DNN to make an incorrect prediction (hθ(xi) 6=
yi). A wide range of attacking methods have been proposed
for the crafting of adversarial examples. Here, we only
mention a selection.

Fast Gradient Sign Method (FGSM). FGSM perturbs nor-
mal examples x0 for one step (x1) by the amount ε along
the gradient direction (Goodfellow et al., 2015):

x1 = x0 + ε · sign(∇x`(hθ(x0), y)). (2)

Projected Gradient Descent (PGD). PGD perturbs normal
example x0 for a number of steps K with smaller step size.
After each step of perturbation, PGD projects the adversarial
example back onto the ε-ball of x0, if it goes beyond the
ε-ball (Madry et al., 2018):

xk = Π
(
xk−1 + α · sign(∇x`(hθ(xk−1), y))

)
, (3)

where α is the step size, Π(·) is the projection function, and
xk is the adversarial example at the k-th step.

There are also other types of attacking methods, e.g.,
Jacobian-based Saliency Map Attack (JSMA) (Papernot
et al., 2016a), C&W attack (Carlini & Wagner, 2017) and
Frank-Wolfe based attack (Chen et al., 2018). PGD is
regarded as the strongest first-order attack, and C&W is
among the strongest attacks to date.

2.2. Adversarial Defense

A number of defense models have been developed such
as defensive distillation (Papernot et al., 2016b), feature
analysis (Xu et al., 2017; Ma et al., 2018), input denois-
ing (Guo et al., 2018; Liao et al., 2018; Samangouei et al.,
2018), gradient regularization (Gu & Rigazio, 2014; Paper-
not et al., 2017; Tramèr et al., 2018; Ross & Doshi-Velez,
2018), model compression (Liu et al., 2018; Das et al., 2018;
Rakin et al., 2018) and adversarial training (Goodfellow
et al., 2015; Nøkland, 2015; Madry et al., 2018), among
which adversarial training is the most effective.

Adversarial training improves the model robustness by train-
ing on adversarial examples generated by FGSM and PGD
(Goodfellow et al., 2015; Madry et al., 2018). Tramèr et al.
(2018) proposed an ensemble adversarial training on ad-
versarial examples generated from a number of pretrained
models. Kolter & Wong (2018) developed a provable robust
model that minimizes worst-case loss over a convex outer
region. In a recent study by (Athalye et al., 2018), adversar-
ial training on PGD adversarial examples was demonstrated
to be the state-of-of-art defense model. Several improve-
ments of PGD adversarial training have also been proposed,
such as Lipschitz regularization (Cisse et al., 2017; Hein &
Andriushchenko, 2017; Yan et al., 2018; Farnia et al., 2019),
and curriculum adversarial training (Cai et al., 2018).

Despite these studies, a deeper understanding of adversarial
training and a clear direction for further improvements is
largely missing. The inner maximization problem in Eq. (1)
lacks an effective criterion that can quantitatively measure
the convergence quality of training adversarial examples
generated by different attacking methods (which in turn in-
fluences the analysis of the whole min-max problem). In this
paper, we propose such a criterion and provide new under-
standing of the robustness of adversarial training. We design
a dynamic training strategy that significantly improves the
robustness of the standard PGD adversarial training.
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3. Evaluation of the Inner Maximization
3.1. Quantitative Criterion: FOSC

In Eq. (1), the inner maximization problem is a constrained
optimization problem, and is in general globally noncon-
cave. Since the gradient norm of h is not an appropriate
criterion for nonconvex/nonconcave constrained optimiza-
tion problems, inspired by Frank-Wolfe gap (Frank & Wolfe,
1956), we propose a First-Order Stationary Condition for
constrained optimization (FOSC) as the convergence crite-
rion for the inner maximization problem, which is affine
invariant and not tied to any specific choice of norm:

c(xk) = max
x∈X
〈x− xk,∇xf(θ,xk)〉, (4)

where X = {x|‖x− x0‖∞ ≤ ε} is the input domain of the
ε-ball around normal example x0, f(θ,xk) = `(hθ(xk), y)
and 〈·〉 is the inner product. Note that c(xk) ≥ 0, and a
smaller value of c(xk) indicates a better solution of the inner
maximization (or equivalently, better convergence quality
of the adversarial example xk).

The criterion FOSC in Eq. (4) can be shown to have the
following closed-form solution:

c(xk) = max
x∈X
〈x− xk,∇xf(θ,xk)〉

= max
x∈X
〈x− x0 + x0 − xk,∇xf(θ,xk)〉

= max
x∈X
〈x− x0,∇xf(θ,xk)〉

+ 〈xk − x0,−∇xf(θ,xk)〉
= ε‖∇xf(θ,xk)‖1 − 〈xk − x0,∇xf(θ,xk)〉.

As an example-wise criterion, c(xk) measures the conver-
gence quality of adversarial example xk with respect to both
the perturbation constraint and the loss function. Optimal
convergence where c(xk) = 0 can be achieved when 1)
∇f(θ,xk) = 0, i.e., xk is a stationary point in the interior
of X ; or 2) xk − x0 = ε · sign(∇f(θ,xk)), that is, local
maximum point of f(θ,xk) is reached on the boundary of
X . The proposed criterion FOSC allows the monitoring of
convergence quality of the inner maximization problem, and
provides a new perspective of adversarial training.

