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Abstract. Gene expression profiling provides insight into the functions
of genes at a molecular level. Clustering of gene expression profiles can
facilitate the identification of the underlying driving biological program
causing genes’ co-expression. Standard clustering methods, grouping genes
based on similar expression values, fail to capture weak expression cor-
relations potentially causing genes in the same biological process to
be grouped separately. We have developed a novel clustering algorithm
which incorporates functional gene information from the Gene Ontology
into the clustering process, resulting in more biologically meaningfull
clusters. We have validated our method using a multi-cancer microar-
ray dataset. In addition, we show the potential of such methods for the
exploration of cancer etiology.
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1 Introduction

Gene expression profiling using microarrays has become a key tool in the anal-
ysis of biological systems at a molecular level. While still producing relatively
noisy data, much improvement has been made in noise correcting normalisation
procedures and feature selection, providing rich datasets for further biological
analysis. Microarray analysis pipelines generally come in two flavours: differen-
tial expression analysis and exploratory clustering. The purpose of differential
expression analysis is to find the set of genes which are differentially expressed
between two or more experimental conditions or samples. Once the list of genes
has been determined, it can be used to classify further microarrays into sim-
ilar sample categories. Alternatively the differentially expressed genes can be
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analysed to try to unravel the underlying biology responsible for observed ex-
pression patterns. This is similar in approach to exploratory clustering. The aim
in exploratory clustering is to try to uncover groups of genes with similar ex-
pression patterns. This is useful under the assumption that genes with shared
expression patterns have similar function or are involved in similar biological
processes. Each of the clusters of genes identified provide a starting point for
further biological analysis based on gene expression.

While exploratory clustering has been shown to be successful in many cases,
it can suffer from some common problems. Clusters can be dominated by strong
or noisy expression patterns, forcing genes of similar function or those belong-
ing to the same process with less correlated expression, to join another cluster.
Therefore the resulting clusters may not represent a biological process in its
entirety or majority, making it hard to determine which molecular processes a
particular cluster of genes represents.

To improve the clustering process, additional information can be introduced
to ensure genes with similar function or shared pathways can be clustered to-
gether. Sequence similarity, protein structure similarity, shared pathways and
functions, are all ways in which genes can be shown to be related. There ex-
ist tools that use this information in trying to unravel the biology behind the
observed expression behavior.

The Gene Ontology (GO) [1] is a curated, structured vocabulary that de-
scribes genes and gene products. This provides a source for finding shared molec-
ular functions, biological processes or cellular components between two genes. In
the GO, two genes may be annotated to the same biological term, or they may
be related through a shared term higher in the GO hierarchy (see Fig. 1). From
this information a similarity metric [2, 3] can be defined which measures the re-
latedness of each gene via semantic functionality. This similarity measure can
then be used as a biological prior probability measure on the clustering of genes
via expression profiles. Previous attempts have been made to utilize the GO in
clustering of gene expression profiles. Cheng et al [4] developed a clique-finding
algorithm for the GO and used the cliques to perform co-clustering analysis with
gene expression profiles. A biclustering approach which yields clusters designed
to map onto the GO structure was developed by Liu et al[5]. Huang et al [6] and
Pan [7] used GO annotations shared between genes to modify standard distance
and model based clustering algorithms, and Boratyn et al [8] proposed a gen-
eral method modifying the distance measure based on prior shared functional
information between genes. For an assessment of some of these approaches see
[9, 10]

There are however two fundamental drawbacks with these approaches. Firstly,
the GO is constructed as a directed acyclic graph, with terms lower in the tree
being specialisations, or parts of, terms higher in the tree. Genes are then anno-
tated to one or more terms in the tree, at the lowest (most specific) level possible.
Drawing a path from one gene to another through this tree to determine sim-
ilarity of the genes does not necessarily imply shared biology. The abstraction
of terms across each level of the ontology can be such that two genes with a
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Fig. 1. This is a cut down example GO hierarchy for illustrative purposes. In the full
Gene Ontology there would be additional terms between each of the nodes in the graph
and the gene products would be annotated to more specialised terms lower in the tree.

