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Abstract

Autonomous vehicles are soon to become ubiquitous in large urban areas,
encompassing cities, suburbs and vast highway networks. In turn, this will
bring new challenges to the existing traffic management expert systems. Con-
currently, urban development is causing growth, thus changing the network
structures. As such, a new generation of adaptive algorithms are needed, ones
that learn in real-time, capture the multivariate nonlinear spatio-temporal
dependencies and are easily adaptable to new data (e.g. weather or crowd-
sourced data) and changes in network structure, without having to retrain
and/or redeploy the entire system.

We propose learning Topology-Regularized Universal Vector Autoregres-
sion (TRU-VAR) and examplify deployment with of state-of-the-art function
approximators. Our expert system produces reliable forecasts in large urban
areas and is best described as scalable, versatile and accurate. By introduc-
ing constraints via a topology-designed adjacency matrix (TDAM), we si-
multaneusly reduce computational complexity while improving accuracy by
capturing the non-linear spatio-temporal dependencies between timeseries.
The strength of our method also resides in its redundancy through modu-
larity and adaptability via the TDAM, which can be altered even while the
system is deployed. The large-scale network-wide empirical evaluations on
two qualitatively and quantitatively different datasets show that our method
scales well and can be trained efficiently with low generalization error.
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We also provide a broad review of the literature and illustrate the com-
plex dependencies at intersections and discuss the issues of data broadcasted
by road network sensors. The lowest prediction error was observed for TRU-
VAR, which outperforms ARIMA in all cases and the equivalent univariate
predictors in almost all cases for both datasets. We conclude that forecast-
ing accuracy is heavily influenced by the TDAM, which should be tailored
specifically for each dataset and network type. Further improvements are
possible based on including additional data in the model, such as readings
from different metrics.

Keywords: topology regularized universal vector autoregression,
multivariate timeseries forecasting, spatiotemporal autocorrelation, traffic
prediction, big data, structural risk minimization

1. Introduction

Expert systems are at the forefront of intelligent computing and ‘soft
Artificial Intelligence (soft AI)’. Typically, they are seamlessly integrated in
complete business solutions, making them part of the core value. In the
current work we propose a system for large-area traffic forecasting, in the
context of the challenges imposed by rapidly growing urban mobility net-
works, which we outline in the following paragraphs. Our solution relies on
the formulation of a powerful inference system which is combined with ex-
pert domain knowledge of the network topology, and that can be seamlessly
integrated with a control schema.

Fully autonomous traffic implies an omniscient AI which is comprised of
two expert sytems, since it has to be able to both perceive and efficiently
control traffic in real time. This implies the observation of both the network
state and the entities on the network. Therefore, sensing (perception) can
be done via (i) passive sensors (e.g. induction loops, traffic cameras, radar)
or (ii) mobile ones (e.g. Global Positioning Systems (GPS), Bluetooth, Ra-
dio Frequency Identification (RFID)). While the crowdsourced data from
moving sensors (ii) can provide high-granularity data to fill accurate Origin-
Destination (O-D) matrices, their penetration rate is still scarce to scale up
(Moreira-Matias et al., 2016).

Forecasting traffic is a function of control as well, since changing traffic
rules or providing route recommendations can have an impact on the network
load. However, there are factors that are not a function of control, such as
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human error or extreme weather conditions, which are the actual unforeseen
causes of congestion. Therefore, during the transition to fully autonomous
traffic control, there will be an even greater need for accurate predictions.
There are also many possible intelligent applications such as a personalized
copilots making real time route suggestions based on users preferences and
traffic conditions, economical parking metering, agile car pooling services,
all of these paving the way towards fully autonomous self driving cars. Not
surprisingly, the work in simulation by Au et al. (2015) has shown that semi-
autonomous intersection management can greatly decrease traffic delay in
mixed traffic conditions (no autonomy, regular or adaptive cruise control,
or full autonomy). This is possible by linking cars in a semi-autonomous
way, thus solving the congestion ‘wave’ problem, if most of the vehicles are
semi-autonomous.

Traffic prediction will therefore become paramount as urban population
is growing and autonomous vehicles will become ubiquitous for both personal
and public transport as well as for industrial automation. Currently, one may
argue that automatic traffic might be a self-defeating process. A common
scenario might be in the case when the recommendations from a prediction
expert system are identical for all users in the network. In this case, new con-
gestions can and will be created (most vehicles take the same route), which in
turn invalidate the forecasts. This is evidently caused by poor control policies
or a lack of adequate infrastructure. Fortunately, simple solutions for both of
these issues exist, here we refer the reader to two references for each potential
issue. Çolak et al. (2016) formulate the control problem as a collective travel
time savings optimization problem, under a centralized routing scheme. Dif-
ferent quantified levels of social good (vs greedy individual) are tweaked in
order to achieve significant collective benefits. A simple (but more socially
challenging) way to overcome the infrastructure problem is recommendations
for car pooling as suggested by Guidotti et al. (2016).

Concerning the traffic prediction literature, most research effort is focused
on motorways and freeways (Ko et al., 2016; Su et al., 2016; Ahn et al., 2015;
Hong et al., 2015; Asif et al., 2014; Lippi et al., 2013; Lv et al., 2009; Wang
et al., 2008; Zheng et al., 2006; Wu et al., 2004; Stathopoulos & Karlaftis,
2003), while other methods are only evaluated on certain weekdays and /
or at particular times of the day (Su et al., 2016; Wu et al., 2016). These
methods usually deploy univariate statistical models that do not take into
consideration all the properties that can lead to satisfactory generalization
accuracy in the context of growth and automation in urban areas, namely:
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Table 1: Comparison of TRU-VAR properties with state of the art traffic fore-
casting methods. Properties that couldn’t be clearly defined as either present or
absent were marked with ‘∼’.

Property
STARIMA1 DeepNN2 VSSVR3 STRE4 GBLS5

TRU-

VAR6

1) Online learning ∼ ✓ ∼ ✗ ✗ ✓

2) Nonlinear representation ✗ ✓ ✓ ✓ ✗ ✓

3) Low complexity ✗ ✗ ✗ ✓ ∼ ✓

4) Topological constraints ✗ ✗ ∼ ✓ ✓ ✓

4) Non-static spatio-temporal ✗ ✓ ∼ ✗ ✓ ✓

5) Infrastructure versatility ✗ ∼ ✗ ∼ ✓ ✓

6) Easy to (re)deploy ✗ ✗ ✗ ✗ ✗ ✓

7) Customizable design matrix ✗ ✗ ∼ ∼ ∼ ✓

7) Distinct model per series ✗ ✗ ✓ ✗ ✗ ✓

7) Transferable cross-series ✗ ✗ ∼ ✓ ∼ ✓

8) Adaptable to multi-metrics ✗ ✓ ✓ ∼ ∼ ✓

1) real-time (online) learning; 2) model nonlinearity in the spatio-temporal
domain; 3) low computation complexity and scalability to large networks;
4) contextual spatio-temporal multivariable regression via topological con-
straints; 5) versatility towards a broad set of infrastructure types (urban,
suburban, freeways); 6) adaptation to changes in network structure, without
full-network redeployment; 7) redundancy and customization for each series
and adjacency matrix; 8) encoding time or using multi-metric data.

In the current work we address these issues and propose a multivariate
traffic forecasting method that can capture spatio-temporal correlations, is
redundant (fault tolerant) through modularity, adaptable (trivial to redeploy)
to changing topologies of the network via its modular topology-designed ad-
jacency matrix (TDAM). Our method can be efficiently deployed over large
networks of broad road type variety with low prediction error and therefore
generalizes well across scopes and applications. We also show (Figure 12) that
our method can predict within reasonable accuracy even up to two hours in
the future – the error increases linearly and the increase rate depends on the
function approximator, the TDAM and the quality of the data. We provide
a comparison with state of the art methods in Table 1 according to proper-
ties that we believe are essential to the next generation of intelligent expert
systems for traffic forecasting:
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Our contributions are as follows: (i) We propose learning Topology-Reg-
ularized Universal Vector Autoregression (TRU-VAR), a novel method that
can absorb spatio-temporal dependences between multiple sensor stations;
(ii) The extension of TRU-VAR to nonlinear universal function approxima-
tors over the existing state of the art machine learning algorithms, resulting
in an exhaustive comparison; (iii) Evaluations performed on two large scale
real world datasets, one of which is novel; (iv) Comprehensive coverage of
the literature, and an exploratory analysis considering data quality, prepro-
cessing and possible heuristics for choosing the topology-designed adjacency
matrix (TDAM).