3.2. FOSC View of Adversarial Training

In this subsection, we will use FOSC to investigate the
robustness and learning process of adversarial training. First
though, we investigate its correlation with the traditional
measures of accuracy and loss.

FOSC View of Adversarial Strength. We train an 8-layer
Convolutional Neural Network (CNN) on CIFAR-10 using
10-step PGD (PGD-10) with step size ε/4, maximum pertur-
bation ε = 8/255, following the standard setting in Madry
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Figure 1. The correlation between convergence quality (FOSC)
and adversarial strength (accuracy and loss). (a): For PGD-10
CIFAR-10 adversarial examples: the lower the FOSC (x-axis),
the lower the accuracy (left y-axis) and the higher the loss (right
y-axis). (b): For 20 randomly selected adversarial examples (each
line is an example): PGD perturbation step (x-axis) versus FOSC
(left y-axis) and loss (right y-axis).

et al. (2018). We then apply the same PGD-10 attack on
CIFAR-10 test images to craft adversarial examples, and
divide the crafted adversarial examples into 20 consecutive
groups of different convergence levels of FOSC value rang-
ing from 0.0 to 0.1. The test accuracy and average loss of
adversarial examples in each group are in Figure 1a. We
observe FOSC has a linear correlation with both accuracy
and loss: the lower the FOSC, the lower (resp. higher) the
accuracy (resp. loss).

We further show the intermediate perturbation steps of PGD
for 20 randomly selected adversarial examples in Figure 1b.
As perturbation step increases, FOSC decreases consistently
towards 0, while loss increases and stabilizes at a much
wider range of values. Compared to the loss, FOSC provides
a comparable and consistent measurement of adversarial
strength: the closer the FOSC to 0, the stronger the attack.

In summary, the proposed FOSC is well correlated with the
adversarial strength and also more consistent than the loss,
making it a promising tool to monitor adversarial training.

FOSC View of Adversarial Robustness. We first investi-
gate the correlation among the final robustness of adversarial
training, loss, and FOSC. In particular, we evaluate PGD
adversarial training on CIFAR-10 in two settings: 1) varying
PGD step size from ε, ε/2 to ε/8 while fixing step number
as 20, and 2) varying PGD step number from 10 to 40 while
fixing step size as ε/6. In each setting, we cross test (white-
box) the robustness of the final model against PGD attacks
in the same setting on CIFAR-10 test images. For each
defense model, we also compute the distributions of FOSC
and loss (using Gaussian kernel density estimation (Parzen,
1962)) for the last epoch generated adversarial examples.

As shown in Figure 2, when varying step size, the best
robustness against all test attacks is observed for PGD-ε/2
or PGD-ε/4 (Figure 2a), of which the FOSC distributions
are more concentrated around 0 (Figure 2c) but their loss
distributions are almost the same (Figure 2e). When varying
step number, the final robustness values are very similar
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Figure 2. Robustness of PGD adversarial training with (a) varying
step size (fixed step number 20), or (b) varying step number (fixed
step size ε/6). The FOSC distributions (c)/(d) reflect the robustness
of adversarial training in (a)/(b), i.e., the lower the FOSC, the better
the robustness. The loss distributions (e)/(f) are almost the same
for different settings.

(Figure 2b), which is also reflected by the similar FOSC
distributions (Figure 2d), but the loss distributions are again
almost the same (Figure 2f). Revisiting Figure 2b where
the step size is ε/6, it is notable that increasing PGD steps
only brings marginal or no robustness gain when the steps
are more than sufficient to reach the surface of the ε-ball:
12 steps of ε/6 perturbation following the same gradient
direction can reach the surface of the ε-ball from any starting
point. The above observations indicate that FOSC is a more
reliable indicator of the final robustness of PGD adversarial
training, compared to the loss.

Rethinking the Adversarial Training Process. To pro-
vide more insights into the learning process of adversarial
training, we show the distributions of FOSC at three distinct
learning stages in Figure 3: 1) early stage (epoch 10), 2)
middle stage (epoch 60), and 3) later stage (epoch 100) (120
epochs in total). We only focus on two defense models:
training with 10-step PGD-ε/4 and 10-step PGD-ε/8 (the
best and worst model observed in Figure 2a respectively).
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Figure 3. (a): FOSC distribution at intermediate epochs (10, 60,
100) for adversarial training of 10 steps PGD with step size ε/4
(PGD-ε/4) and step size ε/8 (PGD-ε/8); (b): The robustness of
training with PGD and training with first FGSM then PGD; (c):
FOSC distribution at intermediate epochs for training with first
FGSM then PGD. Distributions at the 60-th and 100-th epochs
overlap each other for (a)/(c).

