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Abstract— We discuss a new formulation of a fuzzy validity index 
that generalizes the Newman-Girvan (NG) modularity function. 
The NG function serves as a cluster validity functional in 
community detection studies. The input data is an undirected 
graph G = (V, E) that represents a social network. Clusters in V 
correspond to socially similar substructures in the network. We 
compare our fuzzy modularity to an existing modularity function 
using the well-studied Karate Club data set. 

Keywords—fuzzy communities; community detection; 
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I.  INTRODUCTION 
Suppose O={o1,…,on} denotes a set of n objects, usually, 

but not restricted to, humans (karate students, monks, southern 
women, etc.). Let R=[rij] be a matrix of relational values on 
O×O , rij being the relation between oi and oj. A common 
form of R arises as dissimilarity data, say D = [dij] , where dij 
is the pair wise dissimilarity between object vectors xi and xj in 
  

€ 

ℜp , dij=||xi-xj||. In this case D is a symmetric matrix of 
distances. But for other types of (dis)similarity data, dij = 
d(oi,oj) may not be symmetric, dij ≠ dji. For example, 
Sampson's monastery data [1] is of this type. Breiger et al. [2]  
give the relationship from Bonhaven to Ambrose the value 2 
in Sampson's data, but the value from Ambrose to Bonhaven 
in the opposite direction is 1. According to Wasserman and 
Faust [3] this is the most common form of social network data.  
 
The Wasserman and Faust text is arguably the "bible" for 
social network analysis (18th printing, 2009), and yet, it does 
not mention fuzzy models of social networks! This is probably 
due to the well known disconnect between various 
communities of scholars working in related but 
uncommunicative fields. Selected readings in the literature 
from various groups indicate that this is probably quite 
accidental, most likely due to a lack of time to explore what 
may be essentially similar approaches advanced by disparate 
groups of researchers.  
 
But many recent papers do exhibit fuzzy or possibilistic 
clusters in social networks. We will begin with a short review 

of the evolution of fuzzy models in social networks that 
culminates with current work about overlapping (fuzzy) 
communities in social networks. Then we will develop a new 
measure of fuzzy modularity for community detection, and 
compare it to an existing one using Zachary's Karate Club [4] 
data set. 

II. FUZZY MODELS FOR SOCIAL NETWORKS 
Social network analysis usually begins with a crisp 

(meaning not fuzzy, probabilistic or possibilistic) graph-
theoretic representation of the social network, say G = (V, E, 
W), where V is the vertex set, E is the edge set, and W is the 
set of edge weights. Different social situations are realized by 
graphs with various properties: directed or not, weighted or 
not, connected or not, complete or not, and so on. In this note, 
G is undirected and weighted. Clusters (cliques, subtrees, etc.) 
in G (subsets of vertices in V) represent groups of individuals 
that are somehow related to each other more closely than to 
the individuals in the other clusters.  
 
Any weighted graph can be thought of as a (possibly un-
normalized) fuzzy graph, or a fuzzy similarity relation on pairs 
of nodes, first discussed by Zadeh in [5]. The earliest work on 
the use of fuzzy relations for social network analysis was Blin 
[6], who introduced the idea of using fuzzy relations in group 
decision theory. Bezdek et al. [7-9] collected data from small 
groups of students in communications classes, and developed 
models based on reciprocal fuzzy relations that quantified 
notions such as distance to consensus. 
 
An idea that is gaining traction in social network analysis is 
the notion of overlapping communities in social networks 
[10]. Communities are defined as groups of densely 
interconnected nodes that are only loosely connected to the 
rest of the network in [11]. There is no clustering algorithm in 
[11]. Instead, overlapping clusters are seen visually as off-
diagonal content in co-appearance images of the connection 
data. The model in [12] finds fuzzy communities by multicut 
spectral clustering. Clustering is done by both hard/fuzzy c-
means (HCM/FCM, [13]) and validation is done with an index 
called fuzzy modularity by the authors. 