Our conclusions are: TRU-VAR shows promising results, scales well and
is easily deployable with new sensor installations; careful choice of the ad-
jacency matrix is necessary according to the type of dataset used; high res-
olution data (temporal as well as spatial) is essential; missing data should
be marked in order to distinguish it from real congestion events; given that
the methods show quite different results on the two datasets we argue that
a public set of large-scale benchmark datasets should be made available for
testing the prediction performance of novel methods.

2. Related work

Traffic forecasting methodologies can be challenging to characterize and
compare due to the lack of a common set of benchmarks. Despite the numer-
ous methods that have been developed, there is yet none that is modular,
design-flexible and adaptable to growing networks and changing scopes. The
scope (e.g. freeway, arterial or city) and application can differ across meth-
ods. Therefore, it is not trivial to assess the overall performance of different
approaches when the datasets and metrics differ. Often, subsets of the net-
work are used for evaluating performance as opposed to the general case of
network-wide prediction, which includes highways as well as suburban and
urban regions. Furthermore, off-peak times and weekends are also sometimes
excluded. For critical reviews of the literature we point the reader to (Oh
et al., 2015; Vlahogianni et al., 2014; Van Lint & Van Hinsbergen, 2012;

1 Kamarianakis & Prastacos (2005) 2 Lv et al. (2015) 3 Xu et al. (2015) 4 Wu et al.
(2016) 5 Salamanis et al. (2016) 6 Nonliearity dependent on the function approxima-
tor. Careful design of the topological adjacency matrix is essential and requires domain
knowledge in order to define the appropriate heuristics.
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Vlahogianni et al., 2004; Smith et al., 2002; Smith & Demetsky, 1997).
Traffic metric types for sensor loops and floating car data: When

it comes to metrics, speed, density and flow can be used as target prediction
metrics. Flow (or volume) is the number of vehicles passing though a sensor
per time unit (usually aggregated in 1, 5 or 15 minute intervals). Density
is the number of vehicles per kilometre. It was shown (Clark, 2003) that
multi-metric predictors can result in lower prediction error. That is, variety
of input data metrics is beneficial. As to the metric being predicted, some
authors argue that flow is more important due to its stability (Levin & Tsao,
1980) while others (Dougherty & Cobbett, 1997) have found that traffic con-
ditions are best described using flow and density as opposed to speed, as
output metric. Nevertheless, there is a large amount of work where speed
is predicted, as opposed to flow or density (Salamanis et al., 2016; Fusco
et al., 2015; Mitrovic et al., 2015; Asif et al., 2014; Kamarianakis et al., 2012;
Park et al., 2011; Lee et al., 2007; Dougherty & Cobbett, 1997). This data
can come from either loop sensors (two are needed) or floating car data such
as that collected from mobile phones, GPS navigators, etc. For the traffic
assignment problem (balancing load on the network), density is a more ap-
propriate metric as opposed to flow, according to the recent work in (Kachroo
& Sastry, 2016). The authors make the observation that vehicles travel with
a speed which is consistent with the traffic density as opposed to flow. For
the current work we therefore use only flow data for both the independent
and dependent target variables, since there were no other metrics readily
available for the two datasets. We would have adopted a multi-metric ap-
proach (e.g. using speed and density data as additional input metrics) had
we been able to acquire such data. However, the extension is trivial and we
aim to show this in future work.

2.1. Traffic prediction methods

A comparison between parametric and non-parametric methods for single
point traffic flow forecasting based on theoretical foundations (Smith et al.,
2002) argues that parametric methods are more time consuming while non-
parametric methods are better suited to stochastic data. An empirical study
with similar objectives (Karlaftis & Vlahogianni, 2011) provides a compari-
son of neural networks methods with statistical methods. The authors sug-
gest a possible synergy in three areas: core model development, analysis of
large data sets and causality investigation. While we focus on short-term
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forecasting, it is evident that forecast accuracy degrades with a larger pre-
diction horizons. We show that the prediction error increases linearly for
our method in Figure 12 on page 35. The rate of increase depends on the
function approximator that is being used and the design of the topology ma-
trix. For long-term forecasting (larger prediction horizons – Sec. 3, page 14),
continuous state-space models such as Kalman filters (Wang et al., 2008) or
recurrent neural networks (RNN) (Dia, 2001) have outperformed traditional
‘memoryless’ methods.

Parametric methods: Prediction of traffic flow using linear regression
models was deployed in (Low, 1972; Jensen & Nielsen, 1973; Rice & Van Zwet,
2004) while non-linear ones were applied in (Högberg, 1976). ARIMA (Box
et al., 2015, ch. 3-5) are parametric linear models extensively used in time
series forecasting that incorporate the unobserved (hidden) variables via the
MA (moving average) component. Seasonal ARIMA (SARIMA) models can
be used where seasonal effects are suspected or when the availability of data
is a constraint, according to the work in (Kumar & Vanajakshi, 2015). ARI-
MAX use additional exogenous data. In (Williams, 2001) data from upstream
traffic sensors was used for predicting traffic using ARIMAX models. The
results outperformed the simpler ARIMA models at the cost doubling the
computational complexity and decreased robustness to missing data. Traffic
state estimation with Kalman filters was evaluated on freeways (Xie et al.,
2007; Wang et al., 2008) in combination with other methods such as discrete
wavelet transforms in order to compensate for noisy data.

Non-parametric methods: One of the first applications of the K Near-
est Neighbours (KNN) algorithm for short-term traffic forecasting was in
(Clark, 2003). KNNs have also been applied to highway incident detection
(Lv et al., 2009). The latter research made use of historical accident data
and sensor loop data, representing conditions between normal and hazardous
traffic. Hybrid multi-metric k-nearest neighbor regression (HMMKNN) was
proposed for multi-source data fusion in (Hong et al., 2015) using upstream
and downstream links.

A Support Vector Regression (SVR) model was applied to travel time
prediction (Wu et al., 2004) on highways. It was compared only with a naive
predictor. Online SVRs with a gaussian kernel were deployed for continu-
ous traffic flow prediction and learning in (Zeng et al., 2008). The method
outperformed a simple neural network with one hidden layer. However, it
is important to note that the neural network was trained on historical av-
erages, which is not equivalent to training on online streaming data. Under
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non-recurring atypical traffic flow conditions, online SVRs have been shown
to outperform other methods (Castro-Neto et al., 2009). SVRs with Radial
Basis Function (RBF) kernels showed a marginal improvement over Feed-
forward Neural Networks (FFNN) (also known as Multilayer Perceptrons -
MLP) and exponential smoothing (Asif et al., 2014). The predictions were
done independently for each link, thus spatial information was not leveraged.
The authors clustered links according to the prediction error using K-means
and Self-Organizing Maps (SOM).

Neural networks have been extensively evaluated for short-term real-time
traffic prediction (Clark et al., 1993; Blue et al., 1994; Dougherty & Cobbett,
1997; Dia, 2001; Lee et al., 2007; Park et al., 2011; Fusco et al., 2015). A
comparison of neural networks and ARIMA in an urban setting found only a
slight difference in their performance (Clark et al., 1993). Feed forward neu-
ral networks were also used to predict flow, occupancy and speed (Dougherty
& Cobbett, 1997). While prediction of flow and occupancy was satisfactory,
prediction of speed showed less prospects. In (Park et al., 2011) a neural
network was used for simultaneous forecasting at multiple points along a
commuter’s route. Multiple FFNNs were deployed (one per station) in (Lee
et al., 2007) with input data from the same day, the previous week and data
from neighbouring links. The weekday was also added as an input in the
form of a binary vector. This provided better spatial and temporal context
to the network, thus reducing forecasting error. Time information in the
form of time of day and day of week was used as additional information for
traffic prediction using FFNNs in (Çetiner et al., 2010) also resulting in im-
proved performance. Recurrent neural networks (RNN) demonstrated better
forecasting performance (Dia, 2001) at larger prediction horizons compared
to FFNNs, mostly due to their ability to model the unobserved variables
in a continuous state space. The performance was superior when the data
was aggregated into 5 minute bins (90-94%) versus 10 minutes (84%) and 15
minutes (80%). Bayesian networks were also deployed for traffic flow predic-
tion (Castillo et al., 2008). No empirical comparison with other methods was
provided.