single shared parent term, may be extremely diverse in terms of their specific
function. For example, the two terms negative regulation of steroid metabolic pro-
cess and positive regulation of steroid metabolic process share the parent steroid
metabolic process. Genes annotated to each of these terms have the opposite
effect on steroid metabolism. Therefore it would not be correct to state they
had similar function based on their shared parent, especially in the context of
their co-expression. Secondly, having genes annotated to the same term does not
necessarily imply they have similar function or share a biological pathway, in the
context of their expression patterns. A single gene can act differently in various
biological contexts and thus have context specific roles.

The GO is also used by tools such as GeneMerge [11], FatiGO [12] and others
[13–16] to determine over-represented GO terms given a group of genes, thus
giving a semantic representation of the biology spanning a group of genes. In
the context of microarrays, these tools provide the ability to explore clusters of
genes and form biological hypotheses about the observed co-expression. One of
the benefits of this approach is that one is not scrutinizing the behavior of a single
gene, but rather groups of genes in the same biological context. This provides an
abstracted level of analysis, which encapsulates a single gene’s behavior, within
the complex biological system represented by the cluster.

A method is needed which looks for commonalities between genes based on
the GO that does not traverse the GO hierarchy and is relevant to the gene set
of interest (the gene’s biological context). We have developed GOMAC: Gene
Ontology assisted Microarray Clustering, a modified k-means clustering algo-
rithm which incorporates GO information only when it is relevant to the gene’s
context, thus avoiding problems with irrelevant gene similarities. We have vali-
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dated our method on a microarray dataset [17] spanning 12 cancer types demon-
strating that our method results in an increase in number and biological relevance
of meaningful clusters. We also discuss the biological implications of our results
with respect to future research in cancer etiology.

2 Methods

The key biological assumption of the algorithm presented in this paper is that
genes that share a particular annotation in the GO, will share a detectable
similarity in their microarray expression pattern. There are two key differences
between our approach and the previous attempts at clustering using the GO
outlined above.

– Only GO terms that are statistically over-represented within a cluster are
used to calculate the similarity between genes. This ensures that only GO
terms within the gene’s context are used.

– We iteratively calculate similarities between genes using the GO, rather than
having GO similarities as a set prior.

In order to construct a model capable of the key points outlined above, each
potential cluster of genes to be determined, requires both an expression profile
to model the genes’ expression measurements and an annotation profile to model
the genes’ GO similarities. As we are using a k-means based clustering algorithm,
the number of clusters C is a parameter set by the user.

2.1 Algorithm Overview

1. Initialise using k-means clustering, grouping genes based on expression values
using the method in Eisen et al [18] with C clusters.

2. Determine the expression profile for each cluster.
3. Determine the annotation profile for each cluster.
4. Re-cluster genes based on both expression and GO annotations.
5. Re-estimate the expression and annotation profiles.
6. Repeat steps 4 and 5 until convergence.

2.2 Expression Profile

Let κ be the number of samples; letGc be the set of genes in a cluster c. Each gene
g can be viewed as a vector xg = (xgi)1≤i≤κ ∈ Rκ of its expression values across
all samples. The centroid of cluster c is defined as the vector Xc = (xc1...x

c
κ) ∈ Rκ

with entries defined as:

xci =

∑
g∈Gc

xgi

|Gc|
. (1)

where xgi is the expression measurement for a particular gene g and sample i.
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2.3 Gene Ontology Annotation Profile