III. PARTITIONS AND MODULARITY 
Clustering in unlabeled data is the assignment of labels to 

the objects in O. Let (c) be an integer, 1 ≤ c ≤ n. A c-partition 
of X is a set of (cn) values {uik} arrayed as a c
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×n matrix U = 
[uik] . Element uik is the membership of ok in cluster i. There 
are three sets of partition matrices [13]: 
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Mhcn = U∈ Mfcn : uik ∈ {0,1}∀ i, k{ }   . (3) 
 
Equations (1-3) define, respectively, the sets of non-
degenerate (no row is all zeroes) possibilistic, constrained 
fuzzy or probabilistic, and crisp c-partitions of X.  Note that 
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Mhcn ⊂ Mfcn ⊂ Mpcn . 
 
Each run of a clustering algorithm on any data set produces 
one or more U's in some Mpcn. For example, fixing all control 
and model parameters except c, applying any c-means 
algorithm to X produces one U(c) in Mpcn for each c = 2, 3, …, 
n-1. Other runs with variations of the c-means parameters, or 
other clustering algorithms, produce other U's for 
consideration. We collect all the candidate partitions into a set 
named CP, and ask: which U ∈ CP is the most satisfactory 
explanation of substructure in O? This is the cluster validity 
(more simply, "validation") problem [13]. 
 
Social network data are represented by a graph G = (V, E, W), 
where V is a set of n vertices. E is a set of m edges, and W is a 
set of edge weights. Clustering in the graph G means finding 
partitions U ∈ Mpcn of V. Because the data are not object 
vectors or dissimilarity data, as is usually the case in cluster 
analysis, finding candidate partitions often requires special 
methods. And the derivative problem of validating the found 
clusters (cluster validity) for this special type of data structure 
is also treated somewhat differently than the validation 
schemes often employed in pattern recognition.  
 
Validity indices for partitions of G are usually called quality 
functions in the community detection literature. According to 
Fortunato [10]:  
 

A quality function is a function that assigns a number 
to each partition of a graph. In this way one can rank 
partitions based on their score given by the quality 
function. Partitions with high scores are "good," so 
the one with the largest score is by definition the 
best. ... The most popular quality function is the 
modularity of Newman and Girvan [14]. 

 
The basic rationale for modularity is that a random graph 
doesn't have cluster structure, so the existence of clusters is 
revealed by comparing the actual density of edges in a 
subgraph to the expected density under some null hypothesis. 
The expected edge density depends on the chosen null model.  
 
The most popular form of modularity assumes that W  is 
organized as an (n x n) positive, symmetric edge weight 
matrix of G. Let V be partitioned into c crisp subsets of 
vertices (indices), say {V1,…Vc}, let U ∈ Mhcn be the crisp c-
partition of G. The modularity of U for G = (V,E,W) is [14] : 
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where S(Va ,Vb) = wij

i∈Va ,j∈Vb

∑  and the subscript h attached to Q 

indicates that U is crisp (hard). A second equivalent form of 
(4) given in Fortunato [10]  follows by letting 
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Although the partition U takes part in the calculation of (4) or 
(5), its role is somewhat obscured by these forms of the 
modularity index. It is not hard to show that (see [15] for a 
proof) if the vector m = (m1,…,mn )

T =W1n  and 

B= W − (mTm/ ||W ||)"
#

$
% , we can also write Qh in the more 

transparent form 
 

Qh (U) = tr(UBUT ) W , U ∈ Mhcn   . (6) 

 
Equation (6) explicitly reveals the role played by the partition 
U of V in the computation of modularity Qh. The very 
important point about this version of modularity is that this 
formula is well-defined for any partition of V, not just crisp 
ones. We define the generalized modularity of U wrt G = (V, 
E,W) as 
 

Qg (U) = tr(UBUT ) W , U ∈ Mpcn   . (7) 

 
Qg is a proper generalization of the Newman-Girvan 
modularity because (7) reduces to (4) or (5) when U is a crisp 
c-partition of V, i.e., 
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Qg U∈M hcn
= Qh . Consequently, we are 

entitled to call (7) the fuzzy modularity of U when  
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U ∈ Mfcn  is 
a fuzzy c-partition of the vertices in V.  