It is important to consider that as the number of parameters increase with
road network complexity and size, the parsimony of non-parametric methods
becomes more evident (Domingos, 2012).

Hybrid Methods: Existing short-term traffic forecasting systems were
reviewed under a Probabilistic Graphical Model (PGM) framework in (Lippi
et al., 2013). The authors also propose coupling SARIMA with either SVRs
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(best under congestion) and Kalman filters (best overall). This work as-
sumes statistical independence of links. Hybrid ARIMA and FFNNs (Zhang,
2003) were also applied to univariate time series forecasting. The residuals
of a suboptimal ARIMA model were used as training data for a FFNN.
No evaluations on traffic flow data was provided. A hybrid SARIMA and
cell transmission model for multivariate traffic prediction was evaluated in
(Szeto et al., 2009). Comparisons with other univariate or multivariate mod-
els were not provided. Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) and ARIMA were combined in (Chen et al., 2011). The hy-
brid model did not show any advantages over the standard ARIMA, although
the authors argued that the method captured the traffic characteristics more
comprehensively.

An online adaptive Kalman filter was combined with a FFNN via a fuzzy
rule based system (FRBS) (Stathopoulos et al., 2008) where the FRBS pa-
rameters were optimized using Meta heuristics. The combined forecasts were
better than the separate models. Functional nonparametric regression (FNR)
was coupled with functional data analysis (FDA) in (Su et al., 2016) for long
term traffic forecasting on one day and one week ahead horizons. Traffic
state vectors were selected based on lag autocorrelation and used as predic-
tor data for various types of kernels. The distance function for the kernels
was computed using functional principal component analysis. The method
outperformed SARIMA, FFNNs and SVRs on the selected benchmark, based
on a subset of weekdays (Monday, Wednesday, Friday and Saturday) for a
single expressway section. Genetic algorithms (GA) were used in (Abdulhai
et al., 2002; Vlahogianni et al., 2005) to optimize neural network architecture
structure. In (Abdulhai et al., 2002) it was applied to the structure of time-
delayed neural network while in (Vlahogianni et al., 2005) the GAs were used
to optimize the number of units in the hidden layer. The optimised version
reached the same performance as a predefined one with less neurons.

2.2. Topology and spatio-temporal correlations in traffic prediction

There are various methods that model the spatial domain as opposed
to solely the temporal one. The approaches can be characterised based on
the number of timeseries used as inputs and outputs for a prediction model.
Regarding the inputs, the models can be either single-series (univariate) or
multi-series (multivariable). In the latter case additional contemporary data
can be used and the selection can be based on either topology (if known)
or learned. Further categorization can be defined based on the importance
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of each relevant road – static or dynamic (since the dependency structure
changes – see Fig. 10). According to the outputs, the algorithms can be single
task, in which case one predictor is learned for each station and multi-task in
which case parameters are coupled and predictions are made simultaneously
at all stations.

Single task & multi-series: Most common among the multi-series
methods is to take into consideration the upstream highway links. Kalman
filters using additional data from upstream sensors have been found to be su-
perior to simple univariate ARIMA models (Stathopoulos & Karlaftis, 2003).
Data from only five sequential locations along a major 3 lane per direction
arterial on the periphery was used (distance between sensors varied between
250 and 2500 meters). The authors also conclude that short-term traffic flow
prediction at urban arterials is more challenging than on freeways. A similar
conclusion is drawn in (Vlahogianni et al., 2005).

Markov random fields (MRF) were deployed to capture dependencies be-
tween adjacent sensor loops via a heat map of the spatio-temporal domain
(Ko et al., 2016). Focus was on the dependencies between the query location
and the first and second upstream link connections on freeways with degree
higher than one. Such upstream bifurcations were referred to as ‘cones’.
Data between the ‘cones’ and the query was not considered. The authors
quantized data into twelve levels. The weights for the spatial parameters
were reestimated monthly. In more complex networks such as urban areas,
these weights can change during the course of one day. Similarly, dependen-
cies on the cliques are estimated in (Ahn et al., 2015) using either multiple
linear regression and SVRs, the latter resulting in better accuracy. No com-
parisons were made with other methods. Multivariate Adaptive Regression
Splines (MARS) were used for selecting the relevant links’ data and SVRs as
the predictor component in (Xu et al., 2015). The method was evaluated on
a subarea and compared to AR, MARS, SVRs, SARIMA and ST-BMARS
(spatio-temporal Bayesian MARS) showing promising results. An interesting
approach was the work in (Mitrovic et al., 2015) where the core idea was to
minimize execution time by transferring learned representations (on a subset
of links) to the overall network. A low dimensional network representation
was learned via matrix decomposition and this subset of links was used to
extrapolate predictions over the entire network. The computations were sped
up 10 times at the expense of increasing error by 3%.

Spatio-temporal random effects (STRE) was proposed in (Wu et al.,
2016). The algorithm reduced computational complexity over spatio-temporal
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kalman filter (STKF). Data around a query point was selected and weighted
using a fixed precomputed set of rules, depending on the relative position
(e.g. upstream, downstream, perpendicular, opposite lane, etc). Training
was done using 5 minute resolution data from Tuesdays, Wednesdays and
Thursdays. Only data from 6a.m. to 9p.m. (peak hour) was considered.
Predictions were made on a group of query points from two separate areas
(mall area and non mall area). The authors hypothesized that the mall area
could have had more chaotic traffic patterns. STRE had lower error relative
to ARIMA, STARIMA and FFNNs except for one case, the westbound non-
mall area. It is important to note that the FFNNs were trained in univariate,
one networok per station mode. Furthermore, it is also not clear whether the
prediction results were for out of sample data. Similar work making use
of sensor location data, spatio-temporal random fields (STRF) followed by
Gaussian process regressors were proposed in (Liebig et al., 2016) for route
planning.

FFNNs and Radial Basis Function Networks (RBFNs) were combined
into the Bayesian Combined Neural Network (BCNN) (Zheng et al., 2006)
model for traffic flow prediction on a 15 minute resolution highway dataset.
Data from the immediate and two links upstream sensors as well as down-
stream sensors was used as input to both networks. The predictions were
combined linearly and weighted according to the spread of the error in previ-
ous time steps on all relevant links. The combined model was better than the
individual predictors, however the RMSE was not reported nor any compar-
isons with other baseline methods given. Bayesian networks with SARIMA
as an a priori estimator (BN-SARIMA) and FFNNs as well as Nonlinear
AutoRegressive neural network with eXogenous inputs (NARX) were com-
pared in (Fusco et al., 2015) for floating car data. The learning architectures
used data from the output and conditioning links and predictions were single
task. The results were marginally different for a subsection of reliable data.
For network-wide forecasting on both 5 and 15 minute intervals, NARX and
FFNNs were better than BN-SARIMA.

Multi-task & multi-series: Spatio-Temporal ARIMA (STARIMA)
(Kamarianakis & Prastacos, 2005) were perhaps the first successful traffic
forecasting models that focused on the spatio-temporal correlation struc-
ture. However, the spatial correlations were fixed, depending solely on the
distances between links. We empirically show in Figure 10 (Page 29) that the
spatial correlations can change during the course of a day. STARIMA com-
pensate for non-stationarity by differencing using the previous day values
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which can bias the estimated autoregression parameters (traffic behaviour
can be considerably different e.g. Monday vs. Sunday). A study on autocor-
relation on spatio-temporal data (Cheng et al., 2012) concludes that ARIMA
based models assume a globally stationary spatio-temporal autocorrelation
structure and thus are insufficient at capturing the changing importance be-
tween prediction tasks. The work in (Min et al., 2009) addresses this problem
using Dynamic Turn Ratio Prediction (DTRP) to update the normally static
matrix containing the structural information of the road network. Under the
hypothesis that the physical distance between road sections (tasks) does not
accurately describe the importance of each task, a VARMA (Lütkepohl, 2005)
model is refined by Min & Wynter (2011) to include dependency among ob-
servations from neighbouring locations by means of several spatial correlation
matrices (as many as the number of lags). In one matrix, only related tasks
are non-zero. The authors do not explicitly define task relatedness, how-
ever most likely all upstream connections are selected. Further sparsity is
introduced by removing upstream links, under the hypothesis that such links
are unlikely to influence traffic at the query task, given the average travel
speed for that location and time of day. There could be one such matrix
for peak times and one for off-peak times, depending on the design choice.
Another ARIMA inspired algorithm (Kamarianakis et al., 2012) makes use of
a parametric, space-time autoregressive threshold algorithm for forecasting
velocity. The equations are independent and incorporate the MA (moving
average) and a neighbourhood component that adds information from sen-
sors in close proximity, based on the Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani, 1996).