To generate a Gene Ontology annotation profile for a cluster, all GO terms
annotated to the genes in a cluster which are statistically over-represented need
to be found. This means that rather than reporting all terms that are annotated
to the genes in a cluster, report only those that have sufficiently low probability
of being present if we sampled a random selection of genes. For this purpose
we are using a program called GeneMerge1.2 [11]. This uses the hypergeometric
distribution with Bonferroni correction to generate a p-value for each term which
is annotated to genes in a cluster. We use a threshold of b ≤ 0.2 of the Bonferroni
corrected score as it provides a biologically meaningful number of terms that
describe a cluster. A lower threshold yields clusters based mainly on expression
distances with little or no GO terms and a higher threshold results in many
GO terms which are less descriptive. All terms reported above the threshold are
ignored. Let τ c be the number of terms below the threshold b for a given cluster
c. From this, a weight d is assigned proportional to the number of genes in the
cluster that are annotated to that term, normalised over all of a cluster’s GO
terms. The weight dt shows the degree in which a term t is associated with a
particular cluster. Then we can denote a cluster c’s annotation profile to be the
vector Tc = (dt)1≤t≤τc with entries defined as

dt =
nt∑τc

j=1 nj
. (2)

where nt is number of genes in the cluster that are annotated to GO term t
(below the threshold b).

2.4 Algorithm

Input

– Gene list G
– For each gene g, expression measurements Eg1...Egκ for κ samples
– For all GO terms A1...Af , given a particular gene g and the tth term, Agt

takes the value true if the gene g is directly annotated to the term t, (obtained
by querying the September 2007 release of the GO via a relational database
interface to a locally stored copy).

Initialisation

– Form initial groupings of genes using k-means clustering on the expression
values.

– Calculate the cluster centroid (expression profile) Xc for each cluster.
– Calculate the annotation profile Tc for each cluster.
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Optimisation

1. Gene assignment: In the gene assignment step, we re-assign a gene to a clus-
ter based on the current values for the expression and annotation profiles for
that cluster. We use a gene’s match to a cluster annotation profile to scale
the Euclidean expression distance of the gene from that cluster.

For each gene g let the known expression values be Egβ where β ∈ Ng ⊂
{1....κ} are all indices of samples with known values for gene g. This is due to
imperfections in the microarray experimental procedure which may generate
data with missing or unknown expression values for a gene. Given this, we
define the Euclidean distance of each gene g from cluster c’s centroid as:

DEcg =
1
|Ng|

.

√ ∑
β∈Ng

(xcβ − Egβ)2. (3)

Then, given a gene g and its GO annotations, we also determine a scaling
factor Scg (where 0 ≤ Scg ≤ 1). This is based on how many of the τ c terms in
the cluster’s annotation profile match the terms annotated to a gene g:

Scg = 1−
τc∑
t=1

(dct ·Agt). (4)

Next, the expression distance DE of gene g from cluster c is scaled by the
degree in which it’s annotated terms correlates with that of cluster c:

DEScg = DEcg × Scg. (5)

Finally, ee simply use the minimum of this modified distance to assign a gene
to a particular cluster:

cg = arg min
c

(DEScg). (6)

2. Re-estimation of cluster profiles: With the new assignment of genes, we re-
calculate the centroids of each cluster and determine the new GO terms
which are over-represented and their associated weights.

3. Repeat steps 1 and 2 until convergence (genes stop changing clusters)

Output

– A series of gene clusters with associated GO annotations, which can be used
as a starting point for further biological analysis.

3 Clustering Performance Assessment

External clustering assessment typically uses a ‘gold standard’ clustering deter-
mined by external means, to compare clusterings to. However, in the case of
exploratory clustering, there is no ‘gold standard’. Instead, a standard measure
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to determine whether a new algorithm provides biologically better clusters than
a previous algorithm, is to look for statistically over-represented GO terms in
each of the clusters and show that the new algorithm has clusters of superior
biological relevancy. However because we used the GO in the clustering process,
this measure is not suitable. Two alternative means of external validation were
devised.

3.1 Histological enrichment criterion

A measure was generated to try to test the biological significance of the clus-
ters output by GOMAC with respect to their usefullness in biological hypothesis
generation, in particular, uncovering differences in cancer histologies. This mea-
sure is based on the ability of the algorithm to uncover clusters which help
answer or generate a specific biological question. In the case of the multi-class
cancer dataset used, this is the ability to uncover clusters which show well de-
fined differential expression across various cancer types. The idea here is that
if the algorithm works successfully, the genes in a cluster should encapsulate a
particular biology.