In Figure 3a, for both models, FOSC at the early stage is
significantly lower than the following two stages. Thus, at
the early stage, both models can easily find high conver-
gence quality adversarial examples for training; however, it
becomes more difficult to do so at the following stages. This
suggests overfitting to strong PGD adversarial examples at
the early stage. To verify this, we replace the first 20 epochs
of PGD-ε/4 training with a much weaker FGSM (1 step
perturbation of size ε), denoted as “FGSM-PGD”, and show
its robustness and FOSC distribution in Figure 3b and 3c
respectively. We find that by simply using weaker FGSM
adversarial examples at the early stage, the final robustness
and the convergence quality of adversarial examples found
by PGD at the later stage are both significantly improved.
The FOSC density between [0, 0.1] is improved to above
35% (green solid line in Figure 3c) from less than 30%
(green solid line in Figure 3a). This indicates strong PGD
attacks are not necessary for the early stage of training, or
even deteriorate the robustness. In the next section, we will
propose a dynamic training strategy to address this issue.

4. Dynamic Adversarial Training
In this section, we first introduce the proposed dynamic
adversarial training strategy. Then we provide a theoretical
convergence analysis of the min-max problem in Eq. (1) of
the proposed approach.

4.1. The Proposed Dynamic Training Strategy

As mentioned in Section 3.2, training on adversarial exam-
ples of better convergence quality at the later stages leads to
higher robustness. However, at the early stages, training on
high convergence quality adversarial examples may not be
helpful. Recalling the criterion FOSC proposed in Section
3.1, we have seen that it is strongly correlated with adver-
sarial strength. Thus, it can be used to monitor the strength
of adversarial examples at a fine-grained level. Therefore,
we propose to train DNNs with adversarial examples of
gradually decreasing FOSC value (increasing convergence
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quality), so as to ensure that the network is trained on weak
adversarial examples at the early stages and strong adversar-
ial examples at the later stages.

Our proposed dynamic adversarial training algorithm is
shown in Algorithm 1. The dynamic criterion FOSC
ct = max(cmax − t · cmax/T

′, 0) controls the minimum
FOSC value (maximum adversarial strength) of the adver-
sarial examples at the t-th epoch of training (T ′ is slightly
smaller than total epochs T to ensure the later stage can
be trained on criterion 0). In the early stages of training,
ct is close to the maximum FOSC value cmax correspond-
ing to weak adversarial examples, it then decreases linearly
towards zero as training progresses2, and is zero after the
T ′-th epoch of training. We use PGD to generate the train-
ing adversarial examples, however, at each perturbation step
of PGD, we monitor the FOSC value and stop the pertur-
bation process for adversarial example whose FOSC value
is already smaller than ct, enabled by an indicator control
vector V . cmax can be estimated by the average FOSC value
on a batch of weak adversarial examples such as FGSM.

Algorithm 1 Dynamic Adversarial Training

Input: Network hθ, training data S, initial model pa-
rameters θ0, step size ηt, mini-batch B, maximum FOSC
value cmax, training epochs T , FOSC control epoch T ′,
PGD step K, PGD step size α, maximum perturbation ε.
for t = 0 to T − 1 do
ct = max(cmax − t · cmax/T

′, 0)
for each batch x0

B do
V = 1B # control vector of all elements is 1
while

∑
V > 0 & k < K do

xk+1
B = xkB + V · α · sign(∇x`(hθ(xkB), y))

xkB = clip(xkB,x
0
B − ε,x0

B + ε)
V = 1B(c(xk1···B) ≤ ct) # The element of V
becomes 0 at which FOSC is smaller than ct

end while
θt+1 = θt−ηtg(θt) # g(θt) : stochastic gradient

end for
end for

4.2. Convergence Analysis

We provide a convergence analysis of our proposed dynamic
adversarial training approach (as opposed to just the inner
maximization problem) for solving the overall min-max
optimization problem in Eq. (1). Due to the nonlineari-
ties in DNNs such as ReLU (Nair & Hinton, 2010) and
max-pooling functions, the exact assumptions of Danskin’s
theorem (Danskin, 2012) do not hold. Nevertheless, given
the criterion FOSC that ensures an approximate maximizer
of the inner maximization problem, we can still provide a

2This is only a simple strategy that works well in our experi-
ments and other strategies could also work here.

theoretical convergence guarantee.

In detail, let x∗i (θ) = argmaxxi∈Xi
f(θ,xi) where

f(θ,x) = `(hθ(x), y) is a shorthand notation for the clas-
sification loss function, Xi = {x|‖x − x0

i ‖∞ ≤ ε}, and
f̄i(θ) = maxxi∈Xi f(θ,xi) = f(θ,x∗i (θ)), then x̂i(θ) is
a δ-approximate solution to x∗i (θ), if it satisfies that

c(x̂i(θ)) = max
x∈Xi

〈x− x̂i(θ),∇xf(θ, x̂i(θ))〉 ≤ δ. (5)

In addition, denote the objective function in Eq.
(1) by LS(θ), and its gradient by ∇LS(θ) =
1/n

∑n
i=1∇f̄i(θ) = 1/n

∑n
i=1∇θf(θ,x∗i (θ)). Let

g(θ) = 1/|B|
∑
i∈B∇f̄i(θ) be the stochastic gradient of

LS(θ), where B is the mini-batch. We have E[g(θ)] =
∇LS(θ). Let ∇θf(θ, x̂(θ)) be the gradient of f(θ, x̂(θ))
with respect to θ, and ĝ(θ) = 1/|B|

∑
i∈B∇θf(θ, x̂i(θ))

be the approximate stochastic gradient of LS(θ).