Building up on the previously mentioned work and avoiding the poten-
tially problematic thresholds used to to identify the discrete set of regimes,
a Graph Based Lag STARIMA (GBLS) (Salamanis et al., 2016) model was
trained using speed data from GPS sensors, with the goal of travel time pre-
diction. Unlike the previous work, the graph structure was initially refined
using a breadth-first search based on degree (number of hops). For the se-
lected connections, spatial weights were computed and used in the STARIMA
model. The weight matrix for each lag was fixed and contained the inverse of
the lag-sums Pearson correlations between relevant roads. Finally, the model
took into consideration the current speed on the road, the previous two speed
values and the average speed of the top 10 ranked relevant roads. The intro-
duced sparsity reduced computational complexity. However, from our own
experiments we have observed that the correlations are typically nonlinear,
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which implies that this measure is not appropriate for ranking. The data
used was only for the same day of the week for both training and testing
for the two datasets. GBLS was compared with univariate KNNs, Random
Forests (RF), SVRs and Compressed SVRs. No comparison with FFNNs
were made. The behaviour of the proposed algorithm was very different over
the two datasets, however the proposed method had lower prediction error
then the benchmarks. It is also not clear whether the parameters were cou-
pled or not. One could argue that this class of methods do not follow the
law of parsimony (Occam‘s razor) – there are too many design choices, as-
sumptions and parameters. Recently FFNNs with many hidden layers (deep
learning) have been applied to network wide traffic prediction on highway
data (Lv et al., 2015). While neural network based models were able to learn
the nonlinear spatio-temporal correlations, this type of approach – as well
as the similar linear STARIMA class of models (Kamarianakis et al., 2012;
Min & Wynter, 2011; Min et al., 2009; Kamarianakis & Prastacos, 2005)
– does not explicitly leverage the topological structure. Hence it is likely
that prediction error can be further reduced by leveraging this information
explicitly. Conversely to the aforementioned work, in Topological Vector Au-
toregression (TRU-VAR), the relative importance of the related timeseries is
adjusted automatically, also accounting for the contextual time.

In summary, the following observations can help improve traffic predic-
tion performance: (1) nonlinearity is important for explaining traffic be-
haviour; (2) leveraging the topological structure could result in lower errors;
(3) the system should be flexible to changes in the adjacency matrix design;
(4) static spatio-temporal models are not appropriate for complex urban
roads; (5) simplicity (Occam’s razor) is to be preferred in general (Domin-
gos, 2012); (6) multi-metric data can increase accuracy, speed data is to be
avoided as a target metric (Clark, 2003); (7) for certain models, explicitly
encoding time can decrease error; (8) crowdsourced data from vehicles can
help reduce sensor noise and provide redundancy to missing data; (9) con-
tinuous state-space models are more adequate at capturing complex patterns
and therefore making predictions due to the highly dynamic nature of driver
behaviour.

Considering all of the above, in the next section we introduce the theo-
retical underpinnings of TRU-VAR. We start with the extension of VAR to
topological constraints, continue the generalization with examples of function
approximators according to state of the art prediction models and conclude
with the fitting process.
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3. Topological vector autoregression with universal function ap-

proximators

Traffic prediction in large urban areas can be formulated as a multi-
variate timeseries forecasting problem. Vector AutoRegression (VAR) is a
natural choice for such problems. Since in this particular case we are also
provided with the precise location of each sensor station where volume (flow)
recordings are made, we leverage the topological structure and use it as prior
information in order to constrain the number of parameters that are to be
estimated. In effect this reduces the computational complexity and improves
accuracy over simple univariate forecasting methods, while learning in real
time the spatio-temporal correlations between the contemporary timeseries.

From a high level perspective our idea is simple: we assume that for
a particular prediction station (timeseries) it is beneficial to use data from
stations in close proximity (contemporary), however we exclude stations that
are distant. This induces sparsity since we do not have to use the data from
all other sensor stations, while capturing the spatio-temporal dynamics. We
provide empirical arguments in an exploratory analysis of what the distance
heuristics can be defined as in Section 4 where we also show that the spatio-
temporal correlations change throughout the day.

Given a multivariate timeseries dataset X̃ ∈ R
T×S with T non i.i.d. ob-

servations over S series, we denote xs
∆t =

[

1 xs
t xs

t−1 . . . xs
t−∆

]⊤

as the
predictor vector for sensor s consisting of the past observations of length ∆.
The corresponding response variable yst+h = xs

t+h is the value to be predicted
h time steps ahead. Prediction can then be modelled as follows:

yst+h = f(xs
∆t,θ

s) + ǫst+h where ǫ ∈ N (0, σ) (1)

The prediction horizon h indicates how far in the future predictions are
made. For short-term forecasting this is typically the immediate time step
(e.g. h = 1) in the future. The first element of the input vectors is set to 1
to indicate the intercept constant. In the time series forecasting literature ∆
is more commonly known as the lag or the number of previous observations
from the past that are used to make predictions. For neural networks this
is sometimes referred to as the receptive field. To satisfy the assumption
that µǫ = 0 and normally distributed, we later discuss differencing. If f
is the dot product, then Eq. 1 describes an autoregressive model (AR(∆))
of order ∆. AR models operate under the assumption that the errors are
not autocorrelated. However, the errors are still unbiased even if they are
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autocorrelated. ARIMA models also incorporate a Moving average (MA).
These are identical with the difference that predictions are made based on
the past prediction errors es

∆t where es = ŷs − ys. It is possible to write any
stationary AR(∆) model as an MA(∞) model.

3.1. Topology Regularized Universal Vector Autoregression

In multivariable regression models, additional data can be used for the
predictor data such as contemporary data and / or an encoding of the time
of day z∆t. Any other source of relevant data, such as weather data, can also
be used as input.

Vector AutoRegression (VAR) models (Hamilton, 1994, ch. 11) are a
generalization of univariate autoregressive models for forecasting multiple
contemporary timeseries. We refer the reader to (Athanasopoulos et al.,
2012) for a discussion on VARs in contrast to VARMAs. VARs are not a
closed class when the data is aggregated over time like VARMAs are. How-
ever, VARs have been found to be often good approximations to VARMAs,
provided that the lag is sufficiently large (Lütkepohl, 2005). We start with a
two dimensional VAR(1) with one lag, where θ (Eq. 1) is the vector contain-
ing the autoregressive parameters consisting of θijt which weight the external
spatio-temporal autoregressive variables, specifically the influence of the t-th
lag of series xj on series xi:

y1t+h = θ10 + θ11t x1
t + θ12t x2

t + . . .+ θ1St xS
t + ǫ1t+h

y2t+h = θ20 + θ21t x1
t + θ22t x2

t + . . .+ θ2St xS
t + ǫ2t+h

(2)

It becomes evident from the above equations that the required number
of parameters to be estimated increases quadratically with the number of
timeseries. Furthermore, if more lags are added, the computational com-
plexity becomes O((s × l)2). Therefore, introducing sparsity is both ben-
eficial (Eq. 3) and necessary since it introduces constraints on the number
parameters that are to be estimated. Sparsity refers to reducing the number
contemporary time series (and therefore parameters to be estimated) that
are relevant for a query location. Since the topological structure of road
networks is known, introducing such priors is intuitive since the relevance
of contemporary timeseries does vary. We therefore introduce sparse topol-
ogy regularization for vector autoregression (TRU-VAR) based on the road
geometry via a topology-designed adjacency matrix A ∈ {0, 1}. If G is the
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graph describing road connections, then we denote G1(i) to be the set of all
first order graph connections with node i, then:

aij =











1, i = j;

0, j 6∈ G1(i);

1, j ∈ G1(i).