As cancer types can be similar or vary significantly depending on their lo-
cation in the body, one would expect certain cancers to have similar biological
expression behaviour and others to differ. Thus, if the resulting clusters encapsu-
late a particular biology, then this cluster can be used to partition cancer types,
uncovering cancers which share the same biology. To do this, additional hierar-
chical clustering of the samples of each cluster was performed to partition the
cancers into two groups. One group contains all cancers that have upregulated
genes in the cluster, and the other group has all samples which have downregu-
lated expression. In the dataset used, the samples were sub-divided by label, into
classes, or cancer types. Given a good clustering, a partition of a cluster should
contain all of a particular sub-class of sample (cancer type). That is, we would
expect cancers sharing some (perhaps unknown) biology to be grouped together.
To quantify this, considering a single partition, the hypergeometric distribution
was used to determine the probability of observing a particular enrichment of
sample classes (cancer types) by chance. From this, a Bonferroni corrected p-
value was generated which was used to determine the quality of a particular
cluster in reference to its biological usefullness.

3.2 Functional annotation enrichment criterion

In addition, an alternative information source to the GO was used to determine
biological significance of a cluster. Each of the clusters were analysed through the
use of Ingenuity Pathway Analysis (Ingenuity R©Systems, www.ingenuity.com).
The genes were overlayed with function and disease information provided by
IPA. The overlay procedure takes a gene list as input and outputs the functions
and diseases over-represented in the gene list, similar in process to GeneMerge
mentioned above. Each of the terms has an associated p-value and all relation-
ships have been extracted from various literature sources curated by experts.
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The IPA results were used as a comparison to assess the accuracy of the GO
annotation profiles reported for each cluster by GOMAC.

4 Cancer cDNA Microarray Test Data

For testing, a microarray dataset with various sample classes was required to
demonstrate the potential of GOMAC to uncover biological similarities across
classes. We used a published dataset [17] which has cDNA microarrays across 12
cancer types and their subtypes. The full dataset was filtered retaining only
genes with greater than 400 signal intensity in the test channel (Cy5) and
greater than 4 fold change (using per gene median normalised data) in at least
5 samples. This left 2185 genes and 165 samples: Breast(23), Colorectal(12),
Gastric(7), Lung(Adenocarcinoma 10, Large Cell Carcinoma 8, Squamous Cell
Carcinoma 9), Melanoma(11), Mesothelioma(5), Ovarian(21, Mucinous 11), Pan-
creatic(8), Prostate(5), Renal(12), Squamous Cell Carcinoma(11), Testicular(3),
Uterine(9). The test set was clustered using regular k-means and GOMAC with
the number of clusters C=10,20,30,40,50,100,200 and 300. The value C=40 pro-
vided the best granularity of GO terms for discussion and results presented in
this paper are exclusively for C=40. An added bonus of this dataset is that novel
biological hypotheses could be generated in terms of shared behaviour between
cancers through using GOMAC.

5 Results

The dataset was clustered using the k-means clustering algorithm of Eisen et al
[18] and with GOMAC. Additional hierarchical clustering was performed on the
samples within each cluster using the Bioconductor Package Heatmap.2 [19].
The resulting dendrogram was cut so that the samples were partitioned into
two groups. Table 1 contains the significance scores representing how well the
partitioning of samples into two groups splits the sample sub-classes, without
dividing the sub-classes themselves (histological enrichment criterion).

Table 1 shows that GOMAC provided 3 additional biologically significant
clusters over regular k-means clustering and improved the biological significance
of approximately 55% of the partionable clusters. In addition, GOMAC resulted
in a greater number of GO descriptors (terms) for the clusters.