Before we provide the convergence analysis, we first lay out
a few assumptions that are needed for our analysis.

Assumption 1. The function f(θ;x) satisfies the gradient
Lipschitz conditions as follows

sup
x
‖∇θf(θ,x)−∇θf(θ′,x)‖2 ≤ Lθθ‖θ − θ′‖2

sup
θ
‖∇θf(θ,x)−∇θf(θ,x′)‖2 ≤ Lθx‖x− x′‖2

sup
x
‖∇xf(θ,x)−∇xf(θ′,x)‖2 ≤ Lxθ‖θ − θ′‖2,

where Lθθ, Lθx, Lxθ are positive constants.

Assumption 1 was made in Sinha et al. (2018), which re-
quires the loss function is smooth in the first and second
arguments. While ReLU (Nair & Hinton, 2010) is non-
differentiable, recent studies (Allen-Zhu et al., 2018; Du
et al., 2018; Zou et al., 2018; Cao & Gu, 2019) showed that
the loss function of overparamterized deep neural networks
is semi-smooth. This helps justify Assumption 1.

Assumption 2. f(θ,x) is locally µ-strongly concave in
Xi = {x : ‖x − x0

i ‖∞ ≤ ε} for all i ∈ [n], i.e., for any
x1,x2 ∈ Xi, it holds that

f(θ,x1) ≤ f(θ,x2) + 〈∇xf(θ,x2),x1 − x2〉 − µ
2 ‖x1 − x2‖22.

Assumption 2 can be verified using the relation between
robust optimization and distributional robust optimization
(refer to Sinha et al. (2018); Lee & Raginsky (2018)).

Assumption 3. The variance of the stochastic gradient g(θ)
is bounded by a constant σ2 > 0,

E[‖g(θ)−∇LS(θ)‖22] ≤ σ2,

where∇LS(θ) is the full gradient.

Assumption 3 is a common assumption made for the analy-
sis of stochastic gradient based optimization algorithms.
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Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Let
∆ = LS(θ0) − minθ LS(θ). If the step size of the outer
minimization is set to ηt = η = min(1/L,

√
∆/Lσ2T ).

Then the output of Algorithm 1 satisfies

1

T

T−1∑
t=0

E
[
‖∇LS(θt)‖22

]
≤ 4σ

√
L∆

T
+

5L2
θxδ

µ
,

where L = (LθxLxθ/µ+ Lθθ).

The complete proof can be found in the supplementary ma-
terial. Theorem 1 suggests that if the inner maximization is
solved up to a precision so that the criterion FOSC is less
than δ, Algorithm 1 can converge to a first-order station-
ary point at a sublinear rate up to a precision of 5L2

θxδ/µ.
In practice, if δ is sufficiently small such that 5L2

θxδ/µ is
small enough, Algorithm 1 can find a robust model θT . This
supports the validity of Algorithm 1.

4.3. Relation to Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a learning
paradigm in which a model learns from easy examples first
then gradually learns from more and more difficult examples.
For training with normal examples, it has been shown to be
able to speed up convergence and improve generalization.
This methodology has been adopted in many applications
to enhance model training (Kumar et al., 2010; Jiang et al.,
2015). The main challenge for curriculum learning is to de-
fine a proper criterion to determine the difficulty/hardness of
training examples, so as to design a learning curriculum (i.e.,
a sequential ordering) mechanism. Our proposed criterion
FOSC in Section 3.1 can serve as such a difficulty measure
for training examples, and our proposed dynamic approach
can be regarded as one type of curriculum learning.

Curriculum learning was used in adversarial training in Cai
et al. (2018), with the perturbation step of PGD as the diffi-
culty measure. Their assumption is that more perturbation
steps indicate stronger adversarial examples. However, this
is not a reliable assumption from the FOSC view of the
inner maximization problem: more steps may overshoot
and result in suboptimal adversarial examples. Empirical
comparisons with (Cai et al., 2018) will be shown in Sec. 5.

5. Experiments
In this section, we evaluate the robustness of our proposed
training strategy (Dynamic) compared with several state-of-
the-art defense models, in both the white-box and black-
box settings on benchmark datasets MNIST and CIFAR-10.
We also provide analysis and insights on the robustness of
different defense models. For all adversarial examples, we
adopt the infinity norm ball as the maximum perturbation
constraint (Madry et al., 2018).

Baselines. The baseline defense models we use include
1) Unsecured: unsecured training on normal examples; 2)
Standard: standard adversarial training with PGD attacks
(Madry et al., 2018); 3) Curriculum: curriculum adversar-
ial training with PGD attacks of gradually increasing the
number of perturbation steps (Cai et al., 2018).