So far, we have not described any method for finding a fuzzy 
c-partition of V, but once we have a set CPs, we have a means 
for assessing the quality of each candidate in it, namely Qg. 
Brandes et al. [16] review "an array of heuristic algorithms 
that have been proposed to optimize modularity based on 
greedy agglomeration, spectral division, simulated annealing 
and extremal optimization, to name but a few prominent 
examples." None of the references given in [16] uses the 
explicit formulation for Qh shown in (7). We conjecture here, 
but leave to another study [15], the possibility that imbedding 
Qh in the more general setting afforded by Qg will lead to a 
new, possibly better way, to maximize this popular index. 
 
Several other formulas that are also called fuzzy modularity 
appear in the literature [12, 17]. We are interested here in the 
formulation due to Zhang et al. [12]. Their fuzzy version of (4) 
begins by partitioning V with spectral clustering applied to G 
using FCM once the eigenvector representation of G is 
selected. After a fuzzy c-partition   
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U ∈ Mfcn  is found this way, 
they convert it to a possibilistic c-partition   

€ 

U ∈ M pcn of V as 
follows: they choose a threshold λ, (presumably 0 < λ < 1), and 
extract from the k-th column of   

€ 

U ∈ Mfcn  the index set 
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Vk = {i | uik > λ;1≤ i ≤ c} . For each vertex i in Vk, the value uik 
in the fuzzy c-partition is replaced by a 1. After a pass over all 
n columns of U is completed, the remaining (non-1) 
memberships are set to 0. Doing this for k = 1 to n results in the 
conversion  

€ 

U ∈ Mfcn → Uλ ∈ M pcn . Figure 1 is an example of 
the conversion procedure that illustrates the conversion for λ  = 
0.10 and λ  = 0.20. 

 
        p1         p2       p3       p4       p5 

U =
0.02 0.12 0.40 0.44 0.91
0.08 0.18 0.22 0.56 0.05
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Figure 1. Illustration of Zhang et al.'s Conversion 

 
Imagine that FCM is applied to the spectral data from a 
network of 5 people {pk} at c = 3, and terminates at the fuzzy 
3-partition U shown in Figure 1. Then Zhang et al.'s 
conversion yields the possibilistic 3-partitions U0.1 and U0.2 
shown below U in the figure.  Zhang et al. interpret "fuzzy 
communities" in U0.1 as follows. Persons ‘2’ and ‘3’ belong to 
all three groups; ‘4’ belongs to groups 1 and 2, while ‘1’ is 
only in group 3 and ‘5’ is only in group 1.   
 
Now consider the second partition shown in Figure 1. When λ 
is increased from 0.1 to 0.2, joint membership in fuzzy 
communities is more stringent. Now only person ‘3’ belongs 

to all three groups, ‘4’ belongs to groups 1 and 2, ‘5’ belongs 
to group 1, while ‘1’ and ‘2’ are in just group 3. Thus, the joint 
membership of an individual in various communities is a 
function of the threshold λ. Zhang et al. do not specify the 
range of λ, but it must be 0 < λ <1, for otherwise the bounds 
of this conversion procedure would be [1]cxn at λ ≤ 0 and [0]cxn 
at λ ≥ 1. There are (infinitely) many candidate partitions 
available from this procedure because we can apply this 
process to candidates generated by FCM at each c = 2, 3, ... n-
1; and within each c, for any 0 < λ <1. Zhang et al. choose a 
"best" possibilistic U by maximizing their version of the fuzzy 
modularity index, which is defined as follows: 
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Vk = {i | uik > λ;1≤ i ≤ c};  k = 1,…, n   , (8a) 
 

Sz (Vk ,Vk ) =
uik + u jk
2

!

"
##

$

%
&&wij

i, j∈Vk

∑         ; (8b) 

Sz (Vk ,V) =Sz (Vk ,Vk )+
uik + (1− u jk )

2

"

#
$$

%

&
''wij

i∈Vk
j∈V−Vk

∑ ; (8c) 

  

€ 

Qz =
Sz (Vk ,Vk )

S(V,V)
−

Sz (Vk ,V)
S(V,V)

# 

$ 
% 

& 

' 
( 

2) 

* 

+ 
+ 

, 

- 

. 