Evidently, we could have also opted to select higher order degrees e.g.
G2(i), for designing the topological adjacency matrix, however in urban set-
tings the number of such neighbours can increase exponentially as the degree
increases. However, the matrix could be heuristically adapted according to
the number of first order connections, in the case of highways where the de-
gree of a node can be low. Other means of defining A can be used such as
ranking based on correlation of the timeseries. However, we show in Figure 9
(plotted using Google Maps) that correlation does not necessarily correspond
to the relevant topology. In contrast, in our case the relevant importances
are learned through fitting the model parameters, thus capturing the spatio-
temporal dynamics. We introduce the sparsity terms and write in general
form:

yst+h = θs0 +
S
∑

k=1

ask θskt xk
t + ǫst+h (3)

We can then generalize the previous equation for one series to multiple lags:

yst+h = θs0 +
S
∑

k=1

ask
∆
∑

δ=0

θskt−δ x
k
t−δ + ǫst+h (4)

Finally we write in compact form and generalize for any function approxi-
mator:

yst+h = θs⊤xs
∆t ⊙ [(as)

×∆] + ǫst+h

yst+h = f

(

xs
∆t ⊙ [(as)

×∆],θ
s

)

+ ǫst+h

(5)

For convenience, we can stack the inputs (predictor data) into a matrix
with N = T − ∆ rows and M = ∆ columns Xs ∈ R

N×M and the outputs
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(response data) into the vector ys ∈ R
N . We denote the lag constructed ma-

trices for all series as X =
[

X1 X2 . . . XS
]

and Y =
[

y1 y2 . . . yS
]

.
Finally, we define As =

[

(as)
×∆

]

and A =
[

A1 A2 . . . AS
]

.

ys = f

(

Xs ⊙ As,θs

)

+ ǫs (6)

Note that from here on the Hadamard product with the sparsity inducing
matrix A is omitted for brevity.

3.2. Structural Risk Minimization

We assume that there is a joint probability distribution P (x, y) over Xs

and ys which allows us to model uncertainty in predictions. The risk cannot
be computed in general since the distribution P (x, y) is unknown. The em-
pirical risk is an approximation computed by averaging the loss function L
on the training set. In Structural Risk Minimization (SRM) (Vapnik, 1999) a
penalty Ω is added. Then, the learning algorithm defined by SRM consists in
solving an optimization problem where the goal is to find the optimal fitting
parameters θ̂s that minimize the following objective:

θ̂s = argmin
θs

(

L
(

f(Xs,θs),ys
)

+ λsΩ(θs)
)

(7)

For regression, under the assumption of normally distributed errors, the
mean squared error (MSE) or quadratic loss is commonly used since it is sym-
metric and continuous. Thus, in least squares minimizing the MSE (Eq. 8)
results in minimizing the variance of an unbiased estimator. As opposed
to other applications, in our problem setting it is desirable to put a heav-
ier weight on larger errors since this maximizes the information gain for the
learner (Chai & Draxler, 2014). We take this opportunity to mention that
we report the RMSE since it is linked to the loss function, however we also
report the MAPE which is specific to traffic forecasting literature. For a com-
prehensive discussion on predictive accuracy measures we refer the reader to
(Diebold & Mariano, 2012).

L(ŷ,y) =
1

N

N
∑

n=1

(ŷn − yn)
2 = ‖ŷ − y‖2 (8)
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3.3. Regularized Least Squares

Since our data consists of previous observations in time it is possible
that these could have a varying degree of importance to our predictions,
and furthermore these could be different for each data stream. Using the
quadratic error we arrive at the least squares formulation in Eq. 9 where Ω is
a penalty on the complexity of the loss function which places bounds on the
vector space norm. Since the choice of the model can be arbitrary, we can
use regularization to improve the generalization error of the learned model.
With a lack of bounds on the real error these parameters are tuned using the
surrogate error from a validation dataset or using cross-validation.

For a negative log likelihood loss function, the Maximum a Posteriori
(MAP) solution to linear regression leads to regularized solutions, where
the prior distribution acts as the regularizer. Thus, a Gaussian prior on θ

regularizes the L2 norm of θ while a Laplace prior regularizes the L1 norm (see
Murphy, 2012, ch. 5-9). ElasticNet (Zou & Hastie, 2005) is a combination of
L1 and L2 regularization which enforces sparsity on groups of columns such as
the ones we have in X where a parameter α balances the two lambdas of the
two norms. In effect, ElasticNet generalizes both L1 and L2 regularization.
We experiment with both regularization methods.

S
∑

s=1

min
θ1,...,θS

‖f(Xs,θ)− y‖2 + λ2‖θ‖
2 + λ1‖θ‖1 (9)

3.4. The function approximator model

Having defined the optimization problem, loss function and regularization
prior types for one timeseries we can now consider the function approximation
model f s, starting with the simple linear models.

Linear least squares. If the combination of features is linear in the parameter
space θ, then the regression model is linear. Typically the error ǫ is assumed
to be normally distributed. Any non-linear transformation φ(x) of the input
data X such as a polynomial combination of features thus still results in
a linear model. In our experiments we use a simple linear combination of
features (φ(x) = x) for linear least squares (LLS):

f(X,θ) =
M
∑

m=1

θmφ(x)m (10)
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By replacing f with Eq. 10 in Eq. 9, and setting λ1 = 0, the parameters
θs can be found analytically for ridge regression using the normal equation:

θ̂ = (X⊤X + λ2I)
−1
X⊤y (11)

For ordinary least squares (OLS) where regularization is absent we can
simply set λ2 = 0. It is important to note that the solution is only well
defined if the columns of X are linearly independent e.g. X has full column
rank and (X⊤X)−1 exists. Furthermore, closed form solutions (offline / batch
learning) are more accurate than online learning since if the solution exists we
are guaranteed to converge to the global optimum, while for online methods
there is no such guarantee. In real world scenarios however, data comes in
streams and offline learning is not a practical option. Real-time learning is
essential to incident prediction (Moreira-Matias & Alesiani, 2015). Then, θ
can be transferred to an online learner as an initialization where the learning
can continue using an online method such as stochastic gradient descent
(SGD).

Kernel least squares. Kernel methods such as support vector regression (SVR)
(Smola & Vapnik, 1997; Suykens & Vandewalle, 1999) rely precisely on non-
linear transformations of the input data, usually into higher dimensional
reproducing kernel Hilbert space (RKHS), where the transformed data φ(x)
allows for lower generalization error by finding a better model hypothesis.
In our experiments we use a linear kernel for the support vector regression
(SVR) or kernel least squares (KLS).

φ : K(x,x′) = 〈φ(x), φ(x′)〉 (12)

Using the kernel the model can be expressed as a kernel expansion where
α(n) ∈ R are the expansion coefficients. This transforms the model to:

f(x, K) =
N
∑

n=1

α(n)K(xn, x) (13)

Which in turn can be formulated as kernel ridge regression:

φ(θ̂) = argmin
φ(θ)

‖y − φ(X)φ(θ)‖2 + λ‖φ(θ)‖2 (14)

In practice this implies computing the dot product of the transformed
input matrix which is very memory intensive. Instead, in our experiments
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we use L-BFGS (Nocedal & Wright, 2006) for ridge or SPARSA (Wright
et al., 2009) for LASSO.

Nonlinear least squares. Multi layer perceptrons with one hidden layer are a
form of non-linear regression. Such models with a finite set of hidden sigmoid
activation functions are universal function approximators (Cybenko, 1989).
The simplest form can be defined using a single hidden layer model with H
units, using a sigmoid activation function φ(x) = 1/(1 + e−x) The model is
reminiscent of nested kernels:

f(X,Θ) =
H
∑

h=1

θhφ

( M
∑

m=1

θmφ(x)m

)

(15)

For non-linear least squares there is no closed form solution since the
derivatives are functions of both the independent variable and the parame-
ters. Such problems can be solved using gradient descent. After specifying
initial values for θ (which can also come from an offline learner), the parame-
ters are found iteratively through successive approximation. Multiple passes
are done through the dataset. In one pass, mini-batches or single examples
are shown and the parameters are adjusted slightly (according to a learning
rate) in order to minimize the loss.