5.1. Robustness Evaluation

Defense Settings. For MNIST, defense models use a 4-
layer CNN: 2 convolutional layers followed by 2 dense
layers. Batch normalization (BatchNorm) (Ioffe & Szegedy,
2015) and max-pooling (MaxPool) are applied after each
convolutional layer. For CIFAR-10, defense models adopt
an 8-layer CNN architecture: 3 convolutional blocks fol-
lowed by 2 dense layers, with each convolutional block has
2 convolutional layers. BatchNorm is applied after each
convolutional layer, and MaxPool is applied after every
convolutional block. Defense models for both MNIST and
CIFAR-10 are trained using Stochastic Gradient Descent
(SGD) with momentum 0.9, weight decay 10−4 and an ini-
tial learning rate of 0.01. The learning rate is divided by
10 at the 20-th and 40-th epoch for MNIST (50 epochs in
total), and at the 60-th and 100-th epoch for CIFAR-10 (120
epochs in total). All images are normalized into [0, 1].

Except the Unsecured model, other defense models includ-
ing our proposed Dynamic model are all trained under the
same PGD adversarial training scheme: 10-step PGD attack
with random start (adding an initial random perturbation
of [−ε, ε] to the normal examples before the PGD pertur-
bation) and step size ε/4. The maximum perturbation is
set to ε = 0.3 for MNIST, and ε = 8/255 for CIFAR-10,
which is a standard setting for adversarial defense (Athalye
et al., 2018; Madry et al., 2018). For Dynamic model, we set
cmax = 0.5 for both MNIST and CIFAR-10, and T ′ = 40
for MNIST and T ′ = 100 for CIFAR-10. Other parameters
of the baselines are configured as per their original papers.

White-box Robustness. For MNIST and CIFAR-10, the
attacks used for white-box setting are generated from the
original test set images by attacking the defense models
using 4 attacking methods: FGSM, PGD-10 (10-step PGD),
PGD-20 (20-step PGD), and C&W∞ (L∞ version of C&W
optimized by PGD for 30 steps). In the white-box setting, all
attacking methods have full access to the defense model pa-
rameters and are constrained by the same maximum pertur-
bation ε. We report the classification accuracy of a defense
model under white-box attacks as its white-box robustness.

The white-box results are reported in Table 1. On both
datasets, the Unsecured model achieves the best test ac-
curacy on clean (unperturbed) images. However, it is not
robust to adversarial examples — accuracy drops to zero on
strong attacks like PGD-10/20 or C&W∞. The proposed Dy-
namic model almost achieves the best robustness among all



On the Convergence and Robustness of Adversarial Training

Table 1. White-box robustness (accuracy (%) on white-box test attacks) of different defense models on MNIST and CIFAR-10 datasets.

Defense
MNIST CIFAR-10

Clean FGSM PGD-10 PGD-20 C&W∞ Clean FGSM PGD-10 PGD-20 C&W∞
Unsecured 99.20 14.04 0.0 0.0 0.0 89.39 2.2 0.0 0.0 0.0
Standard 97.61 94.71 91.21 90.62 91.03 66.31 48.65 44.39 40.02 36.33
Curriculum 98.62 95.51 91.24 90.65 91.12 72.40 50.47 45.54 40.12 35.77
Dynamic 97.96 95.34 91.63 91.27 91.47 72.17 52.81 48.06 42.40 37.26

Table 2. Black-box robustness (accuracy (%) on black-box test attacks) of different defense models on MNIST and CIFAR-10 datasets.

Defense
MNIST CIFAR-10

FGSM PGD-10 PGD-20 C&W∞ FGSM PGD-10 PGD-20 C&W∞
Standard 96.12 95.73 95.73 97.20 65.65 65.80 65.60 66.12
Curriculum 96.59 95.87 96.09 97.52 71.25 71.44 71.13 71.94
Dynamic 97.60 97.01 96.97 98.36 71.95 72.15 72.02 72.85

the defense models. Comparing the robustness on MNIST
and CIFAR-10, the improvements are more significant on
CIFAR-10. This may because MNIST consisting of only
black-white digits is a relatively simple dataset where differ-
ent defense models all work comparably well. Compared to
Standard adversarial training, Dynamic training with con-
vergence quality controlled adversarial examples improves
the robustness to a certain extent, especially on the more
challenging CIFAR-10 with natural images. This robustness
gain is possibly limited by the capacity of the small model
(only an 8-layer CNN). Thus we shortly show a series of ex-
periments on WideResNet (Zagoruyko & Komodakis, 2016)
where the power of the Dynamic strategy is fully unleashed.
In Table 1, we see that Curriculum improves robustness
against weak attacks like FGSM but is less effective against
strong attacks like PGD/C&W∞.

Benchmarking the State-of-the-art on WideResNet. To
analyze the full power of our proposed Dynamic training
strategy and also benchmark the state-of-the-art robustness
on CIFAR-10, we conduct experiments on a large capacity
network WideResNet (Zagoruyko & Komodakis, 2016) (10
times wider than standard ResNet (He et al., 2016)), using
the same settings as Madry et al. (2018). The WideRes-
Net achieves an accuracy of 95.2% on clean test images of
CIFAR-10. For comparison, we include Madry’s WideRes-
Net adversarial training and the Curriculum model. White-
box robustness against FGSM, PGD-20 and C&W∞ at-
tacks is shown in Table 3. Our proposed Dynamic model
demonstrates a significant boost over Madry’s WideResNet
adversarial training on FGSM and PGD-20, while Curricu-
lum model only achieves slight gains respectively. For the
strongest attack C&W∞, Curriculum’s robustness decreases
by 4% compared to Madry’s, while Dynamic model achieves
highest robustness.