. k=1

c
∑   . (8d) 

 
The values {uik} appearing in (8b) and (8c) are from the fuzzy 
c-partition before possibilistic conversion. Clearly, (8b) and 
(8c) reduce to S(Vk,Vk) and S(V,Vk), respectively, for crisp 
partitions (assuming 0 < λ < 1). Hence, Qz = Qh for crisp 
partitions. However, we believe that Qz has theoretical 
problems, which we outline in [15]. Here, we are content to 
compare the analysis of two real data sets using the indices Qz 
and Qg. 

    
(a) Object Data  Set X           (b) Unordered I(D) 

 
(c) VAT image I(D*)        (d) iVAT image I(D'*) 

 
Figure 2. VAT/iVAT images of Boxes and Stripe 

 



IV. VISUAL CLUSTER TENDENCY ASSESSMENT 
Let D be a set of square or rectangular dissimilarity data. 

The idea of visually analyzing the rows and/or columns of D 
to reveal structural relationships between individuals 
associated with D began with Loua [18] in 1873. The first 
reordered dissimilarity image (RDI) of a square data matrix 
appears in Czekanoski [19]. The methods for constructing and 
using RDIs in various applications have subsequently grown 
almost without bounds. Wilkinson and Friendly [20] survey 
contemporary methods using this idea in bioinformatics, 
where the reordered image is called a "cluster heat map."  
These authors state that this method has appeared in more than 
4,000 papers in the last decade. Liiv [21] gives a very useful 
survey of seriation methods for social network analysis.  
 
The visual assessment of tendency (VAT, [22]) model reorders 
symmetric, square D to D* using the indices of a minimal 
spanning tree on D, and then displays a heatmap image I(D*) 
of D* (often a gray-scale image). The basic rationale for VAT 
is that if an object tends to cluster with other objects, then it 
should also be part of a submatrix of “similarly small” values 
corresponding to those objects. These submatrices are seen as 
dark blocks along the diagonal of the VAT image I(D*). 
Contrast can be improved by setting the diagonal to the 
minimum of the off-diagonal values. Zhang et al. [23] discuss 
the use of VAT in a product called RoleVAT, a role 
engineering tool for role based access control. Improved VAT 
(iVAT, [24]) transforms D to D' using geodesic distances to 
replace the input distances, followed by VAT reordering of D' 
to D'*. We will also discuss a new adaptation of specVAT, a 
member of the VAT family related to spectral clustering [25]. 
 
Figure 2 illustrates VAT / iVAT using the 2D object data set X 
called Boxes and Stripe in [24]. View 2(a) scatterplots X, 
which is converted to the symmetric matrix D using the 
Euclidean norm, dij = ||xi – xj||. Figure 2(b) is the image I(D). 
Figure 2(c) is the VAT reordered image I(D*), and Figure 2(d) 
is the iVAT reordered image I(D'*). Most observers would 
agree that there are c = 5 pretty distinct clusters in Boxes and 
Stripe. This substructure is not evident in I(D). The VAT 
image I(D*) does a better job at highlighting the structure, but 
the upper left block along the diagonal, which corresponds to 
the stripe cluster in X, is not so clear. More generally, the 
image in view 2(c) lacks clarity—there is not much contrast 
between the on and off diagonal blocks. Replacing Euclidean 
distances in D by geodesic distances in D' prior to VAT 
reordering with iVAT recursion renders the substructure in X 
quite nicely, as seen in Figure 2(d). 
 
However, we will see that iVAT doesn't work as well for the 
Karate Club data set because social network data in the form 
of the graph G = (V, E, W) don't respond well to iVAT 
reordering. In brief, the conversion of G to a distance matrix D 
is fraught with problems—we describe this problem more in 
detail in the next section. We now turn to describing the 
Karate Club Data and analyzing the use of various visual 

clustering tools, including iVAT and specVAT, and fuzzy 
modularity. 