In conclusion we note that once the TDAM is defined, TRU-VAR can
therefore be generalized to any type of function approximator. The modu-
larity and flexibility results in low computational complexity thus resulting
in scalable fitting of nonlinear models which capture the spatio-temporal cor-
relations. This also provides redundance and versatility towards a broad set
of road network types covering urban, suburban and freeways. Finally when
the network structure changes the TDAM can be adjusted partially, which
does not require redeployment of the entire prediction system.

4. An exploratory analysis of traffic data

In this section we discuss data. We make observations and apply the
findings in the experimental section. We consider aspects such as trends,
seasonality, outliers, stationarity, variable (sensor station) interdependency
and data quality. We show that there are specific dependencies between
sensors (Fig. 8) which also change as a function of time (Fig. 10).
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4.1. Datasets

The VicRoads dataset (Schimbinschi et al., 2015) was recorded over 6
years in the City of Melbourne, Australia and consists of volume readings
from 1084 sensors covering both urban and suburban areas as well as free-
ways. The frequency of recordings is 15 minutes (96 readings over 24 hours).
Coverage area depicted in Figure 1a.

(a) Melbourne roads with available
traffic data are highlighted in either red
or blue according to direction.

-123 -122.8 -122.6 -122.4 -122.2 -122 -121.8 -121.6 -121.4

37.4

37.6

37.8

38

38.2

38.4

(b) PeMS station points are marked
with a dot.

Figure 1: Schematic illustration of the sensor location for both datasets.

The California Freeway Performance Measurement System (PeMS) dataset
(Varaiya, 2001) (Fig. 1b) has been extensively used in the literature and con-
sists of volume readings taken every 5 minutes from a network of 117 sensors
over 8 months in the year 2013. As it can be seen from Figure 1b it consists
of mostly freeway commuting and thus does not capture the complexities of
inner city commuting.

We further describe the two datasets with an emphasis on VicRoads,
since it is a new dataset and PeMS is well known and more studied in the
literature (Lv et al., 2015; Lippi et al., 2013, and others).

4.2. VicRoads data quality and congestion events
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Figure 2: Sensors above the 95
(black) and 99 (red) quantile after
discarding missing data, road sec-
tions with many congestion events.

Datasets recording traffic volume
(flow) consist of positive integers in orig-
inal format. There is no explicit distinc-
tion made (no lables) between conges-
tion and missing data. Intuitively, vol-
ume is close to zero when traffic slows
down and zero when it completely stops.
While it is certainly possible to have zero
volume in a period of 5 or 15 minutes, it
is highly unlikely that this can happen
in practice and very unlikely to happen
for an entire day. We proceed to mark
the missing data by assuming that if the
total volume for one day is zero (no cars have passed through the sensor in
24 hours) then it does not correspond to a congestion event.

We therefore use this information to discard the marked days only from
the test set. This is important, since it allows the learner to identify conges-
tions. Considering that in real scenarios these sensors can break down we
aim to emphasize robustness towards such events or congestion and as such
do not replace the missing values with averages or use any other method of
inferring the missing values.

Following this operation we can observe (Fig. 3) that these sensors have
not all been installed at the same time. Furthermore, we can also observe
network-wide missing data (vertical lines). We do not take into consideration
sporadic 0 readings since these could correspond to sudden traffic conges-
tion, although it is still highly unlikely. However, we could have considered
heuristic rules where for example, 4 consecutive readings would correspond
to sensor failure (or road works) since it is very unlikely that no cars would
pass within one hour through a section, even in congestion conditions. We
have not taken this approach in the current work.

After marking the missing data, we further compute the remaining num-
ber of 0-valued recordings for each sensor and plot in Figure 2 the roads above
the 0.95 (black) and 0.99 (red) quantile on the map. It is quite probable that
the error on these particular sensors will be higher than others, since half the
data can be available for these sensor stations.
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4.3. Seasonality, Trends, Cycles and Dependencies

It is trivial to relate to daily traffic patterns, especially peak hours. These
patters are mostly stable and are a function of location and day of the week.
These flows vary along the different spatio-temporal seasonalities of drivers
behaviour. We adopt an initial explorative approach towards determining
the statistical properties of the multivariate timeseries. We did not perform
a Box-Cox transformation since upon inspection there was no evidence of
changing variance. Furthermore, upon visual inspection of the series it was
evident that the data is non-stationary as the volume moves up and down as
a function of the time of the day.

Figure 4 depicts the summary statistics plotted per time bin in one day,
where the left figure corresponds to a typical suburban region while the right
one corresponds to a highway off-ramp. The right one is typical for a road
with high outbound traffic in the evening peak hours when people commute
back home. Comparing these two locations allows us to get insights towards
the dynamics of the different types of traffic within the network. Their
location is also shown on the map in Figure 7.

4.4. Autocorrelation profiles

Figure 5 depicts the autocorrelation profiles of the corresponding traffic
flow time series for 2 different sensors from the VicRoads dataset. Their
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Figure 3: Black pixels indicate days with no readings.
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Figure 4: The daily summary statistics differ for each road segment (VicRoads).

location on the map is shown in Figure 7. We chose a lag corresponding
to 4 days to observe any seasonal or cyclic patterns left in the signal, after
subtracting the seasonal component or differencing.
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(a) Sensor 123 - Suburb
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Figure 5: Autocorrelation plot for 400 lags. Differencing removes seasonality
patterns. Daily seasonality is clearly observable.
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We estimate the seasonal component for each series by computing the
minute / hourly averages, separately for each day of the week, for each series.
In order to compute the averages we convert the time series to a tensor
matrix. Xµ ∈ R

S×D×H where S = 1084 is the number of road segments
D = 7 is the number of days in a week and H = 96 is the 15 minute average
number of observations made in one day. We then convert the matrix back to
a timeseries and we subtract this from the original time series, obtaining the
contextual mean seasonally differenced (CMSD) timeseries. This operation is
normally performed using a moving average. However, this way we can arrive
at a more precise estimation, also as a function of the day of the week. We
also differentiate each sensor‘s timeseries and plot the autocorrelation again
for these two sensors. This method removes most of the seasonal patterns in
the data.

It can be observed from Figure 5 that while these operations largely re-
moves the seasonality, it is quite likely that the seasonal or trend / cyclic
components could come from the (non) linear interactions with the neigh-
bouring roads. This suggests that using proximity data is more likely to
lead to increased accuracy. We further inspect the overall autocorrelation
over the entire network. Hence we plot the autocorrelation for all sensors
for 96 lags on the same type of data transformations. It is observable from
Figure 6d that the seasonal components are removed for almost the entire
network data.

4.5. Intersection correlations

While we have considered the statistical properties of each individual road
section we further examine the information carried between road sections,
since most roads are highly dependent on the connected or neighbouring
roads. In Figure 7 the roads with the same direction as the query road (solid
black) are marked as black and the opposite direction are marked as red
dashed lines. It is important to point out that this might not be entirely
accurate and depends on the convention used when marking direction (e.g.
1 is always road heading north or west).

From Figure 8a we can observe high correlation between the red dotted
segments and the black target road (123) - implying a correlation between
(apparently) opposite traffic directions, which is unlikely. For prediction,
this is not crucial since we select all connected sections. However, our major
point is that there are complex dependencies at intersections. It is important
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(a) Original data (b) Seasonally differenced data

(c) Differenced data (d) Differenced data - side viewFigure 6: Network Wide Autocorrelation Surface.

to note that Pearson‘s correlation coefficient captures only linear correlations
and there could be nonlinear correlations between two road sections.

From Figure 8a we can observe that a cluster (red square) is formed with
the perpendicular query road (123) at both ends, namely 191 and 192 at one
end and 298 and 297 at the other end. While these consecutive sections are
correlated with themselves. We do not know at which end of the road section
the sensors are placed unfortunately for section 123 or other sections, hence
we can not even attempt to make causality assumptions.

We can further observe that in turn these last two form a cluster with
the roads on the opposite traffic (black square). The yellow circle depicts
the correlations on the other side of the road and their correlation with the
parallel side of the road. The green square shows that the opposite direction
section (641) from the query road is more correlated with traffic from the top,
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Figure 7: Road sections are marked for either direction (unreliable).

(a) Sensor 123 (b) Sensor 4

Figure 8: Correlation matrix for two different road sections

bottom and left side. Upon even more careful inspection, these correlations
reveal the behaviour of traffic despite the fact that we are unaware of the
actual direction of traffic – we are looking at an undirected graph.