Black-box Robustness. Black-box test attacks are gener-

Table 3. White-box robustness (%) of different defense models on
CIFAR-10 dataset using WideResNet setting in Madry’s baselines.

Defense Clean FGSM PGD-20 C&W∞
Madry’s 87.3 56.1 45.8 46.8
Curriculum 77.43 57.17 46.06 42.28
Dynamic 85.03 63.53 48.70 47.27

ated on the original test set images by attacking a surrogate
model with architecture that is either a copy of the defense
model (for MNIST) or a more complex ResNet-50 (He et al.,
2016) model (for CIFAR-10). Both surrogate models are
trained separately from the defense models on the original
training sets using Standard adversarial training (10-step
PGD attack with a random start and step size ε/4). The
attacking methods used here are the same as the white-box
evaluation: FGSM, PGD-10, PGD-20, and C&W∞.

The robustness of different defense models against black-
box attacks is reported in Table 2. Again, the proposed
Dynamic achieves higher robustness than the other defense
models. Curriculum also demonstrates a clear improve-
ment over Standard adversarial training. The distinctive
robustness boosts of Dynamic and Curriculum indicate that
training with weak adversarial examples at the early stage
can improve the final robustness.

Compared with the white-box robustness in Table 1, all
defense models achieve higher robustness against black-
box attacks, even the CIFAR-10 black-box attacks which
are generated based on a much more complex ResNet-50
network (the defense network is only an 8-layer CNN). This
implies that black-box attacks are indeed less powerful than
white-box attacks, at least for the tested attacks. It is also
observed that robustness tends to increase from weak attacks
like FGSM to stronger attacks like C&W∞. This implies
that stronger attacks tend to have less transferability, an
observation which is consistent with Madry et al. (2018).
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5.2. Further Analysis

Different Maximum Perturbation Constraints ε. We an-
alyze the robustness of defense models Standard, Curricu-
lum and the proposed Dynamic, under different maximum
perturbation constraints ε on CIFAR-10. For efficiency,
we use the same 8-layer CNN defense architecture as in
Sec. 5.1. We see in Figure 4a the white-box robustness of
defense models trained with ε = 8/255 against different
PGD-10 attacks with varying ε ∈ [2/255, 8/255]. Curricu-
lum and Dynamic models substantially improve the robust-
ness of Standard adversarial training, a result consistent
with Sec. 5.1. Dynamic training is better against stronger
attacks with larger perturbations (ε = 8/255) than Cur-
riculum. Curriculum is effective on attacks with smaller
perturbations (ε = 4/255, 2/255), as similar performance
to Dynamic. We also train the defense models with different
ε ∈ [2/255, 8/255], and then test their white-box robust-
ness under the same ε (all defense models will tend to have
similar low robustness if testing ε is larger than training ε).
As illustrated in Figure 4b, training with weak attacks at the
early stages might have a limit: the robustness gain tends
to decrease when the maximum perturbation decreases to
ε = 2/255. This is not surprising given the fact that the in-
ner maximization problem of adversarial training becomes
more concave and easier to solve given the smaller ε-ball.
However, robustness for this extremely small scale pertur-
bation is arguably less interesting for secure deep learning.
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Figure 4. (a): White-box robustness on PGD-10 attacks with dif-
ferent testing ε ∈ [2/255, 8/255]; (b): White-box robustness
of defense models trained on PGD-10 with different training
ε ∈ [2/255, 8/255].

Adversarial Training Process. To understand the learning
dynamics of the 3 defense models, we plot the distribution of
FOSC at different training epochs in Figures 5. We choose
epoch 10/60/100 for Standard and Dynamic, and epoch
60/90/120 for Curriculum as it trains without adversarial
examples at early epochs. We see both Curriculum and
Dynamic learn with adversarial examples that are of increas-
ing convergence quality (decreasing FOSC). The difference
is that Dynamic has more precise control over the conver-
gence quality due to its use of the proposed criterion FOSC,
demonstrating more concentrated FOSC distributions which
are more separated at different stages of training. While for
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Figure 5. The distributions of FOSC at different epochs of training
on CIFAR-10 with 10-step PGD of step size ε/4 and ε = 8/255.

Curriculum, the convergence quality of adversarial exam-
ples generated by the same number of perturbation steps can
span a wide range of values (e.g. the flat blue line in Figure
5b), having both weak and strong adversarial examples. Re-
garding the later stages of training (epoch 100/120), we see
Dynamic ends up with the best convergence quality (FOSC
density over 40% in Figure 5c) followed by Curriculum
(FOSC density over 30% in Figure 5b) and Standard (FOSC
density less than 30% in Figure 5a), which is well aligned
with their final robustness reported in Tables 1 and 2.