V. NUMERICAL EXAMPLE: KARATE CLUB DATA 
The Karate Club data is an undirected graph Gk = (V, E, W) 

with 34 vertices that show links between the 34 members of a 
university karate club collected by Zachary in 1977 [4]. Edge 
weight wij indicates the relative strength of the association 
between individuals i and j (number of situations in and 
outside the club in which interactions occurred). The 
maximum value in W is 7 for the edge between members 26 
and 32. 
 
The Karate Club data is a favorite amongst social network-ists, 
because the evolution of the relationship between pairs of 
members in the Karate club—which was known and recorded 
by Zachary—provides a sort of "ground truth" for various 
social network analyses. 
 
Zachary used these data and an information flow model of 
network conflict resolution to explain the split-up of this group 
into two factions (the squares and circles) following disputes 
among the members. The principals in the split were the karate 
instructor (vertex 1) and the president of the club (vertex 34). 
 
Figure 3 shows Zachary’s karate club network as depicted by 
Newman and Girvan [14]. Square nodes represent the 
instructor’s faction and circular nodes the presidents’s faction. 
The original belief was that this network should decompose 
well into two clusters as shown in Figure 3, because its 
members did bifurcate, following either the president or the 
instructor. However, various discussions of this data in the 
literature disagree. 
 
Figure 4(a) is the image of the matrix D=[7]-W (the diagonal 
of D is also set to 0 following this transformation) where W is 
the matrix of edge weights for the graph GK. Figure 4(b) is the 
iVAT image of D. View 4(b) suggests that the Karate club has 
three pretty tight clusters (the red blocks), overlain by a 
weaker and larger orange block. The orange block is inside an 
even larger yellow block. Five individuals at the bottom and 
one at the top are isolated pixels in the iVAT image, indicating 

 
Figure 3. Karate club social network [14] 



non-association with the other 28 members of the club. 
However, the implications of this representation of Gk are 
wrong. Essentially, the transformation of W to the distance 
matrix D considers the edges with 0-valued weight wij = 0 to 
have finite distance dij = 7, where, we argue, that these 
distances should be infinite (i.e., the absence of a path between 
i and j). 
 
We examined other transformations of W into D, such as 
artificially increasing the distances corresponding to zero-
weight edges, but did not achieve a pleasing result. Hence, we 
now turn to a spectral method for visualizing cluster tendency. 
 
To alleviate the problem that we see with using VAT / iVAT 
with these data, we will use specVAT [25], which displays a 
dissimilarity image of the spectral components of a normalized 
weight matrix. specVAT first computes the top k eigenvectors 
of the eigenvalue problem 
 

Lx = λx , (9) 
 
where L = M-1/2WM-1/2 and M is the n x n diagonal matrix with 
the vector m = W1n on the diagonal. Then each of the k v’s are 
normalized to the unit hypersphere by l2 normalization. 
Finally, the distance matrix D is computed by dij = [||(xi – xj)||]. 
VAT (and iVAT) can then applied to D to visualize the 
clustering tendency of W. 

We generalize specVAT by computing the eigenvectors x with 
the generalized eigenvalue problem 

 
Wx = λMx .  (10) 

 
It can easily be shown that (10) is equivalent to (9), but for 
most eigensolvers, (10) is a more stable instantiation because 
small elements of m do not induce numerical stability issues. 
  
Figure 5 compares the use of (9) and (10) in creating the 
specVAT images using c = 2, 3, and 4 eigenvectors for the 
Karate Club data. It is somewhat clear from the specVAT 
images in view 5(a) that the Karate Club data have 3 
clusters—there seem to be three dark blocks on the c = 2 and c 
= 3 images. At c = 4, the image begins to break down which 
indicates that there shouldn’t be cluster structure at c = 4. In 
the specVAT images, shown in view 5(b), the cluster structure 
is less apparent. Interestingly, Figure 5 shows that although (9) 
and (10) are mathematically equivalent, the instantiation in the 
eigensolver can prove to drastically alter the results. 
 