Conversely, in Figure 8b we can observe that there are clusters formed
for the other road segments while segment 4 is only slightly correlated with
section 241. Nevertheless, there are still weak correlations even at this rel-
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atively isolated location. Figure 7 shows that it is not necessary for a road
section to have direct adjacent road sections. However, the traffic volume on
this road is still influenced by the nearby on and off ramps. Hence, we plot
in Figure 7b the closest road sections using the euclidean distance. Recent
work optimize only for individual series forecasting and hence does not take
proximity data into consideration towards making predictions (Lippi et al.,
2013), an observation also made by the authors. It is evident that there are
dependencies between sensors in a traffic network, especially at intersections
as we show in Figure 8.

Thus far we have observed proximity operators based on direct adjacent
connections or euclidean distance. We use the correlation as a metric for
selecting road sections as opposed to using the map coordinates for each
sensor. In Figure 9 we show that the top most correlated roads for these two
sensors are not necessarily in the immediate neighbourhood. Therefore, this
is not a reliable means of selecting additional relevant data for the predictors,
since it is quite unlikely that there are dependencies between road sections
that are far apart. Perhaps a better way of selection is to compute the
cross-correlation over a fixed window interval, which accounts for shifts in
the traffic signal.
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Figure 9: Ranked road sections by correlation. Query is solid black. The highest
ranked are shown in dotted black. There is a large distance between the query and
the highest correlated over the entire dataset.

The correlations for all sensors in one area are shown in Figure 8. Clearly,
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the road section 123 has much more correlated traffic than the off highway
ramp (section 4). This is due to the fact that the ramp has no actual con-
nected roads and we selected these roads using the euclidean distance matrix.
The implications are evident: there is valuable information carried within the
neighbourhood of each query road section where predictions are to be made.

Previous research has shown that separating prediction on working and
non-working (weekends) days can improve performance if independent pre-
dictors are deployed separately for weekends or each day of the week. Addi-
tionally, both a larger temporal context through a larger lag and including
proximity data can increase prediction accuracy (Schimbinschi et al., 2015).

4.6. Pair-wise correlations with query station as a function of time

We further investigate whether the interactions depicted in Figure 8
change during the day. In the following figure we can observe that these
indeed change. There is an overall pattern, however most importantly there
are deviations from the standard pattern such as the sudden spikes at 4 am
for the blue sensor station and the spike at 6pm for the green sensor station.
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Figure 10: Sensor 123 correlation at time of day with neighboring sensors

5. Results and discussion

In this section we evaluate the network wide prediction performance for
the two datasets and compare univariate methods to Topology Regularized
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Vector Autoregression (TRU-VAR) generalized to state of the art function
approximators. In all experiments we only report the error of ex-ante point
forecasts, in other words, no information that would not be available at the
time of prediction was used in any of the experiments.

5.1. Experimental setup

For all experiments the data was split sequentially into 70% training 15%
validation and 15% testing. Preparation of data is discussed in Section 4. In
the case of ARIMA, the models were fit on the training plus validation data.
The regularization parameters and the fitting of the ARIMA (using the fore-
cast package in R (Hyndman et al., 2007)) were found independently for each
sensor station. The MLPs are trained using the gauss-newton approximation
for bayesian L2 regularized backpropagation (Foresee & Hagan, 1997). In the
case of the LLS and SVR we use L-BFGS (Nocedal & Wright, 2006, ch. 9)
for ridge and SPARSA (Wright et al., 2009) for LASSO regularization.

As a follow-up on the observations made in Figure 8a and Figure 8b we
propose learning Topology Regularized Universal Vector Autoregression by
inducing sparsity in the VAR model, in effect including only relevant data
from the nearby roads to each autoregressor. However, not all road sections
have direct connections. For the VicRoads dataset, we only use data from
the directly connected roads, if the road section has direct connections. In
Figure 7b the nearest roads for road section 4 are plotted, however there
are no directly connected roads, a case where no additional data is added.
In this case, the topological adjacency matrix can be refined according to
other heuristics for selecting relevant roads, as discussed in Section 3. PeMS
is very sparse given the area covered, we take the closest K = 6 roads as
additional data, computed using the graph adjacency matrix from the map
GPS coordinate of each sensor. We empirically selected K based on the out
of sample (test set) mean RMSE using univariate OLS fitting.

We set a naive baseline using the CMSD as specified in Section 4, which
is the average specific to the time of day, sensor and day of the week. We
furthermore compare these methods with ARIMA which is also an intuitive
baseline. Note that we do not provide comparisons with VAR since this would
be computationally prohibitive, expecially for the VicRoads dataset where
the input space would have almost 10k (∆ = 10 × 1084) dimensions, just
for one vector. We do not perform direct comparisons with recent methods
(Ko et al., 2016; Salamanis et al., 2016; Wu et al., 2016; Ahn et al., 2015;
Fusco et al., 2015; Lv et al., 2015; Xu et al., 2015) since: 1) this would
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be computationally prohibitive – in the original articles, most authors do
not perform network-wide experiments and we have a dataset with 1000+
sensor stations; 2) these methods do not have the properties described in
the introduction (Table 1 on 4); 3) we aim for a direct comparison over the
univariate equivalent of the function approximator used within TRU-VAR.

Univariate models and TRU-VAR are compared via the average RMSE
and MAPE for both datasets.

5.2. Choosing the lag order

We train a linear TRU-VAR over increasing lag windows ∆ ∈ {1, 2, 3, 5 . . . , 31}
and plot the validation set RMSE and computation time, towards making
an empirical choice for the lag value. A larger lag decreases prediction error,
while putting a heavier load on processing time. As a tradeoff we set ∆ = 10
and use the same lag value for the VicRoads dataset.
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Figure 11: RMSE and prediction time as a function of lag (PeMS).

Using this procedure we aim to get an estimate of the out of sample error.
We also mention that using this lag value the error on the test set is lower for
models with the same lag value as oppossed to the ARIMA forecasts where
the lags were selected automatically for each timeseries based on the AIC.
It is however likely that if optimizing the lag values in the same way for
TRU-VAR, the error could be further lowered.

5.3. TRU-VAR vs. Univariate

It can be observed from Table 2 that TRU-VAR outperformed the uni-
variate methods in all cases except for SVR-L1.
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Table 2: VicRoads dataset - Average RMSE
Topology regularized universal vector autoregression (TRU-VAR)
outperforms univariate models for all f except SVR-L1.

f(x) OLS LLS-L1 LLS-L2 SVR-L1 SVR-L2 MLP-L2

Univariate 24.11 24.13 24.37 24.94 24.51 22.09

± 15.4 ± 15.4 ± 15.5 ± 15.9 ± 15.9 ± 15.6

TRU-VAR 22.64 23.14 22.93 26.68 22.78 21.36

± 15.6 ± 15.7 ± 15.4 ± 18.5 ± 15.1 ± 15.3

Baselines CMSD: 35.29 ± 29.0 ARIMA: 24.32 ± 15.6

Table 3: VicRoads dataset - Average MAPE Topology regularized universal
vector autoregression (TRU-VAR)
outperforms univariate models for all f except SVR-L1.

f(x) OLS LLS-L1 LLS-L2 SVR-L1 SVR-L2 MLP-L2

Univariate 26.94 27.14 28.42 28.22 27.56 21.27

± 12.4 ± 12.6 ± 14.2 ± 14.6 ± 14.6 ± 8.5

TRU-VAR 22.96 24.53 24.16 31.91 24.28 21.03

± 9.9 ± 13.8 ± 12.5 ± 26.3 ± 13.7 ± 11.7

Baselines CMSD: 32.86 ± 53.4 ARIMA: 27.91 ± 13.4

For PeMS there are usually just two adjacent sensors (upstream and
downstream) which can contribute to the traffic volume. We were unable
to pinpoint the start and end location of the road section covered by the
sensor station unlike VicRoads. Since we only had the GPS coordinates of
stations themselves, we defined the TDAM based on the euclidean distance to
the query sensor station. This usually resulted in includin the sensor stations
on the opposite direction of traffic. While this helps in the case of VicRoads,
for freeways the traffic is strictly separated between traffic directions, hence
it is not relevant and adds unecessary complexity. However, it is interesting
that we were able to lower the prediction error by defining the adjacency
matrix based on the K roads furtherest apart from the prediction location
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for the OLS and MLP. The results are shown in Table 4 in the last row. From
the same table it can be seen that for higher temporal resolutions such as
in the case of PeMS, the lowest errors are recorded via OLS and MLP while
ARIMA, LLS and SVR show higher error.