6. Discussion and Conclusion
In this paper, we proposed a criterion, First-Order Stationary
Condition for constrained optimization (FOSC), to measure
the convergence quality of adversarial examples found in the
inner maximization of adversarial training. The proposed
criterion FOSC is well correlated with adversarial strength
and is more consistent than the loss. Based on FOSC, we
found that higher robustness of adversarial training can be
achieved by training on better convergence quality adver-
sarial examples at the later stages, rather than at the early
stages. Following that, we proposed a dynamic training
strategy and proved the convergence of the proposed ap-
proach for the overall min-max optimization problem under
certain assumptions. On benchmark datasets, especially on
CIFAR-10 under the WideResNet architecture for attacks
with maximum perturbation constraint ε = 8/255, our pro-
posed dynamic strategy achieved a significant robustness
gain against Madry’s state-of-the-art baselines.

Our findings imply that including very hard adversarial ex-
amples too early in training possibly inhibits DNN feature
learning or encourages premature learning of overly com-
plex features that provide less compression of patterns in
the data. Experimental evidences also suggest that the later
stages are more correlated with the final robustness, while
the early stages are more associated with generalization.
Therefore, we conjecture that higher robustness can be ob-
tained by further increasing the diversity of weak adversarial
examples in the early stages or generating more powerful
adversarial examples in the later stages. The precise char-
acterization of how the early and later stages interact with
each other is still an open problem. We believe further ex-
ploration of this direction will lead to more robust models.
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A. Proof of Theorem 1
The proof of Theorem 1 is inspired by Sinha et al. (2018). Before we prove this theorem, we need the following two
technical lemmas.

Lemma 1. Under Assumptions 1 and 2, we have LS(θ) is L-smooth where L = LθxLxθ/µ+ Lθθ, i.e., for any θ1 and θ2,
it holds

LS(θ1) ≤ LS(θ2) + 〈∇LS(θ2),θ1 − θ2〉+
L

2
‖θ1 − θ2‖22,

‖∇LS(θ1)−∇LS(θ2)‖2 ≤ L‖θ1 − θ2‖2

Proof. By Assumption 2, we have for any θ1,θ2, and x∗i (θ1),x∗i (θ2), we have

f(θ2,x
∗
i (θ1)) ≤ f(θ2,x

∗
i (θ2)) + 〈∇xf(θ2,x

∗
i (θ2)),x∗i (θ1)− x∗i (θ2)〉 − µ

2
‖x∗i (θ1)− x∗i (θ2)‖22

≤ f(θ2,x
∗
i (θ2))− µ

2
‖x∗i (θ1)− x∗i (θ2)‖22, (6)

where the inequality follows from 〈∇xf(θ2,x
∗
i (θ2)),x∗i (θ1)− x∗i (θ2)〉 ≤ 0. In addition, we have

f(θ2,x
∗
i (θ2)) ≤ f(θ2,x

∗
i (θ1)) + 〈∇xf(θ2,x

∗
i (θ1)),x∗i (θ2)− x∗i (θ1)〉 − µ

2
‖x∗i (θ1)− x∗i (θ2)‖22 (7)

Combining (6) and (7), we obtain

µ‖x∗i (θ1)− x∗i (θ2)‖22 ≤ 〈∇xf(θ2,x
∗
i (θ1)),x∗i (θ2)− x∗i (θ1)〉

≤ 〈∇xf(θ2,x
∗
i (θ1))−∇xf(θ1,x

∗
i (θ1)),x∗i (θ2)− x∗i (θ1)〉

≤ ‖∇xf(θ2,x
∗
i (θ1))−∇xf(θ1,x

∗
i (θ1))‖2‖x∗i (θ2)− x∗i (θ1)‖2

≤ Lxθ‖θ2 − θ1‖2‖x∗i (θ2)− x∗i (θ1)‖2 (8)

where the second inequality holds because 〈∇xf(θ1,x
∗
i (θ1)),x∗i (θ2) − x∗i (θ1)〉 ≤ 0, the third inequality follows from

CauchySchwarz inequality, and the last inequality holds due to Assumption 1. (8) immediately yields

‖x∗i (θ1)− x∗i (θ2)‖2 ≤
Lxθ
µ
‖θ2 − θ1‖2. (9)

Then we have for i ∈ [n],

‖∇θf(θ1,x
∗
i (θ1))−∇θf(θ2,x

∗
i (θ2))‖2 ≤ ‖∇θf(θ1,x

∗
i (θ1))−∇θf(θ1,x

∗
i (θ2))‖2

+ ‖∇θf(θ1,x
∗
i (θ2))−∇θf(θ2,x

∗
i (θ2))‖2

≤ Lθx‖x∗i (θ1)− x∗i (θ2)‖2 + Lθθ‖θ1 − θ2‖2

=

(
LθxLxθ
µ

+ Lθθ

)
‖θ1 − θ2‖2 (10)

where the first inequality follows from triangle inequality, the second inequality holds due to Assumption 1, and the last
inequality is due to (10). Finally, by the definition of LS(θ), we have

‖∇LS(θ1)−∇LS(θ2)‖2 ≤
∥∥∥∥ 1

n

n∑
i=1

∇θf(θ1,x
∗
i (θ1))− 1

n

n∑
i=1

∇θf(θ2,x
∗
i (θ2))