Although the specVAT images in Figure 5(a) seem to suggest 
3 clusters, we wanted to test how the iVAT geodesic distance 
transform could be applied to improve the visualization. We 
applied the transformation to the distance matrix computed by 
specVAT. We call the formulation of specVAT using (10) 
with iVAT, specieVAT for spectral improved eigensolver 
VAT. These images are shown in Figure 6. It is now very 
clear, by the images in view 6(a), that specieVAT reinforces 
the popular viewpoint that the Karate Club data have 3 
clusters. However, the views in 6(b), made by applying the 
iVAT transformation to the old formulation of specVAT, do 
not seem to suggest any visually-pleasing (relative to the 
precedent) cluster structure in the data set. We see this as 
further evidence that specVAT using (10) is superior to the 
original formulation—albeit mathematically the same. 
Furthermore, this shows that using the iVAT transformation 
with the new formulation of specVAT improves the 
visualization. 

c = 2 c = 3 c = 4 k = 2 k = 3 k = 4

 
 

(a) New formulation of specVAT using Eq.(10) 
c = 2 c = 3 c = 4 k = 2 k = 3 k = 4

 
 

(b) Old formulation of specVAT using Eq.(9) 
Figure 5. specVAT images of Karate Club data 

c = 2 c = 3 c = 4 k = 2 k = 3 k = 4

 
 

(a) specieVAT using Eq.(10) 
c = 2 c = 3 c = 4 k = 2 k = 3 k = 4

 
 

(b) specVAT using Eq.(9) with iVAT 
Figure 6. specieVAT and specVAT + iVAT images of Karate Club data 

 

    
(a) Data  image I(DK)               (b) iVAT image I( !DK

*)  
Figure 4. iVAT image of Karate club data 



Now we turn to clusters in the vertex set of Gk. According to 
Zhang et al. [12], hard c-means applied to a vector 
representation Xk of Gk—which is computed by normalizing 
the top k eigenvectors of (10)—identifies the following 3 crisp 
clusters: 

A = {5,6,7,11,17} 
B = {1,2,3,4,8,12,13,14,18,20,22} 
C = {9,10,15,16,19,21,23-34} 

 
Figure 7 shows this crisp 3-partition of the Karate club data. 
Zhang et al. chose c = 3 from candidate partitions for c = 2, 3, 
4 and 5 by maximizing the modularity function at (4). Then 
they ran FCM on Xk for the same values of c, and again 
selected c = 3 based on maximizing their fuzzy modularity 
index at (8d). Conversion of the fuzzy 3-partition of the 
vertices in Gk with λ = 0.25 led them to the possibilistic 
partition U0.25 ={A★ ∪ B★ ∪ C★} in Figure 8, which they 
called "fuzzy communities" in Karate Club. This diagram 
shows that 30 of the 34 individuals are assigned (crisply) in 
just one of the three clusters, while the four individuals 
numbered 9, 10, 31 and 1 (encircled in orange) are linked 
across two clusters. Zhang et al. did not specify which two 
clusters shared these members, but we infer from the positions 
in their diagram that members 9, 10 and 31 had full 
membership in B★ and C★ while the instructor (vertex 1) had 
full membership in B★ and A★. 

 

To show the comparison of Qh, Qz, and Qg we implemented 
the modification of the MULTICUT spectral clustering 
algorithm described in [26], applying FCM to the resulting 
spectral features extracted from the graph G. To compute Qh 
we hardened the resulting fuzzy partition and applied equation 
(6). For Qz, we will show values for λ = 0.1 and 0.25. The 
fuzzy modularity at (7) was computed directly on the fuzzy 
partition U. For all experiments, we set the FCM fuzzifier m = 
2. FCM was initialized by randomly selecting c vectors from 
the data as initial cluster centers. We then ran the clustering 
algorithm for c = 2, 3, …, 10 (for example). The indices were 
calculated for each c-partition and the maximum determined 
the chosen value of c. We performed this experiment 50 times. 
The plots here shown the mean value of each modularity index 
over the 50 runs at each c. The table indicates the number of 
times that an index maximized at each c over the 50 
experiments. 