Ingenuity Pathway Analysis (IPA) was carried out on each cluster of genes
to provide an external source of semantic validation (functional annotation cri-
terion). Significantly reported functions and diseases for each cluster from IPA
were grouped with the GO annotation profile of the cluster and the samples
enriched by partitioning to see if there was any correlation. Table 2 gives a sum-
mary of the diseases and functions reported by IPA associated with a selection
of the significant clusters.
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Table 1. The significance score reported in each instance is calculated on one of the
partitions of samples. Only significance scores generated from the same partition sample
size for the same cluster can be compared and are indicated with a *. N\A values
were cases where the dendrogram could not be cut to partition the samples into two
sizeable groups. In this case the cluster is likely to be representative of noisy data or
ubiquitously expressed genes and is therefore uninteresting in this context. Clusters
omitted from this table also fall into this category. The number of terms significnatly
over-represented in the cluster are listed as an indication of the descriptive power of
the clusters.

Cluster k-means
partition
significance
/GO terms

GOMAC
partition
significance
/GO terms

Cluster k-means
partition
significance
/GO terms

GOMAC
partition
significance
/GO terms

1* 3.6E-27 2 4.7E-26 2 20* 3.6E-07 8 4.7E-06 8
2* 2.8E-08 0 5.7E-05 1 21* 1.4E-15 0 1.3E-18 1
4 1.4E-08 1 N\A 0 22 1.0E-14 1 N\A 0
5 3.9E-12 6 4.5E-16 6 24 2.6E-20 2 1.8E-17 2
10* 2.4E-01 10 1.9E-02 10 27 1.9E-10 1 N\A 0
11 N\A 3 8.9E-05 5 33* 1.4E-10 5 6.0E-10 5
12 N\A 0 1.3E-13 0 36* 3.6E-07 0 4.6E-09 1
13* 4.9E-11 0 1.9E-11 0 37 N\A 7 3.6E-10 8
14 N\A 0 3.8E-18 0 38 N\A 0 2.9E-09 2
15 8.8E-20 0 1.6E-14 0 39* 4.6E-09 2 3.6E-10 2
16 5.2E-16 0 N\A 0 40 N\A 0 3.3E-07 1
19 N\A 0 1.6E-02 1

Table 2. Three examples of the significant clusters identified by GOMAC are shown.
The cancers identified are those that were partitioned into one group for that cluster.
The genes belonging to the cluster are defined by the GO terms. The terms identified
by the independent IPA analysis are reported and their p-values.

Cluster GO terms Cancers IPA Function/Disease P-value

1 digestion Gastric metabolism of steroid 3.06E-05
steroid metabolism Colorectal transcription of GATA site 3.76E-04

Muc. Ovarian digestive organ tumor 4.33E-04
Pancreatic pancreatic tumor 6.04E-04

colon cancer 7.15E-04

5 spleen development Breast guidance of motor axons 5.08E-06
urogenital system development Prostate size of prostate gland 1.25E-05
embryonic organ development breast cancer 4.41E-05
prostate gland development cancer of mammalia 9.87E-05
sex differentiation mammary tumor 2.48E-04
fatty acid metabolism genital tumor 4.67E-04

38 keratinization Lung-SCC ichthyosis 9.67E-05
epidermis development Mesothelioma development of epidermis 2.03E-04

SCC adhesion of cells 3.06E-04
differentiation of keratinocytes 3.40E-03
binding of stromal cells 7.49E-03
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6 Discussion and Future Work

Cancers from multiple sites in the body have been expression profiled in single
datasets in the past. This was mainly done in order to design tools to identify
the site of origin of Cancer of Unknown Primary [20, 21, 17]. In addition, meta
analysis of multiple cancers was used to identify common themes in cancer gene
expression [22]. The Gene Ontology is usually used only after the clustering of
genes and samples has been done. Here we reasoned that since multiple genes are
co-ordinately expressed by means of biological programs, such as cell types and
organs, the use of the GO in the process of clustering would focus the analysis
on the driving program rather than individual genes.