∥∥∥∥
2

≤ 1

n

n∑
i=1

‖∇θf(θ1,x
∗
i (θ1))−∇θf(θ2,x

∗
i (θ2))‖2

≤
(
LθxLxθ
µ

+ Lθθ

)
‖θ1 − θ2‖2,

where the last inequality follows from (10). This completes the proof.
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Lemma 2. Under Assumptions 1 and 2, the approximate stochastic gradient ĝ(θ) satisfies

‖ĝ(θ)− g(θ)‖2 ≤ Lθx

√
δ

µ
. (11)

Proof. We have

‖ĝ(θ)− g(θ)‖2 =

∥∥∥∥ 1

|B|
∑
i∈B

(∇θf(θ, x̂i(θ))−∇f̄i(θ))

∥∥∥∥
2

≤ 1

|B|
∑
i∈B

∥∥∇θf(θ, x̂i(θ))−∇θf(θ,x∗i (θ))
∥∥
2

≤ 1

|B|
∑
i∈B

Lθx‖x̂i(θ)− x∗i (θ)‖2, (12)

where the first inequality follows from triangle inequality, and the second inequality holds due to Assumption 1. By
Assumption 2, we have for any θ, and x∗i (θ), x̂i(θ), we have

µ‖x∗i (θ)− x̂i(θ)‖22 ≤ 〈∇xf(θ,x∗i (θ))−∇xf(θ, x̂i(θ)), x̂i(θ)− x∗i (θ)〉. (13)

Since x̂i(θ) is a δ-approximate maximizer of f(θ, x̂i(θ)), we have

〈x∗i (θ)− x̂i(θ),∇θf(θ, x̂i(θ))〉 ≤ δ. (14)

In addition, we have

〈x̂i(θ)− x∗i (θ),∇xf(θ,x∗i (θ))〉 ≤ 0. (15)

Combining (14) and (15) gives rise to

〈x̂i(θ)− x∗i (θ),∇xf(θ,x∗i (θ))−∇θf(θ, x̂i(θ))〉 ≤ δ. (16)

Substitute (16) into (13), we obtain

µ‖x∗i (θ)− x̂i(θ)‖22 ≤ δ,

which immediately yields

‖x∗i (θ)− x̂i(θ)‖2 ≤

√
δ

µ
. (17)

Substitute (17) into (12), we obtain

‖ĝ(θ)− g(θ)‖2 ≤ Lθx

√
δ

µ
,

which completes the proof.

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Let f̄(θ) = 1/n
∑n
i=1 minxi

f(θ,xi) = 1/n
∑n
i=1 f(θ,x∗i ). By Lemma 1, we have

LS(θt+1) ≤ LS(θt) + 〈∇LS(θt),θt+1 − θt〉+
L

2
‖θt+1 − θt‖22

= LS(θt)− ηt‖∇LS(θt)‖22 +
Lη2t

2
‖ĝ(θt)‖22 + ηt〈∇LS(θt+1),∇LS(θt+1)− ĝ(θt)〉

= LS(θt)− ηt
(

1− Lηt
2

)
‖∇LS(θt)‖22 + ηt

(
1− Lηt

2

)
〈∇LS(θt),∇LS(θt)− ĝ(θt)〉

+
Lη2t

2
‖ĝ(θt)−∇LS(θt)‖22

= LS(θt)− ηt
(

1− Lηt
2

)
‖∇LS(θt)‖22 + ηt

(
1− Lηt

2

)
〈∇LS(θt),g(θt)− ĝ(θt)〉

+ ηt

(
1− Lηt

2

)
〈∇LS(θt),∇LS(θt)− g(θt)〉+

Lη2t
2
‖ĝ(θt)− g(θt) + g(θt)−∇LS(θt)‖22

≤ LS(θt)− ηt
2

(
1− Lηt

2

)
‖∇LS(θt)‖22 +

ηt
2

(
1− Lηt

2

)
‖ĝ(θt)− g(θt)‖22

+ ηt

(
1 +

Lηt
2

)
〈∇LS(θt),∇LS(θt)− g(θt)〉+ Lη2t

(
‖ĝ(θt)− g(θt)‖22 + ‖g(θt)−∇LS(θt)‖22

)
Taking expectation on both sides of the above inequality conditioned on θt, we have

E[LS(θt+1)− LS(θt)|θt] ≤ −ηt
2

(
1− Lηt

2

)
‖∇LS(θt)‖22 +

ηt
2

(
1 +

3Lηt
2

)
L2
θxδ

µ
+ Lη2t σ

2 (18)

where we used the fact that E[g(θt)] = ∇LS(θt), Assumption 3, and Lemma 2. Taking telescope sum of (18) over
t = 0, . . . , T − 1, we obtain that

T−1∑
t=0

ηt
2

(
1− Lηt

2

)
E
[
‖∇LS(θt)‖22

]
≤ E[LS(θ0)− LS(θT )] +

T−1∑
t=0

ηt
2

(
1 +

3Lηt
2

)
L2
θxδ

µ
+ L

T−1∑
t=0

η2t σ
2

Choose ηt = η = min(1/L,
√

∆/TLσ2) where L = LθxLxθ/µ+ Lθθ, we can show that

1

T

T−1∑
t=0

E
[
‖∇LS(θt)‖22

]
≤ 4σ

√
L∆

T
+

5L2
θxδ

µ
.

This completes the proof.