 
Figure 9 and Table I show the normalized results (max set to 
1) for the three modularity indices on the Karate Club data set. 
When examining this plot, remember that the overall value is 
not as important as the value of c at which each line peaks. 
The plot shows that Qg is the only index that clearly prefers c 
= 3. But the table clearly show that both Qg and Qz(0.25) 
prefer c = 3 most of the time. The indices Qh and Qz(0.1)  
prefer c = 4. The plot and table show that Qz is more uncertain 
of its choice of c. Does this mean that Qz(0.1) is inferior? No. 
The “true” cluster structure of these data is unknown—many 
have only postulated, based on empirical and anecdotal 
evidence, that c = 3. The generalized modularity backs up this 

 
 

Figure 7. Crisp HCM 3-partition of Xk [12] 
 

 
Figure 8. "Fuzzy" communities in Gk [12] 

 
Figure 9. Mean values of three modularity indices for 50 runs of the 
Karate Club data set over c = 2 to 10. Tabulated values indicate number 
of times each index maximized at each c. 

 
TABLE I. NUMBER OF TIMES EACH MODULARITY INDEX MAXIMIZED AT c 

OVER 100 RUNS. 
 2 3 4 5 6 7 8 9 10 

Qh 0 8 91 1 0 0 0 0 0 
Qg 0 93 7 0 0 0 0 0 0 

Qz(0.25) 2 60 37 1 0 0 0 0 0 
Qz(0.1) 2 7 70 15 2 2 2 0 0 

 
 



belief; however, we would say that number of clusters in this 
data set is uncertain. If we simply add up the columns of Table 
I, c = 4 is the clear choice. But if we examine the plot in Fig. 
9, Qg has the sharpest peak, occurring at c = 3. This is a prime 
example of the cluster validity conundrum—which partition 
do I choose and which validity measure do I trust? There is no 
perfect answer to this question, but this experiment does point 
to a underlying issue in Qz; namely, how does one choose λ? 
In this case, it would easy, in hind sight, to say that one should 
choose λ = 0.25—this value of λ choose the preferred c = 3. 
However, what works for this data set may not work for every 
data set; hence, we prefer the parameter-free generalization 
Qg. 

VI. CONCLUSIONS 
Our generalization of Newman’s modularity function at (7) 

represents a step-forward in the problem of finding fuzzy 
communities in graph data. First, it is a direct generalization of 
the underlying theory of graph modularity: namely, providing 
a measure of the probability of a graph structure relative to a 
null hypothesis. For more on this discussion, please refer to 
[15]. Second, it is a parameter-free instantiation of fuzzy 
modularity: the only of its kind to date. Last, we showed that 
on the well-studied Karate Club data set that our fuzzy 
modularity index performs comparably to Newman’s crisp 
modularity function and to Zhang et. al’s fuzzy index. 
 
The second point of progress in this paper is the reformulation 
of specVAT into the new algorithm, specieVAT, for 
determining the number of clusters in graph-based data. First, 
we showed that specVAT can be reformulated as a generalized 
eigenvalue problem at (10). This formulation is 
mathematically equivalent to the original specVAT, but is 
numerically more stable for most, if not all, eigensolvers. 
Second, we showed how the iVAT distance transform could 
be applied to specVAT to improve the tendency assessment 
visualization. 
 
In the future, we will examine how our fuzzy modularity at (7) 
can be directly maximized. Initial work in this direction 
indicates that (7) can be posed as a generalized eigenvalue 
problem much like (10). Our current efforts are focused on 
establishing this maximization problem within the existing 
spectral clustering framework and on stabilizing the numerical 
issues involved in reaching the solution. Second, we will 
examine how fuzzy modularity can be generalized as a cluster 
validity index (or quality function) for asymmetric adjacency 
matrices or directed graphs. Finally, we will do a 
comprehensive comparison of various validity indices and 
clustering algorithms on a wide assortment of graph-based and 
social network data. As always, we believe that there is no free 
lunch in the clustering game and that the best attacks at these 
problems will involve a menagerie of clustering tools. 
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