Cumulative evidence during the last 50 years argues that cancer progression
arises through accumulation of somatic changes in the cancer cell that confer
selective advantage to the mutant cell in terms of extension and unlicensed ex-
tended lifespan. As these selection pressures are different in different organs of
the body, one expects that some of the somatic changes would be organ specific.
This point would be missed in classical expression profiles as different cancer
types are not profiled on the same platform in the same instance. Therefore by
using the cancer profiles of multiple samples in combination with GO clustering,
we are positioned for the first time to address this possibility.

While Table 1 demonstrates that both regular k-means and GOMAC can
reveal gene clusters which can be partitioned to demonstate biology specific to
certain cancer types, the improved significance and increased number of signif-
icant clusters provided by GOMAC suggests that clustering using the GO is
advantageous. The greater number of GO terms uncovered by GOMAC also
gives increased power in biological interpretation of the clusters. Therefore our
method improves the ability to uncover biological processes that are specific to
certain cancer types as each of the resulting clusters have been both reduced in
noise and made more biologically informative.

It is immediately obvious from the IPA overlay in Table 2 that genes asso-
ciated with cancer processes have been identified. Moreover, many of the sig-
nificant IPA terms actually match the cancers that were partitioned as being
upregulated across the genes in the cluster. There are also examples of the over-
represented GO terms correlating with the IPA over-represented terms. This
success in linking cancer types, with gene expression profiles and a statistically
significant semantic description of the underlying biology, provides an excellent
starting point for the exploration of the similarities and dissimilarities of var-
ious types of cancers. In fact, the GO terms identified for cluster 1 in Table
2, digestion and steroid metabolism, have clinical observations linked with the
cancers significantly partitioned. The cancers in this cluster are predominantly
derived from gastrointestinal and ovarian epithelium. The mucinous production
of both these cancers may link them given steroid metabolism is featured in this
cluster. Interestingly, the tumours in this dataset may be all derived from the
gastrointestinal system. There are mucinous tumours of the ovary that have been
found to be metastatic deposits from Gastric cancer primaries which have been
termed Krukenberg tumours [23]. Furthermore, Krukenberg tumours have been



Gene Ontology Assisted Exploratory Microarray Clustering 11

linked to virilisation and hence another link with steroid metabolism. While this
cluster was identified by standard k-means, it was also identified by GOMAC.
This suggests that as well as GOMAC being able to identify a greater num-
ber of informative clusters than k-means (for example cluster 38 has a major
shared similarity of squamous differentiation across the cancers in the group,
with Mesothelioma being an exception), it can also retain initial informative
clusters. Therefore, coupled with a similar analysis of normal tissues, these re-
sults can potentially uncover a combination of tissue specific and cancer effects
which have not been identified before.

The gene ontology tool however, suffers from a substantial flaw in its potential
to assist the deciphering of genome language; the genes are curated according to
whether they belong to a pathway, without discriminating between antagonistic
to agonistic genes. Consequently, in our analysis, samples could appear to belong
in the same group, while in fact they divide into two groups, based on whether
the pathway is induced or repressed. This problem may be resolved by utilizing
more advanced gene curation algorithms, such as those collected in Gene Set
Enrichment Analysis [24], which represent genes that have been observed in
microarray experiments as those responding to defined molecular changes, such
as activating mutations or forced expression of defined genes. Interestingly, even
before using such algorithms, integrating the GO into the clustering process
improves the segregation of samples, and, in addition, it sheds new light on the
biological processes that drive specific cancer types, and organ specific biological
programs.

Summary. We have shown through our analysis, that incorporation of ad-
ditional biological information into the microarray clustering process in a bio-
logically justified manner, can enhance the interpretability of microarray data.
Specifically, we have shown the potential of such a method to unravel the com-
plex nature of the biological processes involved in cancer. Ideally, our method
would be repeated multiple times, while alternating the source of the ontology,
the cancer types, and genes. Followed by ranking of the segregating lists accord-
ing to significance, then formation of an integrated summary list, that records all
possible drivers of the biological systematic variations among cancers in different
organs. A key benefit of such an exercise would be hypothesis generation, in the
field of cancer etiology with an organ specific focus.
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