Table 4: PeMS dataset - Average RMSE
Topology regularized universal vector autoregression (TRU-VAR)
outperforms univariate models for all f except LLS-L1.

f(x) OLS LLS-L1 LLS-L2 SVR-L1 SVR-L2 MLP-L2

Univariate 4.61 4.64 4.97 5.20 4.72 4.55

± 2.1 ± 2.0 ± 2.4 ± 2.6 ± 2.0 ± 2.0

TRU-VAR 4.53 4.64 4.92 5.03 4.70 4.45

± 2.0 ± 2.1 ± 2.5 ± 2.7 ± 2.0 ± 1.9

Baselines CMSD: 5.16 ± 3.1 ARIMA: 4.67 ± 1.7

Table 5: PeMS dataset - Average MAPE
Topology regularized universal vector autoregression (TRU-VAR)
outperforms univariate models for all f except LLS-L1.

f(x) OLS LLS-L1 LLS-L2 SVR-L1 SVR-L2 MLP-L2

Univariate 37.77 38.37 45.12 42.80 38.53 37.48

± 9.4 ± 11.0 ± 15.9 ± 20.4 ± 13.5 ± 9.8

TRU-VAR 36.95 38.37 41.59 39.74 37.69 37.42

± 10.3 ± 12.5 ± 14.7 ± 14.5 ± 12.3 ± 12.6

Baselines CMSD: 41.9 ± 19.2 ARIMA: 38.09 ± 15.76

5.4. Long-term forecasting: increasing the prediction horizon

In the previous section we shoed that TRU-VAR outperforms univariate
methods across different machine learning function approximation models.
We now ask if this holds for larger prediction horizons for to up to two
hours. Consequently, we compare the prediction performance of TRU-VAR
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and univariate models with the two best performing models from the previ-
ous section (OLS and MLP). The experiment is identical to the one in the
previous section, with the exception that now, instead of predicting at the
immediate step in the future (e.g. h = 1) we set the target variable to be
further in time. In other words, methods are idential data split is identical,
input data is the same while the target variable changes.

Therefore, in the following section we show how the overall network error
rises as the prediction horizon is increased to up to two hours. We now refer
the reader to Eq. 1 on page 14 for the definition of the prediction horizon.
The horizon temporal resolution for t+h where h = 1 was initially 5 minutes
for PeMS and 15 minutes for VicRoads which correspond to the temporal
resolution of the dataset.

Instead of predicting the volume of traffic at t+1 (for all series) we instead
train and subsequently evaluate the prediction error at horizons for up to
two hours. For PeMS, which has a resolution of 5 minutes per observation
we plot the error for eight 5-minute distanced horizons and then add 15-
minute horizons up to two hours (we skip a few horizons) – this is visible in
Figure 12a. For VicRoads the resolution is 15 minutes thus we only plot 8
forecasts to reach the two hour goal (Figure 12b). Therefore, to evaluate all
horizons for up to two hours we require to fit h ∈ {1, 2, . . . , 8} models for
VicRoads and h ∈ {1, 2, . . . , 24} for PeMS. However, for PeMS we skip a few
evaluations and take h ∈ {1, 2, 3, . . . , 8} ∪ {9, 12, . . . , 24}.

Results are displayed in Figure 12 where the network-mean RMSE is
depicted with solid lines and the standard deviation with dotted lines as an
indication of the network-spread of the error. It is evident that it is more
challenging to make predictions further in time, and it can be seen that the
error increases linearly as the prediction horizon is increased.

From both figures we can observe that TRU-VAR MLP predicts with the
lowest error even as the forecasting horizon is increased, while the Univari-
ate MLP (one simple neural network per timeseries) is the worst for both
datasets. As the prediction horizon is moved further ahead in time not only
the mean RMSE increases, but the spread of the error over the network also
increases. For PeMS the error increases by approximately 36% when the
horizon is moved from five minutes to two hours (for TRU-VAR MLP) while
for VicRoads, the error increases by 97%. This is to be expected for a much
larger network, with a more complex topology, a greater variety of road types
and a lower temporal resolution.

Overall, the error spread appears to be much more stable for PeMS and
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Figure 12: Behavior of error when prediction horizon is increased. µ RMSE with
solid lines and spread of µ ± σ RMSE with dotted lines. Lower is better, error
increases linearly with the prediction horizon.

the OLS approximators. This is for two reasons: 1) VicRoads has 10 times
more sensor stations, which can cause a much larger error spread; 2) for the
MLP experiments we trained the neural networks using first order gradient
methods which was faster, however less stable than when using bayesian
regularization as in the previous experiments in Table 2.

6. Conclusions and future work

In the current article we defined necessary properties for large scale net-
work wide traffic forecasting in the context of growing urban road networks
and (semi)autonomous vehicles. We performed a broad review of the litera-
ture and after drawing conclusions, we discussed data quality, preprocessing
and provided suggestions for defining a topology-designed adjacency matrix
(TDAM).

We consequently proposed topology-regularized universal vector autore-
gression (TRU-VAR). We compared the network-wide prediction error of
the univariate and TRU-VAR prediction models over two quantitatively and
qualitatively different datasets. TRU-VAR outperforms the CMSD baseline
and ARIMA in all cases and the regularized univariate models in almost all
cases. For VicRoads, which has high spatial but relatively lower temporal
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resolution, TRU-VAR outperformed the univariate method in all cases ex-
cept for SVR-L1. For the PeMS dataset, TRU-VAR showed lower error in
all cases except for LLS-L1. From the prediction horizon experiments (Fig-
ure 12) we concluded that the TRU-VAR MLP approximator has the lowest
error even when the forecast horizon is increased up to two hours, for both
datasets.

PeMS was easier to predict and the RMSE is lower than for VicRoads.
We would like to remind the reader that approximately half of the sensor
stations in the VicRoads dataset can have more than 50% data missing. We
did not remove these from the model. This evidently increases the overall
error. At the same time, the PeMS dataset has higher temporal resolution
(5 vs 15 minutes) however it is much smaller and has 10 times less sensor
stations. With continuous state-space models and accounting for the spatial
sparsity (large distance between sensor stations on highways causes shifts in
the signals) the error could be further decreased.

We conclude that the TDAM is a key component to our proposed traffic
forecasting expert system since it has a great impact on prediction accuracy
and should be tailored to the type of road network using expert domain
knowledge heuristics. Therefore, the weak points of our method also reside
in its strengths, namely: the design of the topological adjacency matrix is
very important and is subject to domain knowledge; the model customiza-
tion flexibility allows for a large search space of possibilities which can be
overwhelming to fine-tune, if required. When designing the adjacency matrix
for the VicRoads dataset, we could have opted to rank the most correlated
connected ones and select the top K ranked ones, in this way having an
equal number of additional streams for each prediction point. For the roads
without direct connections, this would require computing the distance to the
closest roads based on the euclidean distance and performing a correlation
ranking. This could further increase accuracy since for some sensors (for ex-
ample highway off ramps) there are no directly connected roads, hence simple
regression is performed. An alternative would have been to select second or-
der connections for the stations with a low graph node degree, such that of
highway off ramps. We leave this for future work, also aiming to investigate
continuous state space models, multi-metric data and other multi-task learn-
ing architectures. Moreover, we also aim to show that including temporal
features and adding multi-metric data (such as vehicle-crowdsourced data)
can further increase prediction performance.

Finally, we would like to point out that our method can be trained online,
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can have a nonlinear reporesentation, has a low complexity due to the topo-
logical constraints, is non-static and robust towards changes (data sources
or structure) thus scales well, is efficient and easy to redeploy. Given that
the error increases linearly within reasonable bounds (Fig. 12) for up to two
hours, our method may be useful in other contexts and applications other
than road traffic, such as natural disaster prevention (e.g. river flood fore-
casting), telecommunications (e.g. antenna load forecasts), networking (e.g.
forecasts for routing), finance to name a few. In general, the method can be
applied to any type of dataset consisting of multivariate timeseries, where the
constraints are known a priori or can be inferred from the data to construct
the topology matrix.
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